CA2159397A1 - Process for the production of molded products using internal mold release agents - Google Patents

Process for the production of molded products using internal mold release agents

Info

Publication number
CA2159397A1
CA2159397A1 CA002159397A CA2159397A CA2159397A1 CA 2159397 A1 CA2159397 A1 CA 2159397A1 CA 002159397 A CA002159397 A CA 002159397A CA 2159397 A CA2159397 A CA 2159397A CA 2159397 A1 CA2159397 A1 CA 2159397A1
Authority
CA
Canada
Prior art keywords
group
substituted
alkenyl
weight
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002159397A
Other languages
French (fr)
Inventor
Erik Haakan Jonsson
Harald Pielartzik
Kristen L. Parks
Randall C. Rains
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Corp
Original Assignee
Bayer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Corp filed Critical Bayer Corp
Publication of CA2159397A1 publication Critical patent/CA2159397A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material

Abstract

The present invention is directed to an improved internal mold release system for the production of high density molded SRIM parts, i.e. molded parts having a density of from 1.3 to 2.0 g/cc. In particular, the process comprises reacting a reaction mixture comprising an organic polyisocyanate and at least one organic compound containing isocyanate-reactive hydrogens in the presence of a catalyst and an internal mold release agent in a closed mold. The internal mold release agent is a compound corresponding to the formula:

Description

2 1 ~i~3~7 Mo-4162 PROCESS FOR THE PRODUCTION OF MOLDED PRODUCTS
USING INTERNAL MOLD RELEASE AGENTS

BACKGROUND OF THE INVENTION
Intemal mold release agents used in the production of molded polyurethane and polyurea products are known. U.S. Patents 4,201,847 and 4,254,228 describe an internal mold release which is the reaction product of an organic polyisocyanate and an active hydrogen containing 5 fatty acid ester. U.S. Patent 4,111,861 describes four different classes of internal mold releases; i) mixtures of aliphatic or aryl carboxylic acid and a polar metal compound; ii) carboxyalkyl-siloxanes; iii) aliphatic glyoximes; and iv) aralkyl ammonium salts. Other known release agents include salts of acids (such as oleic acid) and primary amines (see, U.S.
Patent 3,726,952), reaction products of long chain fatty acids and ricinoleic acid (see, U.S. Patent 4,058,492), and salts of acids (such as oleic acid) and tertiary amines (see, U.S. Patent 4,098,731). Zinc carboxylates containing from 8 to 24 carbon atoms per carboxylate group have also been described (U.S. Patents 4,519,965, 4,581,386, 4,585,803 15 and 4,764,537, and British Patent 2,101,140). Release agents containing zinc carboxylates in combination with primary or secondary amine compatibilizers and an organic material containing a carboxylic acid group, a phosphorous containing acid group or a boron containing acid group, are described in published European Patent Application 0,119,471.

kgb/102194 Mo4162 ~ 1 5 9 3 ~3 r~

Recently, a system which provides release from a bare metal mold has been developed. The system utilizes the reaction product of an organic polyisocyanate and an active hydrogen containing fatty acid ester in the A-side and a zinc carboxylate in the B-side (see, U.S. Patent 5 4,868,224). One problem with this system is that the zinc carboxylate/solubilizer combination catalyzes the hydroxyllisocyanate reaction. This makes the system relatively fast, leading to difficulties in filling large molds. It is known to add fatty acids to polyurea systems in order to increase the green strength and aid in mold release (see, U.S.
10 Patent 4,499,254). Another known system which releases from bare metal molds is disclosed in U.S. Patent 5,019,317. It uses a similar isocyanate/fatty acid ester reaction product and zinc carboxylate combination as described hereinabove to produce a molded product.
U.S. Patents 5,126,170 and 5,243,012 discloses coating materials 15 which contain polyaspartic acid derivatives.
The present invention is directed to molded products made using certain aspartic acid derivatives as internal mold release agents.
DESCRIPTION OF THE INVENTION
The present invention is directed to an improved intemal mold 20 release system for the production of relatively high density SRIM molded parts, i.e. molded parts having a density of from 1.3 to 2.0 g/cc. In particular, the process comprises reacting a reaction mixture comprising an organic polyisocyanate and at least one organic compound containing isocyanate-reactive hydrogens in the presence of a catalyst and an 25 internal mold release agent in a closed mold. The internal mold release agent is used in an amount of from 1 to 25% by weight (and preferably from 3 to 7% by weight) based upon the total weight of reaction mixture and comprises a compound corresponding to the formula:

Mo41 62 21593~7 R1_ N CH CH2 CoOR3 CoOR4 wherein R2 represents hydrogen, the group R5-NH-Co-, or a C, to C24alkyl or substituted alkyl group, a C3 to C24 cycloalkyl or substituted cycloalkyl group, a C2 to C24 alkenyl or substituted alkenyl group, or a C6 to C24 aryl or substituted aryl group, and wherein R', R3, R4 and R5 may be the same or different and represent a C, to C24 alkyl or substituted alkyl group, a C3 to C24 cycloalkyl or substituted cycloalkyl group, a C2 to C24 alkenyl or substituted alkenyl group, or a C6 to C24 aryl or substituted aryl group, with the proviso that at least one of R', R2, R3, R4 and R5is a C,2 to C24 alkyl or substituted alkyl group, or a C,2 to C24 alkenyl or substituted alkenyl group, and with the further proviso that substituent groups are inert toward isocyanate groups at temperatures of 100 C or less.
In the most preferred embodiment, the reaction mixture additionally comprises from 0 to 10% by weight, based on the weight of the reaction mixture, of a fatty acid. Preferably the reaction mixture contains from 2 to 7% by weight, based on the weight of the reaction mixture, of a fatty acid. Oleic acid is the preferred fatty acid.
In addition, the reaction mixture may comprise up to 70% by weight, based on the weight of the reaction mixture, of reinforcing agents, including mats and fillers. Both organic and inorganic reinforcing agents and fillers may be used. It is preferred that the reaction mixture comprise from 45 to 65% by weight, based on the weight of the reaction mixture, of reinforcing agents and/or fillers.

Mo41 62 21~93g7 lt has been found that the internal mold release agent described hereinabove gives excellent release from a variety of different mold surfaces, such as steel or aluminum. As is typical in the industry, an application of paste wax is applied to the surface of the mold.
5 Conventional paste waxes are commercially available from Chem-Trend, Inc. One such example is RCT-C-2080. The paste wax fills the pores of the tool and forms a barrier coat to keep the urethane from sticking to the tool. It is necessary to apply one spray of extemal mold release to the surface of the mold prior to molding the first part. This extemal mold 10 release may be either a water or a wax based release agent. Typically, this will enable the easy release of at least 20 parts from the mold.
The aspartic acid derivatives useful herein and their method of manufacture are known in the art. They may be synthesized from dialkyl maleates and primary or secondary fatty chain monoamines in a Michael-15 type reaction according to following reaction scheme (the scheme showsthe reaction between a dialkyl maleate and a primary amine):

O~ O
R3 O C- CH = CH C - O - R4 + R' - NH2--' O O
R3 o C - CH2--CH--d - O - R4 (A) NH
R' Mo41 62 3 ~ ~

In order to produce the compounds where R2 is the group R5-NH-Co-, the product is reacted with a monoisocyanate. U.S. patents 2,438,091 and 4,237,268 and Japanese patent 05140059 describe methods of making compounds falling within the above formula.
Suitable fatty acids to be used in the reaction mixture in addition to the intemal mold release agent described hereinabove, include, for example, fatty acids such as those described in U.S. Patent 4,499,254, incorporated herein by reference. Typical are those acids presented by the formula: R(CO2H)n, wherein n is 1, 2, or 3 and where R contains at least 10 carbon atoms. R may be alkyl (i.e. cyclic, linear, or branched), alkaryl, aralkyl, or aryl, saturated or unsaturated. Examples of useful acids include, for example, n-decanoic acid, neodecanoic acid, lauric acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid, and the like. The fatty acid can be used in the B-side of the reaction mixture. It is simply mixed with the particular component prior to use. The relative amounts of fatty acid used are as described hereinabove. Oleic acid is the preferred fatty acid.
Starting polyisocyanate components for use in the present invention include aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates of the type described, for example, by W.
Siefken in Justus Liebigs Annalen der Chemie, 562, pages 72 to 136.
Specific examples of these compounds are ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate; 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate; cyclohexane-1,3-and -1,4-diisocyanate and mixtures of these isomers. Additional examples are 1-isocyanato-3,3,5-trimethyl-5-isocyanato-methyl cyclohexane (German Auslegeschrift No. 1,202,785, U.S. Patent No.
3,401,190), 2,4- and 2,6-hexahydro-tolylene diisocyanate and mixtures of these isomers. Hexahydro-1,3- and/or -1,4-phenylene diisocyanate;

Mo4162 215g3~7 perhydro-2,4'- and.or -4,4'-diphenylmethane diisocyanate; 1,3- and 1,4-phenylene diisocyanate; 1,4- and 2,5-tolylene diisocyanate and mixtures of these isomers are also suitable in the instant invention. Diphenyl-methane-2,4- and/or-4,4'-diisocyanate; naphthylene-1, 5-diisocyanate;
triphenyl methane-4,4'-4"-triisocyanate; polyphenyl polymethylene polyisocyanates of the type obtained by condensing aniline with formaldehyde, followed by phosgenation and described, for example, in British Patent Nos. 874,430 and 848,671 may also be used in the present invention; m- and p-isocyanato-phenylsulfonyl isocyanates according to U.S. Patent 3,454,606; perchlorinated aryl polyisocyanates of the type described, for example, in German Auslegeschrift No.
1,157,601 (U.S. Patent 3,277,138); polyisocyanates containing carbodiimide groups of the type described in German Patent No.
1,902,007 (U.S. Patent No. 3,152,162); diisocyanates of the type described in U.S. Patent No. 3,492,330; and polyisocyanates containing allophanate groups of the type described, for example, in British Patent No. 993,890, in Belgian Patent No. 761,626 and in published Dutch Patent Application No. 7,102,524 are still further examples of suitable isocyanates. Additionally, polyisocyanates containing isocyanurate groups of the type described, for example, in U.S. Patent No. 3,001,973;
in German Offenlegungsschriften Nos. 1,929,034 and 2,004,408;
polyisocyanates containing urethane groups of the type described, for exampie, in Belgian Patent No. 752,261 or in U.S. Patent No. 3,394,164;
polyisocyanates containing acylated urea groups according to German Patent No. 1,230,778 and polyisocyanates containing biuret groups of the type described, for example, in German Patent No. 1,101,394 (U.S. Patent Nos. 3,124,605 and 3,201,372) and in British Patent No.
889,050 are also suitable.

Mo4162 ~1~93~
Polyisocyanates produced by telomerization reactions of the type described, for example, in U.S. Patent No. 3,654,106; polyisocyanates containing ester groups of the type described for example, in British Patent Nos. 965,474 and 1,072,956, in U.S. Patent No. 3,567,763 and in 5 German Patent No. 1,231,688; reaction products of the above-mentioned isocyanates with acetals according to German Patent No. 1,072,385 and polyisocyanates containing polymeric fatty acid residues, according to U.S. Patent No. 3,455,883 are still further examples of suitable isocyanates.
Aromatic polyisocyanates which are liquid at the processing temperature are preferably used. The particularly preferred starting polyisocyanates include derivatives of 4,4'-diisocyanato-diphenyl-methane which are liquid at room temperature, for example, liquid polyisocyanates containing urethane groups of the type obtainable in 15 accordance with German Patent No. 1,618,380 (U.S. Patent No.
3,644,457). These may be produced for example, by reacting 1 mol of 4,4'-diisocyanato-diphenylmethane with from 0.05 to 0.3 mols of low molecular weight diols or triols, preferably polypropylene glycols having a molecular weight below 700. Also useful are diisocyanates based on 20 diphenylmethane diisocyanate containing carbodiimide and/or uretone imine groups of the type obtainable, for example, in accordance with German Patent No. 1,092,007 (U.S. Patent No. 3,152,162). Mixtures of these preferred polyisocyanates can also be used. In general, aliphatic cycloaliphatic isocyanates are less suitable for the purpose of the instant 25 invention.
Also preferred are the polyphenyl-polymethylene polyisocyanates obtained by the phosgenation of an aniline/formaldehyde condensate.
Where reinforcing fiber mats are used, it is particularly preferred that such polyisocyanates have viscosities of 200 mPa.s or less at 25C.

Mo4162 - 21~g39~
Also necessary for preparing the molded product of the present invention is an isocyanate reactive component. Generally, isocyanate reactive compounds include, for example, organic compounds containing hydroxyl groups or amine groups. It is generally preferred to include 5 hydroxyl group containing compounds. These materials may be typically divided into two groups, high molecular weight compounds having a molecular weight of 500 to 10,000 and low molecular weight compounds having a molecular weight of 62 to 499. These low molecular weight compounds are commonly referred to as chain extenders. Examples of 10 suitable high molecular weight compounds include the polyesters, polyethers, polythioethers, polyacetals and polycarbonates containing at least 2, preferably 2 to 8 and most preferably 2 to 4 hydroxyl groups of the type known for the production of polyurethanes.
The high molecular weight polyethers suitable for use in 15 accordance with the invention are known and may be obtained, for example, by polymerizing epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin in the presence of BF3 or chemically adding these epoxides, preferably ethylene oxide and propylene oxide, in admixture or successively to 20 components containing reactive hydrogen atoms such as water, alcohols or amines. Examples of alcohols and amines include the low molecular weight chain extenders set forth hereinafter, 4,4'-dihydroxy diphenyl propane, sucrose, aniline, ammonia, ethanolamine and ethylene diamine.
Polyethers modified by vinyl polymers, of the type formed, for example, 25 by polymerizing styrene or acrylonitrile in the presence of polyether (U.S.
Patents 3,383,351); 3,304,273; 3,523,093; and 3,110,695; and German Patent 1,152,536), are also suitable, as are polybutadienes containing OH groups.

Mo4162 21593~
g In addition, polyether polyols which contain high molecular weight polyadducts or polycondensates in finely dispersed form or in solution may be used. Such modified polyether polyols are obtained when polyaddition reactions (e.g., reactions between polyisocyanates and 5 amino functional compounds) or polycondensation reactions (e.g., between formaldehyde and phenols and/or amines) are directly carried out in situ in the polyether polyols.
Suitable examples of high molecular weight polyesters include the reaction products of polyhydric, preferably dihydric alcohols (optionally in 10 the presence of trihydric alcohols), with polyvalent, preferably divalent, carboxylic acids. Instead of using the free carboxylic acids, it is also possible to use the corresponding polycarboxylic acid anhydrides or corresponding polycarboxylic acid esters of lower alcohols or mixtures thereof for producing the polyesters. The polycarboxylic acids may be 15 aliphatic, cycloaliphatic, aromatic and/or heterocyclic and may be unsaturated or substituted, for example, by halogen atoms. The polycarboxylic acids and polyols used to prepare the polyesters are known and described for example in U.S. Patents 4,098,731 and 3,726,952, herein incorporated by reference in their entirety. Suitable 20 polythioethers, polyacetals, polycarbonates and other polyhydroxyl compounds are also disclosed in the above-identified U.S. Patents.
Finally, representatives of the many and varied compounds which may be used in accordance with the invention may be found for example in High Polymers, Volume XVI, "Polyurethanes, Chemistry and 25 Technology", by Saunders-Frisch, Interscience Publishers, New York, London, Vol. l, 1962, pages 32-42 and 44-54, and Volume ll, 1964, pages 5-6 and 198-199; and in Kunststoff-Handbuch, Vol. Vll, Vieweg-Hochtlen, Carl-Hanser-Verlag, Munich, 1966, pages 45-71.

Mo4162 ln accordance with the present invention, the high molecular weight compounds can be used in a mixture with low molecular weight polyols. Examples of suitable hydroxyl group-containing polyols include ethylene glycol, 1,2- and 1,3-propylene diol, 1,3- and 1,4- and 2,3-butane 5 diol, 1,6-hexane diol, 1,10-decane diol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, glycerol and trimethylol propane.
Other suitable chain extenders include aromatic polyamines, preferably diamines, having molecular weights of less than 400, 10 especially the sterically hindered aromatic polyamines, preferably diamines, having molecular weights of less than 400, especialiy the sterically hindered aromatic diamines which contain at least one linear or branched alkyl substituent in the ortho-position to the first amino group and at least one, preferably two linear or branched alkyl substituents 15 containing from 1 to 4, preferably 1 to 3, carbon atoms in the ortho-position to a second amino group. These aromatic diamines include 1-methyl-3,5-diethyl-1,2,4-diamino benzene, 1-methyl-2,4-diamino benzene, 1,3,5-triethyl-2,4-diamino benzene, 3,5,3',5'-tetraethyl-4,4'-diamino diphenylmethane, 3,5,3',5'-tetraisopropyl-4,4'-diamino diphenylmethane, 20 3,5-diethyl-3',5'-diisopropyl-4,4'-diamino diphenylmethane, 3,5-diethyl-5,5'-diisopropyl-4,4'-diamino diphenylmethane, 1-methyl-2,6-diamino-3-isopropylbenzene and mixtures of the above diamines. Most preferred are mixtures of 1-methyl-3,5-diethyl-2,4-diamino benzene and 1-methyl-3,5-diethyl-2,6-diamino benzene in a weight ratio between about 50:50 to 25 85:15, preferably about 65:35 to 80:20.
In addition, aromatic polyamines may be used in admixture with the sterically hindered chain extenders and include, for example, 2,4- and 2,6-diamino toluene, 2,4'- and/or 4,4'-diamino-diphenyl-methane, 1,2- and 1,4-phenylene diamine, naphthalene-1,5-diamine and triphenylmethane-Mo4162 21~g3~

4,4'-4"-triamine. The trifunctional and polyfunctional aromatic amine compounds may also exclusively or partly contain secondary amino groups such as 4,4'-di-(methylamino)-diphenylmethane or 1-methyl-2-methylamino-4-amino-benzene. Liquid mixtures of polyphenyl poly-5 methylene-polyamines, of the type obtained by condensing aniline with formaldehyde, are also suitable. Generally, the non-sterically hindered aromatic diamines and polyamines are too reactive to provide sufficient processing time in a RIM system. Accordingly, these diamines and polyamines should generally be used in combination with one or more of 10 the previously mentioned sterically hindered diamines or hydroxyl group-containing chain extenders.
The reaction mixture used in the present invention should also include catalysts.
Suitable catalysts which may be used in the present invention 15 include catalysts such as, for example, various organic metal compounds, including, for example, tin(ll) salts of carboxylic acids, dialkyl tin salts of carboxylic acids, dialkyl tin mercaptides, dialkyl tin dithioestersand tertiary amines, such as, for example, dimethylcyclo-hexylamine (i.e.
Polycat 8), pentamethyldiethylenetriamine (i.e. Polycat 5), bis[2-20 (dimethylamino)ethyl]ether (Niax A-1), dimethylethanolamine (DMEA), Dabco WT, etc.. Of course, it is also possible to use any of the catalysts which are well known to those skilled in the art of polyurethane chemistry. It is preferred to use tertiary amines as the catalysts in the present invention.
The process of the present invention is a typical SRIM, i.e.
structural reaction injection molding process. The SRIM process is the same as a conventional RIM process, except that it requires a reinforcing mat to be placed in the mold cavity prior to the introduction of the reaction mixture.

Mo4 1 62 21~9~97 -Reinforcing mats which are also useful in this invention comprise, for example, glass mats, graphite mats, polyester mats, polyaramide mats such as, for example, KEVLAR mats, and mats made from any fibrous material. Also, this includes, for example, random continuous strand mats made of glass fiber bundles, woven mats and oriented mats such as, for example, uniaxial or triaxial mats.
In addition to the hereinabove described reinforcing mats, it is also to possible to use additional fillers and reinforcing agents in the present invention. These may be included in the reaction mixture by mixing with one or both components, i.e. the isocyanate component and/or the isocyanate-reactive component, prior to mixing the components via the RIM process.
Suitable fillers and reinforcing agents which may be included in the reaction mixture as described hereinabove include both organic and inorganic compounds. These inorganic compounds include, for example, compounds such as glass in the form of fibers, flakes, cut fibers, or microspheres; mica, wolJastonite; carbon fibers; carbon black; talc; and calcium carbonate. Suitable organic compounds include, for example, expanded microspheres which are known and described in, for example, U.S. Patents 4,829,094, 4,843,104, 4,902,722, and 4,959,395, the disclosures of which are herein incorporated by reference, and Applicants copending U.S. Application Serial Number 08/006,560 filed on January 21, 1993, the disclosure of which is herein incorporated by reference.
These include commercially available microspheres such as, for example, Dualite M6017AE, Dualite M6001AE, and Dualite M6029AE, all of which are available from Pierce ~ Stevens Corporation, and Expandocel which is available from Nobel Industries.
In addition to the catalysts and fillers and reinforcing agents, other additives which may also be used in the reaction mixture to form the Mo41 62 2 i~397 -molding compositions of the present invention include, for example, the known cell regulators, flame retarding agents, plasticizers, dyes, blowing agents, surface-active agents, etc.
Suitable surface-active additives include compounds such as, for example, emulsifiers and foam stabilizers. Some suitable surface-active additives include compounds such as, for example, N-stearyl-N',N'- bis-hydroxyethyl urea, oleyl polyoxyethylene amide, stearyl diethanol amide, isostearyl diethanolamide, polyoxyethylene glycol monoleate, a penta-erythritol/adipic acid/oleic acid ester, a hydroxy ethyl imidazole derivative of oleic acid, N-stearyl propylene diamine and the sodium salt of castor oil sulfonates or of fatty acids. Alkali metal or ammonium salts of sulfonic acid such as dodecyl benzene sulfonic acid or dinaphthyl methane sulfonic acid and also fatty acids may also be used as surface-active additives.
Suitable foam stabilizers include water-soluble polyether siloxanes.
The structure of these compounds is generally such that a copolymer of ethylene oxide and propylene oxide is attached to a polydimethyl siloxane radical. Such foam stabilizers are described in U.S. Patent 2,764,565.
The compositions according to the present invention may be molded using conventional processing techniques at isocyanate indexes ranging from as low as 90 to as high as 400 (preferably from 95 to 115) and are especially suited for processing by the RIM process. In general, two separate streams are intimately mixed and subsequently injected into a suitable mold, although it is possible to use more than two streams.
The first stream contains the polyisocyanate component, while the second stream contains the isocyanate reactive components and any other additives which are to be included.

Mo41 62 215~7 -The invention is further illustrated but is not intended to be limited by the following examples in which all parts and percentages are by weight unless otherwise specified.
EXAMPLES
5 PreParation of release aqent:
RELEASE AGENT A: 7800 parts by weight of oleylamine were charged to a reaction vessel under a nitrogen blanket. Under the nitrogen blanket, 5010 parts by weight of diethylmaleate were slowly added to the vessel at 60C, care being taken that the temperature in the vessel did 10 not exceed 80C. After the addition was complete, the temperature was raised to 80C and the reaction mixture was stirred at that temperature for 4 hours under nitrogen blanket. Vacuum (1 to 3 mmHg) was applied, the mixture heated to 80C and stirred for another two hours.
RELEASE AGENT B: 800 parts by weight of RELEASE AGENT A was 15 added to a reaction vessel. 178 parts by weight of butyl isocyanate were added dropwise to the vessel under a nitrogen blanket. The temperature was maintained at or below 30C. After the addition was complete, the reaction mixture was stirred at room temperature for 3 hours. Vacuum (1 to 3mmHg) was slowly applied until gas formation ceased.
20 SRIM Examples:
The polyurethane system used was a typical RIM 2-component system. The A-side was a polymeric diphenylmethane diisocyanate and is described hereinbelow. The B-side was a mixture of polyols and other organic compounds containing isocyanate-reactive hydrogens, catalysts 25 and the internal release agents of the invention. A Krauss-Maffei 10mm mixhead was used. The following processing parameters were used ~:
Throughput 250 g/sec Mix pressure (A/B) 14 Nlmm21 14.7 /mm2 (2000psi/2100psi) Demold time 60 seconds Mo4162 215~3~37 A specified number (or quantity) of reinforcing mats was preplaced in the tool.
The temperature of both the A- and B-sides was about 32 (about 90F). Prior to beginning the trials, the surface of the 15 inch x 15 inch by 0.125 inch (about 38 cm x 38 cm x 3 cm) polished P20 steel plaque mold used in each example was cleaned with Chem-Trend 201B mold cleaner (i.e. n-methyl pyrrolidone). The mold used in each example was buffed with Chem-Trend 2080 paste wax and lightly sprayed with Chem-Trend 2006 external release agent. The mold temperature in each example was maintained at approximately 79C (about 175F). No additional paste wax or external mold release was used after the molding of the first part in each example.
A successful release indicated no sticking or tearing of the molded part, and the part was removed from the mold without applying significant force.
The following materials were used:
IsocYanate: A commercially available polymethylene poly(phenyl isocyanate) having a isocyanate group content of about 32% by weight, and having a diisocyanate content of about 48% by weight. The diisocyanate comprises about 5% by weight of 2,4'-methylene bis(phenyl isocyanate) and about 43% by weight of 4,4'-methylene bis(phenylisocyanate).
PolYol A: an adduct of propylene glycol and propylene oxide, having a molecular weight of about 425 Polyol B: an adduct of glycerin with a mixture of ethylene oxide and propylene oxide in about an 82:18% by weight to obtain a molecular weight of about 6010 Mo4162 ~1$~

Polyol C: an adduct of ethylene diamine with propylene oxide, having a molecular weight of about 350 SA-610/50: an acid-blocked 1,5-diazodicyclo (5.4.0) undec-5-ene delayed action catalyst; commercially available from Air Products PC-15 (Polvcat 15): a tertiary amine with a reactive secondary amine catalyst; commercially available from Air Products.
The following B-side was used:
PBW
Polyol A 29 Polyol B 25 Polyol C 24 Ethylene Glycol 22 Oleic Acid 5 PC-15 0.35 SA-610/50 1.5 Example 1 The mold was cleaned and buffed as described above. A total of 20 0.24 g/cm2 (8 oz/sq.ft.) of OCF M-8610 continuous strand mat reinforcement, commercially available from Owens Coming Fiberglass, was placed inside the mold prior to introduction of the reactants and closing the mold. 5 parts by weight of RELEASE AGENT A was added to the B-side. The total system provided a 20 second gel time. The A-side 25 and the B-side were then injected into the mold in a weight ratio of 146/100 (A-side/B-side) at an isocyanate index of 105. The system provided an average of 20 easy releases with no further application of external release agent. The average physical and mechanical properties of the 20 molded parts are shown in Tabie 1.

Mo4162 Z1~3~7 Example 2 The mold was cleaned and buffed as described above. A total of 0.24 g/cm2 (8 oz/sq.ft.) of OCF M-8610 continuous strand mat reinforcement, commercially available from Owens Corning Fiberglass, 5 was placed inside the mold prior to introduction of the reactants and closing the mold. 5 parts by weight of RELEASE AGENT B was added to the B-side. The total system provided a 19 second gel time. The A-side and the B-side were then injected into the mold in a weight ratio of 145/100 (A-side/B-side) at an isocyanate index of 105. This system also 10 provided an average of 20 easy releases with no further application of external release agent. The average physical and mechanical properties of the 20 molded parts are shown in Table 1.

Mo4162 21~9~1 ._ Example 1 Example 2 Density, g/cm3 1.59 1.56 ASTM D792 Ibm3 99.12 97.53 Tensile Strength, mPa 189 (+ 11) 221 (+ 15) ASTM D638 Ib/in2 27,340 (+ 1,558) 32,100(+2,125) Tensile Elongation, % 2.2 (+ 0.3) 2.3 (+ 0.2) Flexural strength, mPa 325 (+ 13) 311 (+ 57) ASTM D790 Ib/in2 47,170 (+ 1,894) 45,130 (+ 8,203) Flexural Modulus, mPa 11,559 (+ 158) 10,931 (+ 2616) /ASTM D790 Iblin2 1,676,000 (+ 22,950) 1,585,000(+379,300) HDT, C 203 202 Although the invention has been described in detail in the foregoing 20 for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims.

Mo4162

Claims (4)

1. In a process for producing a SRIM molded part having a density of from 1.3 to 2.0 g/cc, by reacting a reaction mixture comprising an organic polyisocyanate and at least one organic compound containing isocyanate-reactive hydrogens in the presence of a catalyst and an internal mold release agent in a closed mold, the improvement wherein said internal mold release agent comprises: a compound corresponding to the formula:

wherein R2 represents hydrogen, the group R5-NH-CO-, or a C1 to C24 alkyl or substituted alkyl group, a C3 to C24 cycloalkyl or substituted cycloalkyl group, a C2 to C24 alkenyl or substituted alkenyl group, or a C6 to C24 aryl or substituted aryl group, and wherein R1, R3, R4 and R5 may be the same or different and represent a C1 to C24 alkyl or substituted alkyl group, a C3 to C24 cycloalkyl or substituted cycloalkyl group, a C2 to C24 alkenyl or substituted alkenyl group, or a C6 to C24 aryl or substituted aryl group, with the proviso that at least one of R1, R2, R3, R4 and R5 is a C12 to C24 alkyl or substituted alkyl group, or a C12 to C24 alkenyl or substituted alkenyl group, and with the further proviso that substituent groups are inert toward isocyanate groups at temperatures of 100°C or less.
2. The process of Claim 1, wherein said internal mold release agent is used in an amount of from 1.0 to 25% by weight, based on the weight of said reaction mixture.
3. The process of Claim 1, wherein said reaction mixture additionally contains from 0 to 10% by weight, based on the weight of said reaction mixture, of oleic acid.
4. The process of Claim 1, wherein said reaction mixture additionally contains up to 70% by weight, based on the weight of said reaction mixture, of a filler or reinforcing agent
CA002159397A 1994-11-15 1995-09-28 Process for the production of molded products using internal mold release agents Abandoned CA2159397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/339,854 US5529739A (en) 1994-11-15 1994-11-15 Process for the production of molded products using internal mold release agents
US08/339,854 1994-11-15

Publications (1)

Publication Number Publication Date
CA2159397A1 true CA2159397A1 (en) 1996-05-16

Family

ID=23330916

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002159397A Abandoned CA2159397A1 (en) 1994-11-15 1995-09-28 Process for the production of molded products using internal mold release agents

Country Status (6)

Country Link
US (1) US5529739A (en)
EP (1) EP0712707A3 (en)
JP (1) JPH08207072A (en)
KR (1) KR960017100A (en)
BR (1) BR9505191A (en)
CA (1) CA2159397A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688590A (en) * 1995-08-21 1997-11-18 Bayer Corporation High heat resistant molded parts produced by structural reaction injection molding
US7195726B1 (en) * 1998-08-26 2007-03-27 Dow Global Technologies Inc. Internal mold release for low density reaction injection molded polyurethane foam
AU3725900A (en) * 1999-03-15 2000-10-04 Huntsman International Llc Internal mold release compositions
US20040171784A1 (en) * 1999-03-15 2004-09-02 Shidaker Trent A. Internal mold release compositions
US7078475B2 (en) * 2001-06-15 2006-07-18 Huntsman Petrochemical Corporation Synergistic amine chain-extenders in polyurea spray elastomers
US20060011295A1 (en) * 2004-07-14 2006-01-19 Karsten Danielmeier Aspartic ester functional compounds
WO2013127850A1 (en) * 2012-02-29 2013-09-06 Bayer Intellectual Property Gmbh 2-k pultrusion formulation and process
EP3268200A4 (en) * 2015-03-10 2019-02-20 Peterson Chemical Technology LLC Low delamination mold release
US10519273B2 (en) 2017-12-07 2019-12-31 Covestro Llc Processes for producing filter cartridge assemblies and molded polyurethane elastomers
US11827788B2 (en) 2019-10-07 2023-11-28 Covestro Llc Faster cure polyaspartic resins for faster physical property development in coatings

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2438091A (en) * 1943-09-06 1948-03-16 American Cyanamid Co Aspartic acid esters and their preparation
BE757939A (en) * 1969-10-24 1971-04-01 Bayer Ag PROCESS FOR THE PREPARATION OF FOAM MATERIALS
DE2307589C3 (en) * 1973-02-16 1984-11-15 Bayer Ag, 5090 Leverkusen Process for the production of foams with excellent release properties
US4201847A (en) * 1973-02-16 1980-05-06 Bayer Aktiengesellschaft Process of preparing foams with internal mold-release agents
US4058492A (en) * 1974-01-10 1977-11-15 Bayer Aktiengesellschaft Process for molding polyurethane foams
US4098731A (en) * 1974-07-03 1978-07-04 Bayer Aktiengesellschaft Process for the production of foams
US4111861A (en) * 1976-09-24 1978-09-05 Union Carbide Corporation Method of molding polyurethanes having mold release properties
DE2732557A1 (en) * 1977-07-19 1979-02-01 Bayer Ag ESTERS OF ACYLATED AMINOCARBON ACIDS
BE893509A (en) * 1981-07-06 1982-10-01 Dart Ind Inc INTERNAL RELEASE AGENTS AND THEIR USE
AU572829B2 (en) * 1983-02-16 1988-05-19 Dow Chemical Company, The An active hydrogen-containing composition which provides moldrelease properties to a molded article, an internal mold hydrogen-containing composition
US5182034A (en) * 1983-02-16 1993-01-26 The Dow Chemical Company Internal mold release compositions
DE3347574A1 (en) * 1983-12-30 1985-07-11 Bayer Ag, 5090 Leverkusen SINGLE-PHASE, STABLE, SALTY MIXTURES AND THEIR USE FOR THE PRODUCTION OF POLYURETHANES
US4499254A (en) * 1984-02-13 1985-02-12 Texaco Inc. Reaction injection molded elastomers containing high molecular weight organic acids
DE3405875A1 (en) * 1984-02-18 1985-08-22 Basf Ag, 6700 Ludwigshafen METHOD FOR THE PRODUCTION OF CELLED OR COMPACT POLYURETHANE-POLYHANE MOLDED BODIES WITH IMPROVED DEFLECTING PROPERTIES AND INNER MOLD RELEASE AGENT FOR THE POLYISOCYANATE POLYADDITION METHOD
US4585803A (en) * 1984-08-17 1986-04-29 The Dow Chemical Company Internal mold release compositions
US4895879A (en) * 1984-08-17 1990-01-23 The Dow Chemical Company Internal mold release compositions
US4519965A (en) * 1984-08-23 1985-05-28 Mobay Chemical Corporation Internal mold release agent for use in reaction injection molding
US4581386A (en) * 1985-05-23 1986-04-08 Mobay Chemical Corporation Internal mold release agent for use in reaction injection molding
DE3631842A1 (en) * 1986-09-19 1988-03-24 Basf Ag INNER MOLD RELEASE AGENTS, THE USE THEREOF FOR THE PRODUCTION OF MOLDED BODIES BY THE POLYISOCYANATE POLYADDITIONAL PROCESS AND METHOD FOR THE PRODUCTION OF THE MOLDED BODIES
US4868224A (en) * 1988-10-21 1989-09-19 Mobay Corporation Process for the production of molded products using internal mold release agents
JPH02232216A (en) * 1989-03-06 1990-09-14 Sanyo Chem Ind Ltd Production of polyurethane
US4946922A (en) * 1989-05-03 1990-08-07 The Dow Chemical Company Internal mold release agents for polyisocyanurate systems
US5019317A (en) * 1989-05-24 1991-05-28 Mobay Corporation Process for the production of molded products using internal mold release agents
ATE113622T1 (en) * 1989-06-23 1994-11-15 Bayer Ag PROCESS FOR MAKING COATINGS.
US5128087A (en) * 1990-03-09 1992-07-07 Miles Inc. Process for the production of molded products using internal mold release agents
US5151483A (en) * 1991-03-13 1992-09-29 Miles Inc. Process for the production of reinforced polyurethane moldings by the reaction injection molding process
CA2081706A1 (en) * 1991-11-26 1993-05-27 Randall Carl Rains Production of class-a surface of fiber reinforced polyurethane molded products
US5243012A (en) * 1992-06-10 1993-09-07 Miles Inc. Polyurea coating compositions having improved pot lives
US5312845A (en) * 1992-12-16 1994-05-17 Air Products And Chemicals, Inc. Rim polyol blends containing acidic siloxane internal mold release agents and tin catalysts
US5244613A (en) * 1993-01-21 1993-09-14 Miles Inc. Process for the production of reinforced moldings and the resultant products
US5399310A (en) * 1993-03-23 1995-03-21 The Dexter Corporation Method of using mold release agents
US5389696A (en) * 1993-09-17 1995-02-14 Miles Inc. Process for the production of molded products using internal mold release agents
US5916939A (en) * 1994-02-25 1999-06-29 Imperial Chemical Industries Plc Internal mold release compositions

Also Published As

Publication number Publication date
JPH08207072A (en) 1996-08-13
EP0712707A2 (en) 1996-05-22
KR960017100A (en) 1996-06-17
BR9505191A (en) 1997-10-28
EP0712707A3 (en) 1997-10-08
US5529739A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
CA2129420C (en) Process for the production of molded products using internal mold release agents
US4868224A (en) Process for the production of molded products using internal mold release agents
US4774263A (en) Process for the production of elastic molded articles
EP0659792B1 (en) RIM process for making aliphatic polyurethane elastomers
CA1336024C (en) Internal mold release agent for use in molding polyurethanes and/or polyureas
US4886838A (en) Internal mold release agent for use in reaction injection molding
CA1338562C (en) Rim polyurethane or polyurea compositions containing internal mold release agents
US5019317A (en) Process for the production of molded products using internal mold release agents
US5137966A (en) Internal release agents, active hydrogen containing mixtures which contain such agents and the use thereof in a process for the production of molded products
US5529739A (en) Process for the production of molded products using internal mold release agents
CA2174305C (en) Method of producing gaskets from polyurethane/urea compositions and gaskets produced therefrom
US5500176A (en) Process for the production of molded products using internal mold release agents
US5028635A (en) Polyurea-cyclic carbonate RIM systems having improved flow properties
CA2141884C (en) Long-gelling internal mold release compositions for structural rim processes
US5160538A (en) Internal release agents, active hydrogen containing mixtures which contain such agents and the use thereof in a process for the production of molded products
CA2066326C (en) Novel internal release agents, active hydrogen containing mixtures which contain such agents and the use thereof in a process for the production of molded products
US5149458A (en) Polyurea rim systems having improved flow properties and containing an organic cyclic carbonate
EP0275907A2 (en) Rim polyurethane or polyurea compositions containing internal mold release agents
US5128087A (en) Process for the production of molded products using internal mold release agents
CA2037076A1 (en) Process for the production of molded products using internal mold release agents
US5125973A (en) Internal mold release agents and use thereof in the production of molded products
EP0350644A1 (en) Polyurea rin sytems having improved flow properties
US5019600A (en) Internal mold release agent for use in reaction injection molding
US5125974A (en) Internal mold release agents and the use thereof in the production of molded products
CA1328526C (en) Polyurea rim systems having improved flow properties

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued