CA2153450C - Method for preparing automobile shredder residue-synthetic plastic material composite - Google Patents

Method for preparing automobile shredder residue-synthetic plastic material composite

Info

Publication number
CA2153450C
CA2153450C CA 2153450 CA2153450A CA2153450C CA 2153450 C CA2153450 C CA 2153450C CA 2153450 CA2153450 CA 2153450 CA 2153450 A CA2153450 A CA 2153450A CA 2153450 C CA2153450 C CA 2153450C
Authority
CA
Canada
Prior art keywords
particulates
automobile shredder
granulated
shredder residue
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2153450
Other languages
French (fr)
Other versions
CA2153450A1 (en
Inventor
Jack Lazareck
Martin Walsh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2153450A1 publication Critical patent/CA2153450A1/en
Application granted granted Critical
Publication of CA2153450C publication Critical patent/CA2153450C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • B03B2009/068Specific treatment of shredder light fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0268Separation of metals
    • B29B2017/0272Magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3055Cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/911Recycling consumer used articles or products
    • Y10S264/912From toroidal shapes, e.g. resilient tires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/911Recycling consumer used articles or products
    • Y10S264/913From fiber or filament, or fiber or filament containing article or product, e.g. textile, cloth fabric, carpet, fiberboard
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/911Recycling consumer used articles or products
    • Y10S264/916From porous material containing articles, e.g. sponge, foam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/911Recycling consumer used articles or products
    • Y10S264/92Recycling consumer used articles or products by extruding material recycled from consumer used article or product

Abstract

A method is provided for processing a mixture raw automobile shredder residue, and virgin and/or contaminated synthetic plastic material, e.g., raw post consumer plastic waste. By means of this method, automobile shredder residue produced by a conventional automobile shredder is formed into a first stream by being ground in a first granulating zone to a reasonable small granular size using conventional equipment. A second stream comprising virgin and/or contaminated synthetic plastics material is ground in a second granulating zone. The two streams are combined to provide a processable mixture. The processable mixture is introduced into a high intensity mixer. The processable mixture is transformed into a semi-molten discharge stream by the kinetic energy imparted to the processable mixture by the mixer, while the mixer is substantially-simultaneously vented to remove and recover particulates therefrom. The particulates so recovered are recycled to an inlet which is upstream of the mixer. The semi-molten mixture emerging from the mixer is introduced into an extruder, or a press, where it is formed into a mass of the desired shape, and is cooled. This method allows for the production of useful, shaped masses from two different classes of materials which have been otherwise treated as waste.

Description

,. , 2153~~4 This invention relates to a method for the recycling and reuse of materials heretofore considered non-recyclable. In particular, it relates to the recycling of a mixture of automobile shredder residue with virgin and/or unsorted post consumer synthetic plastic material.
Automobile shredder residue consists predominately of non-metallic solid material including plastic, broken glass, rubber, foam rubber, soil, and fabric. It is an unconsolidated, non-homogeneous solid with a medium to dark brown colour. Individual objects are generally identifi-able in the waste material. Pieces of automobile head-lights, seat covers, seat cushion foam, broken safety glass, wire, automobile arm rests, and rubber gaskets are typical.
The gross bulk density and compactibility of automo-bile shredder residue varies with the type of infeed material being shredded, the moisture content, the time allowed for compaction on-site, the non-ferrous component, and other factors related to the specific air or water handling processes at any given facility. The Recycling Research Foundation report "Shredder Residue: Environmental Information & Characterization Under RCRA", March 1992, reported a bulk density of 267 kg/m3. This figure was the mean value of bulk density determinations generated from various studies.
A typical analysis of the composition of shredder residue by component weight is as follows: fabric and car-pet: 45.6%; plastic: 5.5%; rubber: 5.1%; wire and metal:

~15~450 8.2%; paper: 2.7%; dirt and miscellaneous: 22.1%; glass:
0.3%; foam rubber: 8.9%; and wood: 1.6%.
The scrap metal industry is seeking ways to recycle auto shredder residue. Presently, there are no widespread industry solutions. Nevertheless, automobile shredder residue is being mandated for use as landfill cover.
Synthetic plastic materials in one form or another enter into almost every aspect of our daily lives.
Expanded polystyrene which is well known and used for its insulation and shock absorbent properties, and is encount-ered in fast food restaurants as clam shell containers for hamburgers and drink cups, as plates and trays in sandwich bars and fish and chip shops, as pizza trays, as agricul-tural containers for seeds and plants; as alternative disposable cups and plates etc., to conventional crockery, as cups at vending machines as yogurt and frozen yogurt pots, as boxes to transport certain perishable foods, e.g., fish and eggs, as fruit trays, and as protective packaging for a wide range of goods, e.g., telephones, so-called white goods, e.g., refrigerators and cookers, and televi-sions.
Other synthetic plastic materials which are in common use are as follows: polyethylene which as high density and low density polyethylene is used for containers, e.g., refuse sacks, carrier bags and even especially containers, e.g., blood and plastic containers and as expanded poly-ethylene is used in film or in sheet form for protective wrapping and packaging easily damaged items in the elec-tronics, glass, china and furnishing industries, polysty-rene, high impact polystyrene which is used for making cutlery and some kinds of beverage cups; oriented polysty-rene as used in the packaging catering and confectionary industry polyvinyl chloride which is somewhat clear and is used for packaging and wrapping films and for containers, e.g., blister type packages for articles of various kinds;
acrylonitrile/butadiene/styrene which is used for many kinds of containers, e.g., cups, yogurt pots and butter and margarine containers; polypropylene which can be very clear and is used in general packaging where a clear view of the packaged article is required without discoloration, e.g., for food containers as the container covers and for packaging clothing, e.g., shirts, and other articles, e.g., sheets and curtains, and expanded polypropylene which is used for its insulation and impact resistance properties as say end blocks for transporting computers and for automo-bile bumpers or fenders.
Synthetic plastic material usage has increased yearly, and new synthetic plastic materials which are introduced into the market have different physical and chemical characteristics,, e.g, melt temperature, hardness ana solubility. The reuse of this multitude of synthetic plastic materials having widely different physical and chemical properties is most difficult. The separation of synthetic plastic material types is impossible by visual inspection. Some polyethylene, polyacrylonitrile, polysty-rene, polyesters and polypropylene plastics look and feel 2153~~a much the same, but may have widely different melt tempera-tures. High density and low density polyethylene have greatly different properties. Removing labels from con-tainers is also an economically impossible task. Con-s tamers are also made of layers of different materials.
Scrap synthetic plastic materials, as collected from refuse sites, hereinafter referred to as "post consumer plastic", manufacturing operation wastes, household wastes, "fluff" from shredded automobiles and the like are commonly complex mixtures of many diverse waste materials-paper, thermoplastic products, cured thermosetting products, metals, fibrous products, etc. It is difficult and com-monly uneconomic to proceed through one or more sorting and separating steps before the recycling process.
Particularly difficult materials to handle in complex scrap mixtures are cured thermoset resins. Conventionally, these will not melt for remolding purposes, even after separation and isolation from scrap mixtures. Also, they are commonly associated with fibrous reinforcements, e.g., glass fibres, which are equally difficult to separate and reuse.
It is a desirable feature to recycle such synthetic plastic materials. One such recycling plant sorts the glass, metals, wood, contaminates, synthetic plastic materials, paper textiles, waste and burnables from each other. The synthetic plastic materials and paper are fed to a bale press, the bales are fed to a shredder, and the shredded synthetic plastic materials washed, dewatered, 2~S34S~
dried and then sorted with hydrocyclones. The sorted synthetic plastic material is fed to an extruder and the molten plastics passed through a die which produces synthetic plastic material threads that are cut into pel-5 lets by means of rotating blades. The synthetic plastic material pellets are packaged to be ultimately formed into lower grade synthetic plastic materials, e.g., coat hangers, flower pots, garden hoses, pipes, sheeting and bottles etc. The synthetic plastic material is downgraded, because of its melt history, being a mixture of different kinds of synthetic plastic materials and cannot take colour pigments, so that the products end up a dull grey/brown/-green colour.
Another synthetic plastic material recycling process uses waste articles made mainly from thermoplastics, in particular high and low density polyethylene and polypro pylene. Other thermoplastics can be recycled but under certain controls and polyvinyl chloride may only be present in small proportions without special additives being used.
The sources of new material for this process are manufac-turers of synthetic plastic material articles, i.e., film, bags, tableware, syringes, toys, book bindings, trays, various domestic articles, e.g., containers and bottles, milk, suppliers who produce their own synthetic plastic material milk bottles and who have redundant and broken milk crates, beverage companies who use synthetic plastic material bottles and containers, and who have broken beer crates, large volumes of below standard articles, e.g., 2~.5~4~0 piping, ducting, synthetic plastic material joints, synthe-tic plastic material medical goods, head waste from manu-facturers of synthetic plastic material articles from starting up the machine and after shutdown, synthetic plastic material packaging to be disposed of by manufac-turers, distributors and retailers and contaminated or sub-standard granules from synthetic plastic material pro-cessors.
In the above-described recycling process, the collected synthetic plastic material is sorted, granulated, mixed/blended and then plasticized in an extruder consisting of a large steel screw in a heated steel barrel, by means of the friction caused by the rotating screw melting the synthetic plastic materials. Extruders are expensive machinery whose parts are expensive to replace, require skilled and specialist operators. It has been the traditional view that extruders can generally only be used to recycle homogenous synthetic plastic material waste.
This process can produce basic solid synthetic plastic material elongated product, e.g., posts, poles, stakes, boards and a variety of similar shaped products, but again the synthetic plastic material is of down graded nature and could not be mixed with virgin synthetic plastic materials.
Specific use of the product are slatted floors for farm animals, pallets, underground cable covers, fencing posts and street and road furniture. Accordingly, synthetic plastic materials produced for reuse from plastics waste which has been recycled cannot compete with regard to cost 2.53454 and quality with virgin synthetic plastic materials, unless one is dealing with uncontaminated factory scrap synthetic plastic materials which can be fed back into the processing chain for extrusion. Contaminated synthetic plastic material waste has to be subjected to a number of opera-tions before it is suitable for granulation or pelletiza-tion, e.g., crushing, shredding, sorting, washing, dewatering and drying. Moreover, there is some synthetic plastic material waste, e.g., computer, audio and video tapes and floppy discs which, because they incorporate metal oxide, and are contained by cassettes of different plastics materials, cannot be recycled in currently available recycling plants. Moreover, incineration is prohibited because metal oxides when burnt give off noxious gases.
There is thus a need for a process which will permit the recycling and reuse into useful products, of complex mixtures of waste materials which include in their composi-tion substantial quantities of cured thermoset plastics materials. It would therefore be desirable to provide a method which would simultaneously solve these two recycling problems, i.e., .of automobile shredder residue and post consumer synthetic plastic material, i.e., unsorted synthetic plastic material waste.
Attempts have been made in the past to make chipboard-like products using thermoplastics-containing scrap mater-ials as the binder or glue therein. As is well known, chipboard is conventionally made of wood chips and liquid/-2~~3450 powder uncured thermoset resins. The resins, which act as the binder or glue, are pressed into chipboard products in continuous or discontinuous processes, and subsequently cured under heat and pressure so that the wood chips become held together by the polymerized and cured resins (mela-mine, phenolics, polyurethanes, etc.). Attempts to use mixed thermoplastics scrap resins, sometimes contaminated with other substances, e.g., paper, metals, textiles, wood, etc. have focused on extrusion, kneading and injection molding processes. These would seem to allow recycling of thermoplastic waste directly into finished or semi-finished products, without separation of the components of the waste or intensive washing thereof.
A combination of a melt chamber and an extrusion screw is known which is used to produce molten synthetic plastic material from foamed thermoplastics waste of scraps, odds and ends, chips and cut ends produced during the processing of synthetic plastic materials and synthetic resins for producing good quality recycled pellets. The extrusion screw extends horizontally beneath and is fed from an elon-gate melting chamber which is V-shaped in cross-section and extrudes threads.of plastics through a suitable die.
In another apparatus involving an extruder, the extru-sion screw is arranged vertically but this apparatus suf-fers from the same disadvantages as those of an extruder having a horizontal screw.
Attempts have been made, and are disclosed in the patent literature, to attempt to solve each of these indi-vidual problems, but not, heretofore, both problems simul-taneously. The most pertinent patent art is U.S. Patent No. 5,080,291, patented January 14, 1992, to D.R. Bloom, which provided a method for recycling automobile waste residue. The method provides for recycling automobile waste residue after major metal scrap has been separated therefrom. The residue includes such material as ferrous and non-ferrous metals, glass and fluff material including plastics. This residue is granulated and the ferrous and non-ferrous metals and glass are separated from the fluff material. the fluff material is fed to a mixing station whereat an amount of plastic material is added to the fluff material such that, when combined with the plastic material already in the fluff material, the resulting composition is on the order of a 50:50 ratio of plastic and non-plastic materials. This composition then is mixed and can be further processed, e.g., melted and extruded, to form a usable recycled product.
In respect of the reuse of synthetic plastic materials, the following patents are typical.
U.S. Patent No. 3,956,541 issued to Pringle discloses a process for making flexible structural members, namely cable reels, using scrap wire and cable insulation, namely polyvinyl chloride, polyethylene, and other scrap mater-ials. The scraps are shredded in combination with the wire remnants, and the Wire is separated from the shredded insu-lation. This scrap is then mixed with phenolic resin, zinc stearate and wood filler, and compression molded to form flexible objects.
U . S . Patent No . 3 , 9 91, 0 0 5 patented November 9 , 19 7 6 by Richard A. Wallace, entitled "Structural Material and 5 Method" provided an improved composition predicated upon a discovery that the pyrolysis of incineration residue of industrial or municipal solid waste products was an excel-lent particulate reinforcement filler material when inti-mately mixed with an adhesive resinous polymer binder. In 10 carrying out the method of the patented invention, parti-culate filler was intimately mixed with flowable castable resin binder. Thereafter, the mixture was formed into a desired configuration as by molding or extrusion, and the binder was solidified to form a solid structural composi-tion in which the binder was adhesively bonded to the filler particles.
U.S. Patent No. 4,073,661 patented February 14, 1978 by H. Buzga provided a continuous process for cleaning and preparing grossly soiled products of plastic material, such as sheets, bands, sacks or the like for subsequent re-use, in which the plastic material is comminuted after removing rough foreign objects therefrom, whereafter the comminuted plastic material is fed into a washing solution having a greater specific weight than the plastic material and subjected together with the washing solution in a washing zone to turbulence, transferred to a turbulence-free zone containing washing solution by passage under a submerged edge of a partition submerged in the washing solution and separating the washing zone from the turbulence-free zone, and thereafter subjected first to mechanical and then to a thermal drying operation.
U.S. Patent No. 4,187,352 issued to Klobbie for example, discloses a process in which unsorted thermo plastic synthetic resin waste material is formed into an article having the working and processing properties of wood by subjecting the mixture to a mixing operation in a housing including a screw/kneading member so that it is extruded into a finished product.
U.S. Patent No. 4,279,790 issued to Nakajima describes the preparation of composite material compositions of waste paper, thermoplastic resins and other additives, mixed together as the paper is dried from a slurry condition.
The inclusion of synthetic rubber, normally a thermoset, is suggested in this patent. The final products are formed by injection molding.
U.S. Patent No. 4,280,921 patented July 28, 1981 by John R. May, entitled "Immobilization of Waste Material", provided a method for immobilizing or solidifying waste material which included blending the waste material with powdered metal and subjecting the mixture of waste material and powdered metal to high pressure.
U.S. Patent No. 4,396,566 issued to Brinkmann dis closes a process for the continuous manufacture of sheeting from thermoplastic synthetic resins, in which the resin is used in the form of particles and passed continuously through a preheating zone, and then through a treatment zone, in which it is pressed and compacted to form a visually appealing flexible sheet material. The possi-bility of using waste strips of thermoplastic synthetic resin is disclosed.
U.S. Patent No. 4,427,818 issued to Prusinski dis-closes building blocks made from contaminated scrap mater-ials by a process of mixing and heating, then cooling in molds. While it disclosed the use of a widely varying composition including thermoplastic resins, it did not disclose the use of scraps containing mixtures of thermo-plastic and cured thermosetting resins.
U.S. Patent No. 5,035,189 patented July 30, 1991 by T.J. Lunsford, entitled "Refuse Recycling System", provided a system for recycling refuse by mixing a predetermined amount of refuse with a predetermined amount of plastic.
The mixture was heated until the plastic became liquid.
The liquified mixture was formed into a desired shape, e.g., a brick, the mixture was cooled.
U.S. Patent No. 5,075,057 patented December 24, 1991 by H.K. Hoedl, entitled "Manufacture of Molded Composite Products from Scrap Plastics", provided a procedure whereby scrap plastic materials including thermoplastic and cured thermosetting components may be recycled and molded into products of predetermined shape, without the necessity of separating the different plastics from one another. The patented process included shredding and milling the mixture to reduce it to a fine particle size. The fine particle size mixture was homogenized into a free flowing macro-21~3~50 homogenous powder form. The homogenized mixture was warmed to an elevated temperature at which it maintained its free flowing condition. The warm mixture was dry blended with a reinforcing material or a filler. The blend was then compression molded at elevated temperatures and pressures into a product of pre-determined shape.
U.S. Patent No. 5,082,605 patented January 21, 1992 by Joe G. Brooks et al, entitled "Method for Making Composite Material", provided a composite material including a dis-continuous phase of cellulosic fibre encapsulated in, and bonded to, a continuous phase of a polymeric component con-taining a major portion of polyethylene. The method included mixing the cellulosic fibre and polymeric com-ponent while raising the temperature of the mixture to the encapsulation point. The encapsulated material was main-tained within the encapsulation range while the particle size was reduced. Thereafter, the material was extruded while its temperature was controlled within the encapsula-tion range. The fibres were aligned in the flow direction until the material contacted a heated die. During extru-sion, the encapsulated fibres were aligned in the flow direction. As the extrudate passed through the die, the surface temperature was preferably elevated to improve surface properties.
U.S. Patent No. 5,100,601 patented March 31, 1992 by Anton Heggenstaller et al, entitled "Process for Pressing a Flexurally-Rigid, Beam-shaped Molding", provided a pro-cess and devices for producing beam-shaped moldings from ~~5~450 fine plant parts mixed with binders in molding presses.
The core zone of the molding were formed by an additional amount of fine parts moved there and compacted deliber-ately. That amount of material acted reactively as a compression zone to the moveable walls surrounding it during the compaction of the molding. Compaction of the molding over its entire cross-section and at the same time particularly great compaction of the peripheral zones of the molding were thus achieved.
U.S. Patent No. 5,100,603 patented March 3, 1992 by Charles W. Neefe, et al, entitled "Method of Recycling Multimaterial Containers", provided a method whereby empty polymer containers were granulated, mixed with shredded or granulated multimaterial containers and reused to make use-ful objects without sorting, removing labels or cleaning the containers. The method included cutting the laminated multimaterial containers into granules. The granulated multimaterial was mixed with sugar. That granulated multi-material granules were mixed with resin granules. The mix-ture of granules was placed in a mould and the mixture was heated until the resin granules melted, thereby encasing the multimaterial granules. The resins were allowed to cool, and the object was then removed from the mould.
U.S. Patent No. 5,215,695 patented June 1, 1993 by Claudio Bortoluzzi Arenzano et al, entitled "Process for Reclaiming the Residuals of the Manufacture of High Pres-sure Laminates", provided a process for reclaiming resid-uals produced from the manufacture of decorative high 2~~34~0 pressure laminated, and composite materials obtained by the process. Such residuals which included cellulose impreg-nated with thermosetting resins which were partially con-densed, were ground to a predetermined particle size and 5 mixed with a melted mass of thermoplastic resin under controlled pressure and temperature conditions. The mixing time was sufficiently long for completion of the reaction during which physical and chemical interactions occurred between the partially poly-condensed thermosetting resin 10 and the thermoplastic resin. The material so produced was converted into granules for subsequent injection molding.
U.S. Patent No. 5,240,656 patented August 31, 1993 by David J. Scheeres, entitled "Treatment of Waste", provided a method and an apparatus for treating contaminated plas-15 tics waste. The method included densifying contaminated plastics waste by causing the waste to pass through a heat ing zone to produce molten contaminated plastics. The molten contaminated plastics was then caused to flow con tinuously out of the heating zone under the influence of gravity.
U.S. Patent No. 5,265,545 patented November 30, 1993 to William R. Miiner, entitled "Method and Apparatus for Waste Treatment", provided a method of treatment of waste material including the steps of mixing the waste material with a binder and palletizing the mixture. The pellets were then coated with a non-agglomerating material selected to permit firing of the mixture without pellet agglomera-tion. The coated pellets were fed to a kiln and fired ~~~345p before being discharged from the kiln. At least some of the heat of firing the pellets was recovered and recycled in the kiln.
Patents have also provided method for the extrusion of plastics. For example, U.S. Patent No. 2,075,476 patented March 30, 1937 by Albert William Sizer, entitled "Machine for Molding Plastic Substances", provided machines for the molding of plastic substances, mixing machines, continuous crushing or expelling machines of the type in which material was compressed within a chamber by means of a rotary worm element therein. A compression chamber was provided with a worm element having right- and left-hand pitch threading, extending from the centre to the ends respectively. A common inlet was provided for material to be compressed at the centre of the chamber. Die plates were provided at opposite ends of the chamber for the extrusion of compressed material therethrough or alterna-tively, or additionally, with perforations in the chamber walls for the escape of liquid expressed from the material.
U.S. Patent No. 2,443,289 patented June 15, 1948 by James Bailey, entitled "Apparatus for Shaping Plastics by Extrusion", provided an apparatus for shaping organic plastic materials by extrusion thereof through a die to form elongated or continuous shapes of uniform cross-section. The patented apparatus provided and maintained a separable, and preferably immiscible film of anti-sticking substance or lubricant between the plastic and the die surf ace .

U.S. Patent No. 2,769,201 patented November 6, 1956 by Zareh Lorenian, entitled "Screw Extrusion Apparatus for Manufacturing Articles of Thermoplastic and Thermosetting Materials", provided an improved method whereby the mater-ial to be worked up was fed into pressing screw or screws tangentially or radially, by means of one or more conveyer screws, which were mounted for rotation in cylinders whose cylindrical surface was formed with interruptions, through-out its length or over part of its length only. The inter-ruptions took the form of recesses of any shape which were arranged longitudinally and whose size and mutual distance was adapted to the actual field of application. These interruptions of the inner cylindrical surface caused the material adhering to the press screw to be torn off or taken off so that the material was at the same time homo-genized.
U.S. Patent No. 3,386,131 patented June 4, 1968 by Marcell Vanzo, entitled "Apparatus for the Continuous Treatment of Rubber and Plastic Material in General", provided an apparatus for the treatment of plastic material. The apparatus included a receiver having a lengthwise extending inlet opening and a discharge opening.
A feed screw was rotatably mounted in the receiver and was adapted to feed the material from the inlet opening to the discharge opening. A closing member was quick detachably mounted in the inlet opening to cover a portion thereof in the general lengthwise direction of the receiver. The closing member had an arcuate-shaped portion which formed _ , 2153~~Q

an uninterrupted continuation of the inner surface of the receiver. The inner surface of the closing member was equally spaced from the addendum envelope of the screw throughout the length of the closing member.
U.S. Patent No. 3,411,179 patented November 19, 1968 by Robert B. Gregory et al, entitled "Extruder Screw Mixing Section", provided a plastic extrusion machine including a rotary screw unit having a mixing section at its forward end, which was formed with at least one helical feed channel and at least one helical discharge channel. The feed and discharge channels were so configured as to improve the dispersive mixing ability of the screw in use, i.e., it could simultaneously apply high shear stress upon the higher viscosity thermoplastic constituents and low shear stress upon the lower viscosity thermoplastic consti-tuents.
U.S. Patent No. 3,880,664 patented April 29, 1975 by Herbert C. Schulze, entitled "Method for Extrusion" pro-vided an improvement in a method for extrusion of mater-ials. Water and cement were mixed before mixing with other ingredients. Fumed silica was also used in the mix.
U.S. Patent No. 4,072,455 patented February 7, 1970 by Erich Beck, entitled "Spiral-Line Press for Thermoplastic Synthetics", provided spiral-line press with a double contra-screw arrangement fixed on a single shaft. The output from the metering zones of the spiral-line were extruded by an outlet fitting which transformed the flows of the extruded matter so that one output was extruded concentrically around the other.
U.S. Patent No. 4,511,093, patented April 16, 1987 by T. Ohkoshi et al provided a mixer-granulator having main and auxiliary mixing-granulating blades mounted in a vessel forming the main body so that both the blades are revolved to accomplish mixing and granulation of powders as desired.
The bottom plate of the vessel is formed with a number of slots, a valve mechanism for opening and closing the slots are located adjacent the slots, and a drying-air supply device is provided for supplying the vessel with drying air through the slots. This combination apparatus performs mixing, granulation and drying of various drugs, foods, chemicals, etc., in a single vessel automatically and continuously. The apparatus is easy to disassemble for thorough cleaning and sterilization. -U.S. Patent No. 4,728,476 patented March 1, 1988 by Douglas J. Boring et al, entitled "Method of Supplying a Moldable Mixture of Materials to an Article Forming Mold of an Injection Molding Machine", provided a method of sup-plying a mixture of a thermoplastic resin and a low heat conductivity additive to the article forming a mold of an injection molding machine. The mixture was heated in the feed screw of an injection molding machine, to form a flow-able mass. Prior to heating, the thermoplastic resin and low heat conductivity additive or filler were mechanically mixed together to form a uniform mixture of resin and filler. After mixing, the mixture was then supplied to the - . ~~~~~~o feed screw of an injection molding machine. After such ini-tial heating, the heating of the molten resin/heated filler mixture was continued at a rate to maintain the heated mixture in a standby moldable condition. Prior to the 5 injection of the molten resin/heated filler into an injec-tion machine mold, the molten resin/heated filler was again heated to a higher temperature than the intermediate stand-by temperature to insure that the plastic article was properly formed.
10 U.S. Patent No. 4,820,469 patented April 11, 1989 by M.J. Walsh et al provided a method and apparatus for producing various materials and products of a thermoplastic nature. In the method, thermoplastic material is subjected to a high intensity mixing and melting step to form a 15 material which is a non-flowable and self-sustaining mass, having a temperature low enough to prevent it from being readily flowable, in a subsequent step, the method involves placing the material between a fixed rigid surface and a moving rigid surface to force air from the mass and to 20 densify, compress and convert it to a flowable form whereafter it is passed through a restricted opening.
there is provided, a combination of a high intensity mixer and welter in which the product produced is then fed into a gear-pump where the material is passed between a f fixed rigid surface and a moving surface.
U.S. Patent No. 4,889,673, patented December 26th, 1989 by M. Takimoto provide a process for preparing polyvinyl chloride material used for extrusion molding _ , 253454 suitable to high speed extrusion includes a step of dry blending a blend prepared by blending polyvinyl chloride (polymer) compounded with plasticizers, stabilizers and other auxiliary materials while controlling the temperature for the blend within a range from room temperature to 165°C
and a step of kneading and pelletizing the blend after the dry blending step while controlling the temperature for the blend to lower than 165°C. The polyvinyl chloride used is a suspension polymerizate capable of satisfying the condition that the retention ratio on 80 mesh screen (ASTM:E11-58T) is less than 1%.
U.S. Patent No. 5,026,512 patented June 25, 1991 by Shao C. Chang, provided a method for manufacturing molded products of thermoplastic material by injection molding or extrusion molding a material containing a thermoplastic material as a primary component and a second polymer or a blend of the thermoplastic material and second polymer as a primary component and an inorganic material. The wall temperatures of the molding cylinder were controlled at different locations of the molding machine. The residence time of the molding material in the cylinder was controlled in response to the cylinder temperature so that the resi-dence time was reduced as the temperature was increased.
The temperatures of the discharge end was maintained within the range of the melting temperature of the material.
U.S. Patent No. 5,141,688 patented August 25, 1992 by Meirion Gribble, entitled "Method of Making Mineral-Filled Resin Products", provided a method which included thor-oughly mixing a powdered mineral material with a minor proportion of a thermosetting resin material. A batch of the resulting formulation, of predetermined weight, was extruded through a rectangular section die to form an elon-gate extrudate of predetermined length. The extrudate was pressed between a pair of generally planar plates, each of the predetermined length, one of the plates being a cast metal body which had been cast in material bearing an impression of a textured finished building product. The l0 pressed extrudate was then permitted to cure.
U.S. Patent No. 5,151,230 patented September 29, 1992 by Dirk H. Damberg, entitled "Process for Production of Products Formed of Polymer Bonded and Granulated Parti-cles", provided an apparatus for continuously manufacturing and forming a cured product of granulate material, polymer glue, and catalyst. The apparatus included a granulator mill which was adapted to shred elastic or inelastic mater-ial into small granules and to pass them to a continuous mixer means. A continuous mixer was provided which was adapted continuously to mix a specified amount of inelastic or elastic granulated material, a specified amount of poly mer glue, and a specified amount of catalyst. A mold press was provided which received mixed material from the mixer and which molded the mixed material under elevated pres sure and temperature into a formed cured product.
It is seen above that the two problems of recycling automobile shredder residue and post consumer synthetic plastic material have not been simultaneously solved.

Accordingly an object of one aspect of the present invention is to provide a continuous method for providing an effective solution to the aforementioned problems associated with the disposal of both automobile shredder waste and post consumer synthetic plastic material, i.e., virgin and/or contaminated synthetic plastic polymer.
An object of another aspect of this invention is to provide a continuous method for compacting, such solid waste materials containing various synthetic plastic materials to obtain shaped masses which are useful without producing secondary waste materials.
The present invention, in a broad aspect thereof, provides a continuous method for processing a mixture of combined raw automobile shredder residue and at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer which method comprises the steps of: (a) granulating a first stream comprising raw automobile shredder residue in a first granulating zone to provide granulated automobile shredder residue; (b) granulating a second stream comprising at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer in a second granulating zone to provide granulated plastics material; (c) combining the granulated automobile shredder residue obtained in step (a) and the granulated plastics material obtained in step (b) to provide a processable mixture; (d) processing the processable mixture obtained in step (c) in a high intensity mixer, the processing transforming the processabke mixture in the mixer into a semi-molten discharge stream by kinetic energy imparted to the processable mixture by the mixer while concurrently venting the mixer to remove particulates therefrom, and then directing the particulates vented from the mixer to a particulate recovery system, and recovering the particulates therein; (e) forming the semi-molten discharge stream into a shaped mass of desired form; and (f) recycling the particulates to the first stream upstream of the mixer.
By one variant of the method aspect of this invention, the kinetic energy imparted to the processable mixture heats the processable mixture to a temperature of 265°F to 275°F.
By another variant of the method aspect of this invention, the forming step comprises extruding the semi-molten material through a die to provide the shaped mass of the desired form and then cooling the shaped mass.
By another variant of the method aspect of this invention, the forming step comprises discharging the semi-molten discharge stream into a mould of the desired form, then pressing the semi-molten material into the shaped mass of the desired form, and then cooling the shaped mass.
By yet another variant of the method aspect of this invention, the method includes the intermediate step of granulating the raw automobile shredder residue while substantially-simultaneously aspirating particulates from the first granulating zone, and then directing the particulates to the particulate recovery system.
By still another variant of the method aspect of this invention, the method includes the intermediate step of granulating at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer while substantially-simul-taneously aspirating particulates from the second granulating zone, and directing the particulates to the particulate recovery system.
A

By a still further variant of the method aspect of this invention, the method includes the intermediate step of feeding the granulated automobile shredder residue from a feeding zone to a weighing zone while substantially-simultaneously aspirating particulates from the feeding zone, and directing the particulates to the particulate 5 recovery system.
By a still further variant of the method aspect of this invention, a predetermined weighed amount of granulated automobile shredder residue from step (a) is mixed with a predetermined weighed amount of granulated at least one of virgin synthetic plastics polymer and contaminated synthetic plastic polymer, thereby 10 providing the processable mixture. Such predetermined weighed amount of said granulated automobile shredder residue may be provided by the steps of:
feeding the granulated automobile shredder residue from the granulating step (a) to an automobile shredder residue weighing station while aspirating particulates; weighing the granulated automobile shredder residue; passing the weighed automobile shredder 15 residue to the combining step (c) with at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer weighing station, and directing the aspirated particulates to the particulate recovery system. Alternatively, the predetermined weighed amount of the at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer may be provided by the steps of:
feeding 20 the at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer from the granulating step (b) while aspirating particulates, weighing A

25a the at least one virgin synthetic plastics polymer and contaminated synthetic plastics polymer, passing the weighed at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer to the combining step (c), and directing the aspirated particulates to the particulate recovery system.
By yet another variant of the method aspect of this invention the amount of the granulated at least one of virgin synthetic plastics polymer and contaminated synthetic plastic polymer is from 10 parts to 85 parts by weight of the total processable mixture.
In embodiments of the invention, one class of waste material is virgin synthetic plastic material and/or scrap materials. Such synthetic plastics materials which can be recycled and used in the present invention can be of very wide and diverse composition. They may contain thermoplastic materials, e.g., polyethylene, polypropylene, polystyrene, impact polystyrene, polyvinyl chloride, acrylonitrile-butadiene-styrene resins, expanded polypropylene, polyamides, e.g., nylon 66, A
~_1____~___ _ - __1___aL__7___ u_-__1_u1__1_.__ _- -_1__L__u_1____ 2.53450 terephthalate, polyacrylates, polymethylmethacrylates, polyacrylonitrile, etc., and mixtures of two or more thereof. In fact, such scrap materials are typical plastics and plastics mixtures which would be found in a random sampling of household wastes and industrial plastics scraps. They can be contaminated with or in fact contain substantial quantities of cured thermoset plastics scraps, e.g., polyester thermoset, epoxy, polyurethane, melamine, urea-formaldehyde, cross-linked or cured polybutadiene polyisoprene, poly(butadienestyrene), butyl, ethylenepro-pylenediene rubbers, SMC (sheet molding compounds), S-RIM
(structural resin injection moldings), RTM (resin transfer moldings), RRIM (reinforced resin injection molding-thermo-set resins reinforced - with fibres of glass, KEVLAR.~.~, carbon, etc.) and mixtures of two or more thereof. They can contain other scrap materials also, e.g., waste paper, cellulosic fibres, rayons, clay, ceramics, glass, metals, e.g., steel, aluminum and brass, and vegetable materials as commonly found in household and industrial wastes.
The other class of waste materials used in this invention is the automobile shredder residue previously described.
In the accompanying drawings, Fig. 1 is a schematic view of a typical process to provide automobile shredder residue;
Fig. 2 is a schematic flow diagram of a typical method of this invention;

Fig. 3 is a typical flow diagram of the scrubber hoods which form part of the system for carrying out the continuous method of this invention; and Fig. 4 is a cross-sectional view of a typical contin uously operating blender/extruder forming part of the system for carrying out the continuous method of this invention.
Figure 1 shows a typical conventional schematic flow sheet for the production of conventional automobile shredder residue. Automobiles 101 and other scrap 102 is fed to a shredder 103 where it is shredded into pieces of various smaller sizes. A cyclone 104 is connected to the outlet 105 of the shredder 10 to draw off particulates.
The shredded material 106 falls into a first conveyor belt 107.
The downstream end 108 of the conveyor belt 107 is adjacent a magnetic separator 109. The magnetizable shreds are attached by the magnetic separator 109 at the adjacent perimeter 110 and are discharged from the remote perimeter 111 into a second conveyor belt 112 as ferrous scrap 113, from whence it is discharged to a ferrous scrap storage area 114.
The non-magnetic scrap is discharged from the first conveyor belt 104 as non-ferrous scrap and residue 115, onto third conveyor belt 110 from whence it is fed to a non-ferrous separator 117.
The non-ferrous scrap 105 is discharged from the out-let 118 of the non-ferrous separator 117 into a fourth ~~5345Q

conveyor belt 119 from whence it is discharged to non-ferrous scrap storage 120.
The residual fines at the top of the non-ferrous separator 117 is drawn off to be deposited in the shredder residue storage 121. The outlet 122 of the cyclone 104 is also deposited in the shredder residue storage 121.
The various apparatus elements which are used to process the automobile shredder waste and the synthetic plastic materials are conventional in the art. The follow-ing description is intended to describe only one such suit able conventional combination of apparatus elements.
As seen in Figure 2, the raw automobile shredder resi-due 210 is continuously fed to an automobile shredder resi-due granulator 211 where it is granulated to a suitable size and then is continuously fed to granulated automobile shredder residue storage 212. The granulated automobile shredder residue is continuously discharged at a suitable rate, e.g., a rate of 1.63 tonne/hour, to a granulated automobile shredder residue feeder 213. The granulated automobile shredder residue feeder 213 continuously feeds material operated at a selected speed so that a predetermined amount is continuously fed to the blender/-extruder 215, which will be described further with refer-ence to Figure 4.
The raw post consumer plastic 216 is continuously fed to a plastic granulator 217 from whence it is discharged to granulated plastic storage and feeder 218. From this stor-age and feeder 218 a predetermined suitable amount, e.g., 0.54 tonne/hour, is continuously discharged at such selected rate to the blender/extruder 215.
The compositions according to the invention preferably contain a minimum of 10 parts by weight of thermoplastic material derived from the macro-homogeneous scrap, with correspondingly 90 parts by weight of total other material namely other components of the scrap including residues of thermoset materials, added reinforcing materials and/or added fillers. They preferably contain a maximum of 85 parts by weight of thermoplastic material derived from the macro-homogeneous scrap, but correspondingly 15 parts by weight of total other materials.
Compositions prepared from mixed scrap materials according to the present invention, i.e., including, in the process, the steps of size reduction and homogenization as described above, can be simply and advantageously used in molding processes to yield high quality products.
The blender/extruder 215 continuously extrudes product into a cooling tank 220 which is cooled by means of recir culating water at a suitable rate, e.g., at a rate of 500 L/min, from a heat exchanger 221. The heat exchanger 221 is fed with cooling water supplied at 222, e.g., at 700 L/min, and likewise the cooling water return 223 is, at a suitable rate, e.g., at a flow rate of 700 L/min. The finished product is stored at outside storage 215.
The automobile shredder residue granulator 211, the post consumer plastic granulator 217, the automobile shredder residue feeder 213 and the vent from the blender/-215~4~a extruder 215 are connected by respective aspiration lines 224, 225, 226 to a wet scrubber 228 in a manner to be des-cribed with reference to Figure 3, to withdraw particulates therefrom via line 227. Thus, the mixer (i.e., blender/-5 extruder 215) is concurrently vented to remove particulates therefrom, and such particulates are directed to a particu-late recovery system (i.e., the wet scrubber 228) in order to recover the particulates and then to recycle them (via line 229) to the first stream of granulated automobile 10 shredder residue upstream of the mixer (i.e., to the ASR
storage 212). The aspiration rate is, at a suitable rate, e.g., 0.5 M3/sec. except for the blender/extruder from which it is, at a suitable rate, e.g., 3.2 M3/sec.
A flow of scrubber sludge in line 229 is recycled to 15 the automobile shredder residue storage 212 at a suitable rate, e.g., a rate of, e.g., 21.1 g/sec.
The clean air discharge at vent 230 from the wet scrubber 228 is at, a suitable rate, a rate of, e.g., 4.7 M3/sec. Thus, not only are particulates recovered and 20 recycled from the mixer, but any gas vented from the system through the mixer is clean air. The discharge contains, typically, hydrocarbons, discharge at 0.0160 grams per second, and particulates, discharged at 0.0756 grams per second.
25 As seen in Figure 3 the hood 310 of the automobile shredder residue feeder 213 is connected via duct 311 to the wet scrubber 228. The hood 312 of the automobile shredder residue granulator 211 and the hood 313 of the 2~~345D

post consumer plastic granulator 216 are connected by ducts 314, 315 to the wet scrubber 228. The vent 316 from the blender/extruder 215 is connected to the wet scrubber by duct 317.
Each of the hoods 310, 312, 313 and the blender/-extruder 215 is surrounded by plastic side drapes 318.
The scrubbed air outlet 319 from the wet scrubber 228 is of sufficient size to expel gases at a suitable rate, e.g., 4.7 m3/sec. at 250°F.
The extrudate from the blender/extruder 215 is fed to the cooling tank 220.
As shown in Figure 3, an air pick-up hood is located over each of the two granulators and the feeder hopper to capture dust generated at these points. These hoods are connected by duct work to a Venturi scrubber.
The Venturi wet scrubber is used to control potential emissions from processing automobile shredder residue and post consumer plastic into lumber-like products. One form of Venturi scrubber used herein is a Sly Manufacturing Co.
size 5 Venturi type wet scrubber. The scrubber is serviced by a second blower, e.g., a 4.72 M3/sec. blower at a suit-able, e.g., 0.08 inm, water column differential pressure.
The blower exhausts to the atmosphere via a suitable mm duct, e.g., 559 mm duct. Sludge collected in the Venturi scrubber will be added to the automobile shredder residue feedstock. Make-up water for the Venturi scrubber is drawn from the domestic supply at a suitable rate, e.g., up to 1 ~15~450 litre per minute depending on ambient atmospheric condi-tions.
The process area of the operation is under a collec-tion hood with side drapes all around to insure all air flow is directed into the scrubber. The complexity of the superstructure, walkways and feed systems precludes multiple point air pick-ups so the entire process area is enclosed in plastic drapes. All of the air collected from the various hoods and pick-up points is directed to the Venturi scrubber.
The scrubber is serviced by a blower, e.g. , 4.72 M3/sec blower at a suitable, e.g., 508 mm water column differen-tial pressure. The blower exhausts to the atmosphere via a suitable duct, e.g., a 559 mm duct. Sludge collected in the Venturi scrubber is added to the automobile shredder residue feedstock. Make-up water for the Venturi scrubber is drawn from the domestic supply at a suitable rate up to 1 litre per minute depending on ambient atmospheric condi-tions.
The exhaust from the scrubber is discharged to the atmosphere at a suitable volumetric flow rate, e.g., 4.72 M3/sec. at ambient (25°C) temperatures through a suitable stack, e.g., one of 558 mm in diameter extending a suitable distance, e.g., by 2 metres above the roof line and 10 metres above ground level.
An essential feature of this invention is that the mixer for mixing the processable mixture is a high inten-sity mixer to transform the mixture into semi-liquid stock, and that such mixer must have a vent which is to be con-nected to the wet scrubber. The high intensity mixer is capable of providing a viscous mass semi-molten product from the processable mixture by the heat generated by the kinetic energy of the mixer blades. The high intensity mixer thus simultaneously heats and mixes the processable mixture to at least its melting temperature and to a point where the material is in the form of a non-flowable, self-sustaining mass but still in a partially molten state, the mass having a temperature low enough to prevent the mass from readily being flowable. Such a mixer provides a sub-stantially-homogenous product on mixing to form a uniform blend. The mixing step and apparatus must be capable of melting the processable mixture by the heat generated by kinetic energy so that upon mixing it is actually in a substantially molten state, but not in a readily flowable form. An example of a suitable high intensity mixer is the type of apparatus marketed by Werner & Pfleiderer Corporation as the "Drasi-WP Gelimat" system, (Draiswerke), which can be modified to provide the essential vent to the wet scrubber.
Figure 4 shows another embodiment of a possible high intensity fluxing-type mixer to transform the mixture into semi-liquid stock, i.e., a blender/extruder 215 in longitu-dinal cross-section, i.e., a blender unit 410 and an extruder unit 430. Support housing 411 has an axial bearing 412 located in housing 413 and is fitted with shaft 413 having opposite hand spiral blades 414, 415 therein.

~~~~4~0 The blended granulate material enters through input openings 416 and 417 at respective ends of the blender/-extruder 215, into the input zones of the spiral blades.
The mixture of the automobile shredder waste and synthetic plastic material is compressed and transported, to the central outlet 418 and 419 in such a way that the two outlets are transformed to a single circular cross-section outlet 420.
In the blender/extruder, the end walls are provided with vents to allow gas to escape to the particulate recovery system. The helical blades rotate at a suitable rate, e.g., 1750 RPM. The kinetic energy of the mixing is converted to heat, the temperature rising to a suitable temperature, e.g., 265°F to 275°F, which is sufficient to provide an extrudable material.
Figure 4 also shows in schematic form one possible embodiment of the extruder portion of the blender/extruder 215. An injection molding machine 430 illustrates any one of the various commercially available injection molding machines having a feed screw 431 driven by motor M for supplying a flowable mass of synthetic plastic material to a suitable mold ram extruder 424. Such injection molding machines normally have a mixture of the automobile shredder waste and synthetic plastic material, metering and blending unit (not shown) secured thereto so that the mixture of the automobile shredder waste and synthetic plastic material to be molded is discharged therefrom into the mixture of the automobile shredder waste and synthetic plastic material ~15345~
receiving chamber 425 of the extruder 424. The outlet 407 of unit 41.0 is connected to feed screw 431.
Feed screw 431 may be an elongated screw which has a material receiving chamber at upper end and, upon con s trolled rotation by motor M, ejects a controlled volume of mixture of the automobile shredder waste and synthetic plastic material from its lower end into the article forming ram extruder 424, i.e., the mixture of the auto mobile shredder waste and synthetic plastic material is 10 injected from screw 431 into extruder 424.
As described hereinabove, the kinetic energy of the spiral blades is converted into sufficient heat to heat the mixture of the automobile shredder waste and synthetic plastic material within the chamber 425 so that the 15 material is at a proper temperature for article molding purposes, i.e., to a semi-molten state. The actual extrusion is accomplished by a ram extruder 432 which is operated under sufficient pressure to extrude the semi-liquid mixture of the automobile shredder waste and 20 synthetic plastic material is ejected from the zone 425 in which the mixture of the automobile shredder waste and synthetic plastio material has been loaded as above-described the extruding being through die 433, and into the cooling tank 220 as previously described.
25 A typical description of the method is as follows, with reference to Figure 2. Demetalized raw automobile shredder residue is granulated to minus 19 mm in a granu-lator, e.g., a 75 kilowatt granulator. An air eductor, e.g., a 100 mm air eductor, pneumatically conveys the granulated automobile shredder residue from the granulator to a storage bin.
Upon arrival, the post consumer synthetic plastic materials are granulated to minus 10 mm in a granulator, e.g., a 37.5 kilowatt granulator. An air eductor, e.g., a 100 mm air eductor, pneumatically conveys the granulated synthetic plastic material from the granulator to a storage bin. Several bins may be utilized to store different types of granulated synthetic plastic material.
To begin production, granulated automobile shredder residue is transferred from the storage bin to a feeder hopper by a front end loader. The automobile shredder residue is transferred from the feeder hopper to the process area via an auger.
Granulated post consumer synthetic plastic material is augured from the storage bins to a batch weigh mixer. A
batch of plastic is made by combining various predetermined amounts of different types of granulated synthetic plastic material. The weighed components of the synthetic plastic material batch are thoroughly mixed, and transferred to the process area in tote bins.
In the process area, the automobile shredder residue and post consumer synthetic plastic materials are indivi dually weighted and augured into the blender dryer at the rate of 2.17 tonnes per hour. The blender/extruder thoroughly mixes the automobile shredder residue and synthetic plastic material components, and heats the blend to approximately 140°C, thereby driving off any moisture.
The hot, dry mixture of the automobile shredder waste and synthetic plastic material is transferred via an enclosed auger to the extruder where it is extruded into shapes and forms. The mixing and extruding processes require approxi-mately 375 kilowatts of electrical energy.
The finished shapes are cooled on racks outside of the building after an initial cooling of 30 to 60 minutes in a chilled water bath. Once cool, the products are palletized and readied for shipment.

Claims (12)

1. A method for processing a mixture of combined raw automobile shredder residue and at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer which method comprises the steps of:
(a) granulating a first stream comprising raw automobile shredder residue in a first granulating zone to provide granulated automobile shredder residue;
(b) granulating a second stream comprising at least one of virgin synthetic plastics polymer and contaminated synthetic plastic polymer in a second granulating zone to provide granulated plastics material;
(c) combining said granulated automobile shredder residue obtained in step (a) and said granulated plastics material obtained in step (b) to provide a processable mixture;
(d) processing said processable mixture obtained in step (c) in a high intensity mixer, said processing transforming said processable mixture in said mixer into a semi-molten discharge stream by kinetic energy imparted to said processable mixture by said mixer while concurrently venting said mixer to remove particulates therefrom;
(e) forming said semi-molten discharge stream into a shaped mass of desired form;
(f) directing said particulates vented from said mixer to a particulate recovery system, and recovering said particulates therein; and (g) recycling said particulates to said first stream upstream of said mixer.
2. The method of claim 1 wherein the kinetic energy imparted to said processable mixture heats said processable mixture to a temperature of 265°F to 275°F.
3. The method of claim 1 wherein said forming step (e) comprises:
extruding said semi-molten discharge stream through a die to provide said shaped mass of said desired form; and then cooling said shaped mass.
4. The method of claim 3 wherein said extruding of said semi-molten discharge stream is into a cold water bath, thereby simultaneously providing said shaped mass and cooling said extruded shaped mass.
5. The method of claim 1 wherein said forming step (e) comprises:
discharging said semi-molten discharge stream into a mould of said desired form; then pressing said semi-molten material into said shaped mass of said desired form;
and then cooling said shaped mass.
6. The method of claim 1 including the intermediate step of granulating said raw automobile shredder residue while substantially-simultaneously aspirating particulates from said first granulating zone; and directing said particulates to said particulate recovery system.
7. The method of claim 1 including the intermediate step of granulating said at least one of virgin synthetic plastics polymer and contaminated synthetic plastic polymer while substantially-simultaneously aspirating particulates from said second granulating zone; and directing said particulates to said particulate recovery system.
8. The method of claim 1 including the intermediate step of feeding said granulated automobile shredder residue from a feeding zone to a weighing zone while substantially-simultaneously aspirating particulates from said feeding zone;
and directing said particulates to said particulate recovery system.
9. The method of claim 1 wherein a predetermined weighed amount of granulated automobile shredder residue from step (a) is mixed with a predetermined weighed amount of granulated at least one of virgin synthetic plastics polymer and contaminated synthetic plastic polymer, thereby providing said processable mixture.
10. The method of claim 9 wherein said predetermined weighed amount of said granulated automobile shredder residue is provided by the steps of:
(h) feeding said granulated automobile shredder residue from said granulating step (a) to an automobile shredder residue weighing station while aspirating particulates;
(i) weighing said granulated automobile shredder residue;
(j) passing said weighed automobile shredder residue to said combing step (c) to at least one of virgin synthetic plastics polymer and contaminated synthetic plastic polymer weighing station, and (k) directing said aspirated particulates to said particulate recovery system.
11. The method of claim 9 wherein said predetermined weighed amount of said at least one of virgin synthetic plastics polymer and contaminated synthetic plastic polymer is provided by the steps of:
(g) feeding said at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer from said granulating step (b) while aspirating particulates;
(h) weighing said at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer;

(i) passing said weighed at least one of virgin synthetic plastics polymer and contaminated synthetic plastics polymer to said combining step (c); and (j) directing said aspirated particulates to said particulate recovery system.
12. The method of claim 9 wherein the amount of said granulated at least one of virgin synthetic plastics polymer and contaminated synthetic plastic polymer is from 10 parts to 85 parts by weight of said total processable mixture.
CA 2153450 1994-07-12 1995-07-07 Method for preparing automobile shredder residue-synthetic plastic material composite Expired - Fee Related CA2153450C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/273,844 US5503788A (en) 1994-07-12 1994-07-12 Automobile shredder residue-synthetic plastic material composite, and method for preparing the same
US08/273,844 1994-07-12

Publications (2)

Publication Number Publication Date
CA2153450A1 CA2153450A1 (en) 1996-01-13
CA2153450C true CA2153450C (en) 1997-03-18

Family

ID=23045644

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2153450 Expired - Fee Related CA2153450C (en) 1994-07-12 1995-07-07 Method for preparing automobile shredder residue-synthetic plastic material composite

Country Status (4)

Country Link
US (1) US5503788A (en)
EP (1) EP0692356A3 (en)
JP (1) JPH0985212A (en)
CA (1) CA2153450C (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925296A (en) * 1997-01-08 1999-07-20 Leese; Wilbert E. Manufacture of structural members from solid waste
US5824745A (en) * 1997-02-28 1998-10-20 Brown; William F. Resin composition
US6423254B1 (en) * 1998-12-22 2002-07-23 Elma Chemicals Srl Method for manufacturing products through the use of waste materials of various kind
US6221291B1 (en) 1999-02-26 2001-04-24 Lear Corporation Method for making a preform
US6007005A (en) * 1999-03-17 1999-12-28 Premark Rwp Holdings, Inc. ABS recycling process
DE19917421C1 (en) * 1999-04-19 2000-12-28 Svedala Lindemann Gmbh Process for briquetting metal chips and briquetting press
US6299811B1 (en) * 1999-04-23 2001-10-09 Lear Corporation Method of recycling polyurethane foam components
US7763345B2 (en) 1999-12-14 2010-07-27 Mannington Mills, Inc. Thermoplastic planks and methods for making the same
US6617009B1 (en) 1999-12-14 2003-09-09 Mannington Mills, Inc. Thermoplastic planks and methods for making the same
US6761008B2 (en) 1999-12-14 2004-07-13 Mannington Mills, Inc. Connecting system for surface coverings
US7169460B1 (en) 1999-12-14 2007-01-30 Mannington Mills, Inc. Thermoplastic planks and methods for making the same
US6974097B2 (en) * 2000-06-01 2005-12-13 Simon Jonathan L Method and apparatus for sorting recyclable products
US6422493B1 (en) 2000-06-01 2002-07-23 Simon Family Partners Method and apparatus for sorting recyclable products
US6627134B2 (en) * 2000-09-05 2003-09-30 Community Enterprises, Llc Apparatus for molding multilayered articles
AU2002235399A1 (en) * 2001-01-19 2002-07-30 Primarion, Inc. Microelectronic transient power generator for power system validation
US20020197498A1 (en) * 2001-06-21 2002-12-26 Yasushi Koike Reprocessed plastic material and electrical and electronic equipment using reprocessed plastic material, and method for recycling plastic material and process for manufacturing reprocessed plastic material
US8028486B2 (en) 2001-07-27 2011-10-04 Valinge Innovation Ab Floor panel with sealing means
US6497956B1 (en) 2001-09-07 2002-12-24 Biolumber Inc. Structural recycled plastic lumber
JP4373213B2 (en) * 2001-10-18 2009-11-25 コミュニティー エンタープライジズ, エルエルシー Device for injection molding of multilayer articles
US20040175454A1 (en) * 2003-01-27 2004-09-09 Joel Thomson Devices and methods for maximizing purge effectiveness for molding machines
US7264124B2 (en) 2003-11-17 2007-09-04 Casella Waste Systems, Inc. Systems and methods for sorting recyclables at a material recovery facility
US7757863B2 (en) 2003-11-17 2010-07-20 Casella Waste Systems, Inc. Systems and methods for glass recycling at a beneficiator and/or a material recovery facility
CN101044101A (en) 2004-11-12 2007-09-26 卡西勒废物处理系统公司 Method for providing contaminant-free, uniformly colored mixed-color cullet
US7776243B2 (en) * 2005-05-04 2010-08-17 Al Braun, Jr. Recycled materials strengthening process, system and products
GB0517233D0 (en) * 2005-08-23 2005-09-28 Owen George An insulation material
SE530653C2 (en) 2006-01-12 2008-07-29 Vaelinge Innovation Ab Moisture-proof floor board and floor with an elastic surface layer including a decorative groove
US8459466B2 (en) 2007-05-23 2013-06-11 Re Community Energy, Llc Systems and methods for optimizing a single-stream materials recovery facility
US8101100B1 (en) 2007-07-19 2012-01-24 Advanced Environmental Recycling Technologies, Inc. Method for processing and analyzing contaminated mixed waste plastics to produce reformulated, blended feed materials having a target density
CN101468447B (en) * 2007-12-29 2012-01-25 鸿富锦精密工业(深圳)有限公司 Clamping fixture
AU2010281342A1 (en) * 2009-08-07 2011-11-03 APRIL Ltd Feeder and extrusion device and method of use thereof
US8365499B2 (en) 2009-09-04 2013-02-05 Valinge Innovation Ab Resilient floor
US11725395B2 (en) 2009-09-04 2023-08-15 Välinge Innovation AB Resilient floor
ES2398305B1 (en) * 2011-03-08 2014-01-24 Recuperación Medioambientales Industriales, S.L. ECO-INSTALLATION OF METAL CHATARRA TREATMENT OF DIFFERENT NATURE.
ES2389415B1 (en) * 2011-03-29 2013-09-09 Univ Sevilla METHOD FOR THE MANUFACTURE OF AN ACOUSTIC MATERIAL FROM THE WASTE OF VEHICLE FRAGMENTATION OUT OF USE AND PRODUCT AS OBTAINED.
CN102626711B (en) * 2012-03-29 2014-03-05 韩清洁 Multifunctional tearing and breaking separation production line
US10532495B2 (en) 2012-05-31 2020-01-14 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US11045979B2 (en) 2012-05-31 2021-06-29 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US10538016B2 (en) 2012-05-31 2020-01-21 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US9636860B2 (en) 2012-05-31 2017-05-02 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US9630354B2 (en) 2012-05-31 2017-04-25 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US8597553B1 (en) 2012-05-31 2013-12-03 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US10695953B2 (en) 2012-05-31 2020-06-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US9630353B2 (en) 2012-05-31 2017-04-25 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US9636845B2 (en) 2012-05-31 2017-05-02 Mohawk Industries, Inc. Method of manufacturing pet nurdles
US10487422B2 (en) 2012-05-31 2019-11-26 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled pet
US20140221553A1 (en) * 2013-02-07 2014-08-07 Holland Composites Innovation B.V. Composite materials and shaped articles
EP3169533B1 (en) 2014-07-16 2023-04-26 Välinge Innovation AB Method to produce a thermoplastic wear resistant foil
EP3220782B1 (en) * 2014-11-18 2023-10-11 Aladdin Manufacturing Corporation Systems and methods for manufacturing bulked continuous filament
ITUB20153608A1 (en) * 2015-09-14 2017-03-14 Danieli Off Mecc PLANT AND METHOD OF RECOVERY AND TREATMENT OF RESIDUES OF CRUSHING OF RAILED SCRAPS
US10751915B2 (en) 2016-11-10 2020-08-25 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods
EP4219114A1 (en) 2017-01-30 2023-08-02 Aladdin Manufacturing Corporation Systems and methods for manufacturing items from colored recycled pet
EA201992067A1 (en) 2017-03-03 2020-03-27 Аладдин Мэньюфэкчеринг Корпорейшн DOUBLE VACUUM DEVICE POLYMERS EXTRUDERS AND RELATED WAYS
CA3073425A1 (en) 2017-09-15 2019-03-21 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring method and system for manufacturing a bulked continuous carpet filament
TW201924792A (en) * 2017-12-01 2019-07-01 曾皇霖 Impact-type continuous softening extrusion method of waste automobile shredder residue extrudes and melts the ASR through a mold unit
US11242622B2 (en) 2018-07-20 2022-02-08 Aladdin Manufacturing Corporation Bulked continuous carpet filament manufacturing from polytrimethylene terephthalate
US11163247B2 (en) 2018-07-31 2021-11-02 Hewlett-Packard Development Company, L.P. Blanket servicing utilizing rotatably mounted endless cleaning surfaces
CN113199656B (en) * 2021-04-06 2022-08-05 广西梧州国龙再生资源发展有限公司 Production line for HDPE plastic granulation and working method thereof

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2031129A (en) * 1932-11-19 1936-02-18 Siemens Ag Method of making shaped bodies of nonplastic metallic oxides
US2075476A (en) 1935-01-08 1937-03-30 Sizer Albert William Machine for molding plastic substances
US2443289A (en) * 1941-04-23 1948-06-15 Plax Corp Apparatus for shaping plastics by extrusion
NL80123C (en) * 1948-07-01 1900-01-01
US3092437A (en) * 1958-12-18 1963-06-04 Union Carbide Corp Process for making carbon articles
NL279834A (en) * 1961-07-19 1900-01-01
US3411179A (en) * 1966-04-12 1968-11-19 Frank W Egan & Company Extruder screw mixing section
US3506414A (en) * 1967-09-15 1970-04-14 Lawrence Skendrovic Domestic refuse and garbage disposal system
US3880664A (en) * 1971-08-05 1975-04-29 Herbert C Schulze Method for extrusion
US3991005A (en) * 1971-11-22 1976-11-09 Wallace Richard A Structural material and method
US3933515A (en) * 1972-09-14 1976-01-20 Johns-Manville Corporation Thermal shock resistant asbestos-cement compositions and their preparation
US4131563A (en) * 1973-12-20 1978-12-26 Steag Kernenergie G.M.B.H. Process of preparing substantially solid waste containing radioactive or toxic substances for safe, non-pollutive handling, transportation and permanent storage
DE2363474C3 (en) * 1973-12-20 1986-02-13 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for the solidification of waste liquids containing essentially organic, radioative or toxic substances
US3956541A (en) 1974-05-02 1976-05-11 Capital Wire & Cable, Division Of U. S. Industries Structural member of particulate material and method of making same
DE2450030C3 (en) * 1974-10-22 1978-05-18 Erich 6520 Worms Beck Single screw extrusion press for thermoplastics
DE2525750C3 (en) * 1975-06-10 1982-04-15 Buckau-Walther AG, 4048 Grevenbroich Process for recycling and reusing heavily soiled plastic products
AT338387B (en) * 1975-06-26 1977-08-25 Oesterr Studien Atomenergie METHOD OF EMBEDDING RADIOACTIVE AND / OR TOXIC WASTE
US5026512A (en) * 1975-08-30 1991-06-25 Chang Shao C Method for manufacturing molded products of thermoplastic and inorganic materials
NL184773C (en) 1977-04-19 1989-11-01 Lankhorst Touwfab Bv METHOD FOR PROCESSING THERMOPLASTIC PLASTIC MATERIAL INTO AN ARTICLE WITH THE PROCESSING AND PROCESSING PROPERTIES OF WOOD.
US4297322A (en) * 1977-08-25 1981-10-27 Hsin Liu Equipment for treating and resource recovery from solid waste
FR2418295A1 (en) * 1978-02-27 1979-09-21 Creusot Loire METHOD AND INSTALLATION FOR THE CONTINUOUS PROCESSING OF A CELLULOSIC MATERIAL
IT1096114B (en) * 1978-04-12 1985-08-17 Vezzani Spa Off PROCESS AND MACHINE FOR COMPRESSING AND CUTTING METAL SCRAP
US4234632A (en) * 1978-05-26 1980-11-18 The United States Of America As Represented By The Administrator U.S. Environmental Protection Agency Solid waste encapsulation
US4280921A (en) * 1978-12-01 1981-07-28 Newport News Industrial Corporation Immobilization of waste material
US4279790A (en) 1979-07-05 1981-07-21 Kabushiki Kaisha Mikuni Seisakusho Composite material compositions using wasterpaper and method of producing same
DE3031839C2 (en) 1980-08-23 1983-10-20 Dynamit Nobel Ag, 5210 Troisdorf Process for the continuous manufacture of a patterned sheet of thermoplastic material
US4427818A (en) 1981-05-15 1984-01-24 Prusinski Richard C Thermoplastic polymer concrete structure and method
JPS5943216B2 (en) * 1981-06-23 1984-10-20 株式会社奈良機械製作所 Mixing/granulating/drying machine
US4585583A (en) * 1982-05-24 1986-04-29 The Dow Chemical Company In situ solidification of ion exchange beads
DE3475283D1 (en) * 1983-10-17 1988-12-29 Renato Fornasero Process for recovery of heterogeneous waste plastic materials, and apparatus usable in carrying out the same
US4728476A (en) * 1984-10-12 1988-03-01 Resin Stretchers Method of supplying a moldable mixture of materials to an article forming mold of an injection molding machine
US4772430A (en) * 1985-01-11 1988-09-20 Jgc Corporation Process for compacting and solidifying solid waste materials, apparatus for carrying out the process and overall system for disposal of such waste materials
CA1290528C (en) * 1985-07-09 1991-10-15 Martin Walsh Method and apparatus for producing thermoplastic and products produced therefrom
DE3604760A1 (en) * 1986-02-14 1987-08-20 Hubert Eirich METHOD AND DEVICE FOR CONDITIONING POWER PLANT RESIDUES
US4821653A (en) * 1986-02-20 1989-04-18 Jones Bradford H Process and apparatus for fixing, encapsulating, stabilizing and detoxifying heavy metals and the like in metal-containing sludges, soils, ash and similar materials
US5059372A (en) * 1987-04-16 1991-10-22 Klais Guenter Process and apparatus for producing compressed solid briquettes
US5093051A (en) * 1988-01-21 1992-03-03 Altomar-Ii Trust By Kenneth Safe, Jr. Trustee Process for making cellulose-containing products
JPH0649288B2 (en) * 1988-01-22 1994-06-29 豊田合成株式会社 Method for producing polyvinyl chloride material for extrusion molding
IT1235511B (en) * 1988-03-14 1992-09-09 Liborio Campo TUNNEL CONTINUOUS CYCLE COMPACTOR WITH FORCED AIR CIRCULATION PRE-CHAMBER FOR THE AEROBIC DISPOSAL OF BIODEGRADABLE URBAN SOLID WASTE AND FOR THE MECHANIZED SELECTION OF NON-BIODEGRADABLE FOR RECYCLING
US4986197A (en) * 1989-06-06 1991-01-22 Kent John M Apparatus for using hazardous waste to form non hazardous aggregate
GB2225275B (en) * 1989-02-04 1991-05-08 Meirion Gribble Slate-filled resin products
US5265545A (en) * 1989-04-12 1993-11-30 Miltox Holdings Pte, Limited Method and apparatus for waste treatment
US5215695A (en) * 1989-04-19 1993-06-01 Abet Laminati S.P.A. Process for reclaiming the residuals of the manufacture of high pressure laminates
DE3916774A1 (en) * 1989-05-23 1990-11-29 Anton Heggenstaller METHOD AND DEVICE FOR PRESSING A RIGID BEAM-SHAPED SHAPED BODY FROM VEGETABLE SMALL PARTS
US5080291A (en) * 1989-10-30 1992-01-14 Bloom Dennis R Method of recycling automobile waste residue
US5082605A (en) * 1990-03-14 1992-01-21 Advanced Environmental Recycling Technologies, Inc. Method for making composite material
US5100603A (en) * 1990-04-30 1992-03-31 Neefe Charles W Method of recycling multimaterial containers
US5035189A (en) * 1990-08-03 1991-07-30 Lunsford T J Refuse recycling system
CA2026103A1 (en) * 1990-09-25 1992-03-26 Paul W. Roszel Method and apparatus for anaerobic microwave reduction of organic and inorganic molecular complexes
US5151230A (en) * 1990-10-01 1992-09-29 Dinoflex Manufacturing Ltd. Process for production of products formed of polymer bonded and granulated particles
US5240656A (en) * 1991-05-21 1993-08-31 Plastics Densification, Inc. Treatment of waste
US5075057A (en) * 1991-01-08 1991-12-24 Hoedl Herbert K Manufacture of molded composite products from scrap plastics
US5265979A (en) * 1991-03-25 1993-11-30 Landfill Service Corporation High efficiency waste placement system for municipal landfills
US5161915A (en) * 1991-03-25 1992-11-10 Landfill Service Corporation Synthetic cover for waste piles
IT1245070B (en) * 1991-04-16 1994-09-13 Mariani Cinzia Licia D I PROCEDURE AND DEVICE FOR THE HOMOGENIZATION OF WASTE OF PLASTIC MATERIAL OF A DIFFERENT NATURE FOR THE PURPOSE OF A REUSE OF THE SAME SIZES
US5196620A (en) * 1991-06-13 1993-03-23 Municipal Services Corporation Fixation and utilization of ash residue from the incineration of municipal solid waste
IT1250016B (en) * 1991-09-11 1995-03-30 Renato Fornasero IMPROVEMENT IN THE DEVICES FOR THE RECOVERY OF HETEROGENEOUS WASTE, PARTICULARLY HETEROGENEOUS WASTE OF PLASTIC MATERIALS.
DE4313977A1 (en) * 1992-07-15 1994-04-14 Wehrle Werk Ag Plastics waste recovery - by passing shredded separated matter through an extruder to be formed into pellets.
US5273566A (en) * 1993-01-26 1993-12-28 International Environmelting Corporation Process for producing an environmentally acceptable abrasive product from hazardous wastes

Also Published As

Publication number Publication date
EP0692356A2 (en) 1996-01-17
CA2153450A1 (en) 1996-01-13
EP0692356A3 (en) 1996-07-31
US5503788A (en) 1996-04-02
JPH0985212A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
CA2153450C (en) Method for preparing automobile shredder residue-synthetic plastic material composite
US20230092763A1 (en) Plastic composition
US7842221B2 (en) Process and apparatus for the production of filled thermoplastic polymers
US7022751B2 (en) Composite plastic materials produced from waste materials and method of producing same
JP4006076B2 (en) Manufacturing method of molded products made from plastic waste
CN101139453B (en) Circulating mix-smelting plastic-wood composite material, production method and freight pallet manufactured by the same
US20200199324A1 (en) Reconstituted composite materials derived from waste made by solid state pulverization
EP0528246B1 (en) A method and a system for recycling waste materials including plastics materials
US5482216A (en) Method for reclaiming plastic which contains undesirable contaminants
EP1354681A1 (en) Moulded product comprising a thermoplastic component and a particulate filler material and method for producing the same
JP4266118B2 (en) Manufacturing method of recycled plastic pallets
US20230381839A1 (en) A method for manufacturing a recyclable article from municipal solid waste
KR102488683B1 (en) The waste vinyl melting system, and the manufacturing system and method for recycled products using the melting system
WO2017135817A1 (en) Process for preparing automotive shredder fibre residue pellets
WO2009072150A1 (en) Process and plant for the production of composite thermoplastics and materials thus obtained
BREWER Mixed plastics recycling: Not a pipe dream

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed