CA2140388A1 - Guiding introducer system for use in right atrium - Google Patents

Guiding introducer system for use in right atrium

Info

Publication number
CA2140388A1
CA2140388A1 CA002140388A CA2140388A CA2140388A1 CA 2140388 A1 CA2140388 A1 CA 2140388A1 CA 002140388 A CA002140388 A CA 002140388A CA 2140388 A CA2140388 A CA 2140388A CA 2140388 A1 CA2140388 A1 CA 2140388A1
Authority
CA
Canada
Prior art keywords
section
guiding introducer
distal end
introducer
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002140388A
Other languages
French (fr)
Inventor
John Frederick Swartz
John D. Ockuly
John J. Fleischhacker
James A. Hassett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical LLC
Original Assignee
Daig Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daig Corp filed Critical Daig Corp
Publication of CA2140388A1 publication Critical patent/CA2140388A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0041Catheters; Hollow probes characterised by the form of the tubing pre-formed, e.g. specially adapted to fit with the anatomy of body channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/057Anchoring means; Means for fixing the head inside the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices

Abstract

A guiding introducer system for use in the right atrium comprised of an inner guiding introducer and an outer guiding introducer wherein the inner guiding introducer is comprised of a first and second section and the outer guiding introducer is comprised of a first, second and third section. The guiding introducer system is for use in sensing, pacing, and ablating procedures within the right atrium of the human heart.

Description

~ qcl~

~14 0 Expres~ ~lail No. EF548513285US

(a) Title of Invention GUIDING INTRODUCER SYSTEM FOR USE IN THE RIGHT ATRIUM
(b) This application is a continuation-in-part of application Serial No. 08/146,744, filed November 3, 1993.
(c) Background of Invention 1. Field of Invention This invention relates to introducers. More particularly, this invention relates to a guiding introducer system for use within the right atrium of the human heart.
2. Prior Art Introducers and catheters have been in use for medical procedures for many years. For example, one use has been to convey an electrical stimulus to a selected location within the human body. Another use is the monitoring of measurements for diagnostic tests within the human body. Thus, catheters may be used by a physician to examine, diagnose and treat while positioned at a specific location within the body which are otherwise inaccessible without more invasive procedures. Catheters may be inserted into a major vein or artery which is near the body surface. The catheters are then guided to the specific location for examination, diagnosis or treatment by manipulating the catheter through the artery or vein of the human body.
Catheters have become increasingly useful in remote and difficult to reach locations within the body. However, the utilization of these catheters is frequently limited because of the need for the precise placement of the tip of the catheter at a specific location within the body.
Control of the movement of catheters to achieve such precise placement is difficult because of the inherent structure of a catheter. The body of a conventional catheter is long and tubular.
To provide sufficient control of the movement of the catheter, it is necessary that its structure be somewhat rigid. However, the catheter must not be so rigid as to prevent the bending or curving necessary for movement through the vein, artery or other body part to arrive at the specified location. Further, the catheter must not be so rigid as to cause damage to the artery, vein or body part while it is being moved within the body.
While it is important that the catheter not be so rigid as to cause injury, it is also important that there be sufficient rigidity in the catheter to accommodate torque control, i.e., the ability to transmit a twisting force along the length of the catheter. Sufficient torque control enables controlled maneuverability of the catheter by the application of a twisting force at the proximal end of the catheter that is transmitted along the catheter to its distal end. The need for greater torque control often conflicts with the need for reduced rigidity to prevent injury to the body vessel.
Catheters are used increasingly for medical procedures involving the human heart. In these procedures a catheter is typically advanced to the heart through veins or arteries and then is positioned at a specified location within the heart. Typically, the catheter is inserted in an artery or vein in the leg, neck, ~140388 .

upper chest or arm of the patient and threaded, often with the aid of a guidewire or introducer, through various arteries or veins until the tip of the catheter reaches the desired location in the heart.
The distal end of a catheter used in such a procedure is sometimes preformed into a desired curvature so that by torquing the catheter about its longitudinal axis, the catheter can be manipulated to a desired location within the heart or in the arteries or veins associated with the heart. For example, U.S.
Patent No. 4,882,777 discloses a catheter with a complex curvature at its distal end for use in a specific procedure in the right ventricle of a human heart. U.S. Patent No. 5,231,994 discloses a guide catheter for guiding a balloon catheter for the dilation of coronary arteries. U.S. Patent No. 4,117,836 discloses a catheter for the selective coronary angiography of the left coronary artery and U.S. Patent Nos. 5,295,574, 5,215,540, 5,016,640 and 4,883,058 disclose catheters for use in selective coronary angiography of the right coronary artery. See also U.S. Patent No. 4,033,031.
Finally, U.S. Patent No. 4,898,591 discusses a catheter with inner and outer layers containing braided portions. The '591 patent also discloses a number of different curvatures for intravascular catheters.
In addition to single catheters with various curvatures, U.S.
Patent No. 4,581,017 discloses an inner and outer guide catheter, numbers 138 and 132, for use with a balloon catheter for treatment of coronary arteries. U.S. Patent No. 5,267,982 discloses a catheter assembly and methods for catheterization of coronary arteries wherein an inner catheter (50) and outer catheter (52) are used in combination for the treatment of right and left coronary angiographic procedures. See also U.S. Patent No. 4,935,017 which discloses a similar device. U.S. Patent No. 5,290,229 discloses a straight outer sheath and a preformed inner catheter for use in the heart. See also U.S. Patent Nos. 5,304,131, 5,120,323, 4,810,244 and 5,279,546.
Thus, there are a number of patents which disclose catheters with predetermined shapes, designed for use in specific medical procedures generally associated with the heart or the vascular system. Because of the precise physiology of the heart and the vascular system, catheters or introducers with carefully designed shapes for predetermined uses within the human heart and vascular system are important.
The sources of energy used for catheter ablation vary.
Initially, high voltage, direct current (DC) ablation techniques were commonly used. However, because of problems associated with the use of DC current, radio frequency (R.F.) ablation has become a preferred source of energy for the ablation procedures. The use of RF energy for ablation has been disclosed, for example, in U.S.
Patent Nos. 4,945,912, 5,209,229, 5,281,218, 5,242,441, 5,246,438, 5,281,213 and 5,293,868. Other energy sources being considered for ablation of heart tissue include laser, ultrasound, microwave and direct current fulgutronization procedures. Also disclosed have been procedures where the temperature about the catherization probe 21~0388 is modified.
Catheter ablation of accessory pathways associated with Wolfe-Parkinson-White syndrome using a long vascular sheath by both a transseptal and retrograde approach is discussed in Saul, J.P., et al. "Catheter Ablation of accessory Atrioventricular Pathways in Young Patients: Use of long vascular sheaths, the transseptal approach and a retrograde left posterior parallel approach" Journal of the American Colleqe of Cardiology, Vol. 21, no. 3, pps. 571-583 (March 1, 1993). See also Swartz, J.F. "Radiofrequency Endocardial Catheter Ablation of Accessory Atrioventricular Pathway Atrial Insertion Sites" Circulation, Vol. 87, no. 2, pps. 487-499 (February, 1993).
Accordingly, it is an object of this invention to prepare a dual guiding introducer system for selected medical procedures in the right atrium.
It is a further object of this invention to prepare a dual guiding introducer system for use in selected electrophysiology procedures within the right atrium of the heart.
Another object of this invention is to prepare a dual guiding introducer system for use in selected ablation procedures within the right atrium of the heart.
These and other objects are obtained by the design of the guiding introducer system disclosed in the instant invention.
(d) Summary of Invention The instant invention is a guiding introducer system for selected medical procedures in the right atrium. It is comprised ~1 q 0388 -of an inner guiding introducer and an outer guiding introducer. A
dilator is preferably used with the guiding introducer system, which dilator may be a standard dilator used with conventional introducers. The inner guiding introducer is a shaped introducer comprised of a first and second section, wherein the first section is a generally elongated straight section which is merged at its distal end with the second section which is a simple curved section. The outer guiding introducer is comprised of a first, second and third sections, wherein the first section is a generally elongated straight section which is merged at its distal end with the second and third sections which form complex curved sections.
The inner guiding introducer is longer than the outer guiding introducer to permit it to extend out from the lumen of the outer guiding introducer to form various curves and shapes.
(e) Brief Description of the Drawings Figure 1 is a cross-section of the right side of the heart showing the right atrium and the placement of the guiding introducer system.
Figure 2 is a perspective view of the dilator.
Figure 3 is a perspective view of the inner guiding introducer.
Figure 4 is a perspective view of the outer guiding introducer.
Figure 5 is a perspective view of the inner and outer guiding introducers in combination with the distal end of the inner guiding introducer extended from the distal end of the outer guiding ` 21 ~0388 introducer.
(f) Detailed Description of the Drawings.
A typical human heart includes a right ventricle, a right atrium, left ventricle and left atrium. The right atrium is in fluid communication with the superior vena cava and the inferior vena cava. The atrioventricular septum separates the right atrium from the right ventricle. The tricuspid valve contained within the atrioventricular septum communicates the right atrium with the right ventricle. On the inner wall of the right atrium where it is connected with the left atrium is a recessed portion, the fossa ovalis. See Figure 1. In the heart of a fetus, the fossa ovalis is open, permitting the fetal blood to flow between the right and left atria. In most individuals, this opening closes after birth, but in as many as 25 percent of individuals an opening still remains in the fossa ovalis between the right and left atria.
Between the fossa ovalis and the tricuspid valve is the opening or ostium for the coronary sinus. The coronary sinus is the large epicardial vein which accommodates most of the venous blood which drains from the myocardium into the right atrium.
In the normal heart, contraction and relaxation of the heart muscle (myocardium) takes place in an organized fashion as electro-chemical signals pass sequentially through the myocardium from the atrial to the ventricular tissue along a well defined route which includes the His-Purkinje system. Initial electrical impulses are generated at the sinuatrial (SA) node and conducted to the atrioventricular (AV) node. The AV node lies near the ostium of 21~ 0388 the coronary sinus in the interatrial septum in the right atrium.
The His-Purkinje system begins at the AV node and follows along the membranous interatrial septum toward the tricuspid valve through the atrioventricular septum and into the membranous interventricular septum. At about the middle of the interventricular septum, the His-Purkinje system splits into right and left branches which straddle the summit of the muscular part of the interventricular septum.
Sometimes abnormal rhythms occur in the heart which are referred to as arrhythmia. For example, a common arrhythmia is Wolfe-Parkinson-White syndrome (W-P-W). The cause of W-P-W is generally believed to be the existence of an anomalous conduction pathway or pathways that connects the atrial muscle tissue directly to the ventricular muscle tissue, thus by-passing the normal His-Purkinje system. These pathways are usually located in the fibrous tissue that connects the atrium and the ventricle. In recent years a technique has been developed to destroy these anomalous conduction pathways by delivering energy into the tissue in which the pathways exist. To accomplish this procedure a special electrode catheter is positioned as close as possible to the anomalous conduction pathway to maintain constant tissue contact while energy is delivered to the cardiac tissue to destroy the pathway. This same type of contact with the cardiac tissue is also necessary when mapping or other such procedures are employed relating to these pathways.
One end of these anomalous conduction pathways can be located either in the right atrium or in the left atrium with the other end of the pathway located in the corresponding ventricle. When the anomalous conduction pathway is located between the left atrium and the left ventricle, there are two approaches to positioning the catheter near the pathway for the appropriate medical procedure.
One is to introduce the catheter into the femoral artery by a standard introducer sheath and advance it up the aorta, across the aortic valve into the left ventricle and then attempt to position its tip under the mitral valve annulus near the anomalous conduction pathway. This approach is frequently difficult for many reasons, including the structure of the left ventricle, the fact that it requires arterial access and potential problems associated with ablation of ventricular tissue including the possibility of creation of a substrate for a future arrhythmia which could result in sudden cardiac death. The other approach is to introduce a transseptal sheath apparatus, a long single plane curve introducer, into the right femoral vein and advance it through the inferior vena cava into the right atrium. A puncture is then made through the fossa ovalis in the interatrial septum and the apparatus is advanced into the left atrium where the trocar and dilator of the apparatus are removed, leaving the introducer in position in the left atrium. The mapping or ablation catheter is then inserted through the introducer and into the left atrium and positioned on top of the mitral valve annulus near the anomalous conduction pathway. Specific positions may be chosen for the mapping or ablation on the left side of the heart, including specifically 21 ~0388 posteroseptal, posterior, posterolateral, lateral and anterolateral positions around the mitral valve annulus.
Traditionally, there have been two techniques for locating and ablating anomalous conduction pathways which are situated between the right atrium and right ventricle. Either method can be initiated by advancing a catheter through an access site into a vein in the leg, neck or upper chest.
The first technique, which approaches the pathway from the pathway's ventricular insertion site, involves entering the right atrium from either the inferior or superior vena cava, passing through the tricuspid valve, and advancing toward the apex of the right ventricle. Then the catheter is directed to make a 180 degree turn to reverse its path back up toward the right atrium and locate the accessory pathway under the tricuspid valve apparatus.
The accessory pathway is then ablated from the ventricular insertion site under the tricuspid valve.
The second technique, which approaches the pathway from the atrial insertion site, is to enter the right atrium from the inferior or superior vena cava, and attempt to locate the atrial insertion site of the accessory pathway around the tricuspid valve annulus. The accessory pathway is then ablated from the pathway's atrial insertion site on the atrial aspect of the tricuspid valve.
AV nodal pathways can be located and ablated from the right atrium.
Mere introduction of the catheter into the right atrium is not sufficient to effectively and efficiently perform these medical 21~0388 procedures, especially the mapping or ablation of the anomalcus conduction pathways. These medical procedures are usually performed using a specific catheter. The medical practitioners monitor the introduction of the catheter and its progress through the vascular system by a fluoroscope. However, such fluoroscopes do not easily identify the specific features of the heart in general and the critically important structures of the right atrium in specific, thus making placement of the catheter difficult. This placement is especially difficult as the beating heart is in motion and the catheter will be moving within the right atrium as blood is being pumped through the heart throughout the procedure. The structure and shape of the guiding introducer of the instant invention addresses and solves these problems.
The dual guiding introducer system for use in the right atrium is comprised of an inner and an outer guiding introducer. See Figure 5. A dilator is also preferably used wherein the dilator is preferably a conventional dilator used with cardiac procedures and is not generally curved. See Figure 2. The standard length of the dilator is about 60 to about 80 cm.
The inner guiding introducer is generally comprised of two sections. See Figure 3. The first section is a conventional generally elongated hollow straight catheter section of sufficient length for introduction into the patient and for manipulation from the point of insertion to the specific desired location within the heart. Merged with the distal end of the first section of the guiding introducer, but an integral part of the entire guiding ~1'1(~3~
-lntroducer, is the second section which ls a curved sectlon, curved ln a slmple curve with a radlus of about 0.5 to about 2.0 ln., preferably about 0.7 to about 1.3 ln., to form an arc of approxlmately 150 to about 270 degrees, preferably about 170 to about 190 degrees endlng in a dlstal tlp.
The outer guldlng lntroducer for use ln the rlght atrlum ls comprlsed of a flrst, second and a thlrd sectlon. See Flgure 4. (As wlth the lnner guldlng lntroducer, thls dlvlslon lnto three separate sectlons ls for ease of lllustratlon. The guldlng lntroducer ls preferably formed ln a slngle procedure wlth each sectlon an lntegral part of the overall gulding introducer.) The flrst sectlon ls a conventlonal, generally elongated hollow stralght catheter sectlon of sufflclent length for lntroductlon lnto the patlent and for manlpulatlon from the polnt of lnsertlon to the speclflc deslred locatlon wlthln the heart. Merged wlth the dlstal end of the flrst sectlon of the guldlng lntroducer ls the second sectlon whlch ls comprlsed of a curved sectlon and a stralght sectlon, whereln the curved sectlon curves upward as shown ln Flgure 4 ln a longltudlnal curve wlth a radlus from about 0.25 to about 0.75 ln., preferably about 0.4 to about 0.6 ln., to form an arc of approxlmately 40 to about 60 degrees, preferably about 45 to about 55 degrees. Merged wlth the dlstal end of thls curve ls the stralght sectlon from about 0.4 to about 0.7 ln., ln length, preferably about 0.55 to about 0.65 ln., ln length. At the dlstal end of the second sectlon ls the thlrd sectlon. The thlrd sectlon ls comprlsed of a curved sectlon wlth a radlus of about 0.5 to about 1.5 ln. and preferably about 0.8 to about 1.2 ~'' a ~ 8 in. wlth an arc of about 30 to about 60 degrees, and preferably about 35 to about 55 degrees, which ends ln the dlstal tlp of the outer guldlng lntroducer. The curved sectlon of the thlrd sectlon curves ln approxlmately the same plane as the curve of the second sectlon (wlthln about 15 degrees of coplanar).
By extendlng the dlstal tlp of the lnner guldlng lntroducer away from the dlstal tip of the outer guiding lntroducer and by rotatlng the lnner guldlng lntroducer wlth respect to the outer guldlng lntroducer, a varlety of shapes of the overall guldlng lntroducer system are formed to dlrect a mapping and/or ablation catheter toward the site wlthln the atrlum of lnterest. See Flgure 5. These shapes permlt ablatlon procedures wlthin the rlght atrlum to be performed, for example, postero septal and septal accessory pathways. By further extenslon of the lnner guiding lntroducer, accessory pathways located anterloseptal to anterlor can be treated. Further extension of the lnner gulding introducer withln the outer guldlng introducer permits analysls of treatment of anterlor to anterlolateral accessory pathways. By further extension treatment ls available for acccessory pathways located anterlolateral to lateral to the trlcuspid valve annulus. In addition, by manipulatlon of the lnner guldlng lntroducer within the outer guiding lntroducer, additlonal procedures can be performed within the right atrlum, for example, for treatment of ectoplc arterlal tachycardla or even for certaln arterlal flbrillation procedures.
Being able to extend the inner guiding introducer within the outer guiding introducer and to rotate the inner guiding introducer within the outer guiding introducer permits a wide variety of overall shapes which is particularly useful to medical practitioners. The medical practitioner is able to determine the relative location of the inner and outer guiding introducers because of tip markers located near the distal tip of both the inner and outer guiding introducers.
The distal tip of both the inner and outer guiding introducers may be, and generally will be, tapered to form a good transition with the dilator.
The relative size of the outer guiding introducer in relation to the inner guiding introducer should be sufficient to permit the inner guiding introducer to be torqued or rotated within the outer guiding introducer without undue restriction on such movement.
Preferably, the difference in size between the inner and outer guiding introducer should be at least about 3 "French" (1 French equals about one-third of a millimeter). For example in one preferred embodiment, the outer guiding introducer is 11 French in size and the inner guiding introducer is 8 French. By this difference in diameter, there is approximately 1 French unit of volume between the outer surface of the inner guiding introducer and the inner surface of the outer guiding introducer. Preferably, this volume of space between the inner and outer guiding introducer is filled with a biocompatible solution, such as a saline solution, preferably a heparinized saline solution. This saline solution also provides lubricity to the two introducers, allowing more 214~388 accurate torquing of the enhanced inner guiding introducer within the outer guiding introducer. In addition, it is preferable that the structure of both the inner and the outer guiding introducer have a high torsional constant to allow for the full utilization of the various shapes available by rotation and extension of the inner and outer guiding introducer. To permit this high torsional constant, in one preferred embodiment the inner guiding introducer is braided to provide further strength and structural stability.
The guiding introducer may be made of any material suitable for use in humans, which has a memory or permits distortion from and subsequent substantial return to the desired three dimensional or complex multi-planar shape. For the purpose of illustration and not limitation, the internal diameter of the tip of the guiding introducers may vary from about 6 to about 10 "French" Such introducers can accept dilators from about 6 to about 10 French and appropriate guidewires. Obviously if larger, or smaller dilators and catheters are used in conjunction with the guiding introducers of the instant invention, modification can be made in the size of the instant guiding introducers.
The pair of guiding introducers preferably contain one or a multitude of radiopaque tip marker bands near the distal tip of the guiding introducers. Various modifications may be made in the shapes by increasing or decreasing its size or adding additional tip markers.
The inner and outer guiding introducers also preferably contain one or a plurality of vents near the distal tip of the 21~0~88 guiding introducers, preferably 3 or 4 or such vents. The vents are preferably located no more than about 5 to 6 cm. from the tip of the guiding introducers and more preferably 0.5 cm. to about 4.0 cm. from the tip. The size of these vents should be in the range of about 20 to 60 1/1000 of an inch in diameter. These vents are generally designed to prevent air embolisms from entering the guiding introducers caused by the withdrawal of a catheter contained within the guiding introducers in the event the distal tip of the guiding introducers is occluded. For example, if the tip of the inner guiding introducer is placed against the myocardium and the catheter located within the inner guiding introducer is withdrawn, a vacuum may be created within the inner guiding introducers if no vents are provided. If such vacuum is formed, air may be forced back into the guiding introducer by the reintroduction of a catheter into the lumen of the guiding introducers. Such air embolism could cause problems for the patient including the possibility of a stroke, heart attack or other such problems common with air embolism in the heart. The addition of vents near the distal tip of the guiding introducers prevents the formation of such vacuum by permitting fluid, presumably blood, to be drawn into the lumen of the guiding introducers as the catheter is being removed, thus preventing the possibility of formation of an air embolism.
Variances in size or shape of the pair of guiding introducer are also intended to encompass pediatric uses for the pair of guiding introducers of the instant invention, although the preferred use is for adult human hearts. It is well recognized that pediatric uses may require reductions in size of the various sections of the guiding introducers in particular the first section, but without any significant modification to the shape or curves of the guiding introducers. However, because incremental changes can be made in the overall shape of the pair of guiding introducers, the system can better adjust to differing shapes and sizes of heart than can a single guiding introducer.
In operation, a modified Seldinger technique is normally used for the insertion of a catheter into either an artery or vein of the body. Using this procedure, a small skin incision is made at the appropriate location to facilitate the catheter and dilator passage. The subcutaneous tissue is then dissected, followed by a puncture of the vessel with an appropriate needle with stylet positioned at a relatively shallow angle. The needle is then partially withdrawn and reinserted at a slightly different angle into the vessel, making sure that the needle remains within the vessel. A soft flexible tip of an appropriate sized guidewire is then inserted through and a short distance beyond the needle into the vessel. Firmly holding the guidewire in place, the needle is removed. The guidewire is then advanced through the vessel into the inferior vena cava or the right atrium. With the guidewire in place, either in the inferior vena cava or into the right atrium, the dilator is then placed over the wire with the pair of guiding introducers placed over the dilator. The dilator and pair of guiding introducers generally form an assembly to be advanced .
together along the guidewire into the inferior vena cava or into the right atrium. The guidewire is then withdrawn as is the dilator, leaving the pair of guiding introducers either in the inferior vena cava or in the right atrium. If the pair of guiding introducers has been left in the inferior vena cava, it is then advanced up the inferior vena cava into the right atrium. By extending and withdrawing the inner guiding introducer from the outer guiding introducer and by rotating the inner guiding introducer within the outer guiding introducer, great variances in the overall shape of the guiding introducer system can be achieved.
By movement of the inner guiding introducer within the outer guiding introducer in con]unction with fluoroscopic viewing, the distal portion of the outer guiding introducer can be manipulated to direct the distal end of a catheter placed within the lumen of the inner guiding introducer to a specific internal surface within the right atrium. See Figure 5. In addition, by providing sufficient rigidity, the distal end of the inner guiding catheter can be maintained in that fixed location or surface position of the endocardial structure to permit the appropriate procedures to be performed. If sensing procedures are involved, the pair of guiding introducers is placed in the desired location. At that point, the electrical activity of the heart peculiar to that location can be precisely determined by use of an electrophysiology catheter placed within the guiding introducer. Further, as the pair of guiding introducers permit precise location of catheters, an ablation catheter may be placed at a precise location for destruction of the 2;1~U388 cardiac tissue by the use of energy, for example, radio frequency, thermal, laser or direct current (high energy direct, low energy direct and fulgutronization procedures). The precise placement of the ablation catheter tip on the cardiac tissue is important as there will be no dilution of the energy delivered due to unfocused energy being dissipated over the entire cardiac chamber and lost in the circulating blood by a constant movement of the tip of the ablating catheter. This permits a significantly reduced amount of energy to be applied, while still achieving efficient ablation.
Further, time used to perform the procedure is significantly reduced over procedures where no guiding introducers are used.
It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that this invention be limited except as by the appended claims.

Claims (16)

1. A guiding introducer system to be used in the right atrium of a human heart comprised of an inner guiding introducer and an outer guiding introducer wherein said guiding introducers are used in combination.
2. The guiding introducer system of Claim 1 wherein a dilator is used with the inner and outer guiding introducers, wherein said dilator is a generally straight dilator.
3. The guiding introducer system of Claim 1 wherein the inner guiding introducer is comprised of a first and second sections each with proximal and distal ends, wherein the first section is a generally elongated straight section, wherein merged with the distal end of said first section is the second section which is a curved section with a radius of about 0.5 to about 1.5 in. to form an arc of approximately 150 to 270 degrees ending in the distal end of the second section of the inner guiding introducer.
4. The guiding introducer system of Claim 1 wherein the outer guiding introducer is comprised of first, second and third sections, each with distal and proximal ends, wherein the first section is a generally elongated straight section, wherein merged with the distal end of said first section is the second section which is comprised of a curved portion and a straight portion, wherein the curved portion has a radius of about 0.25 in. to about 0.75 in. to form an arc of about 40 to 60 degrees, wherein the straight portion of the second section is from about 0.4 to about 0.7 in. in length, wherein merged with the distal end of the second section is the third section, wherein said third section is a curved portion with a radius of about 0.5 to about 1.5 in. to form an arc of about 30 to about 60 degrees and wherein the third section is generally coplanar with the second section ending in the distal end of the third section of the outer guiding introducer.
5. The guiding introducer system of Claim 3 wherein a plurality of vents is provided near the distal end of the second section of the inner guiding introducer.
6. The guiding introducer system of Claim 4 wherein a plurality of vents is provided near the distal end of the third section of the outer guiding introducer.
7. The guiding introducer system of Claim 3 wherein tip markers are contained within the inner guiding introducer.
8. The guiding introducer system of Claim 4, wherein tip markers are contained within the outer guiding introducer.
9. A method for the mapping and/or ablation of anomalous conduction pathways within the right side of the heart comprising (a) introducing into the right side of the heart a guiding introducer system comprised of an inner guiding introducer and an outer guiding introducer, wherein each of the inner and outer guiding introducers contains a lumen passing therethrough, a proximal end and a distal end;
(b) introducing the inner guiding introducer into the lumen of the outer guiding introducer and extending the distal end of said inner guiding introducer through the lumen of the outer guiding introducer;
(c) introducing into the lumen of the inner guiding introducer a catheter for mapping and/or ablation of anomalous conduction pathways, wherein said catheter contains a distal tip and one or more electrodes; and (d) extending said distal tip of the catheter through the lumen of the inner guiding introducer and beyond the distal end of the inner and outer guiding introducers to allow the electrodes of the catheter to map and/or ablate one or more anomalous conduction pathways within the right side of the heart.
10. The method of Claim 9 wherein the ablation procedure utilizes an energy source chosen from radio frequency, thermal, laser or direct current (high energy, low energy or fulgutronization procedures).
11. The method of Claim 10 wherein the energy source used for ablation is radio frequency energy.
12. The method of Claim 9 wherein the inner guiding introducer is comprised of a first and second sections each with proximal and distal ends, wherein the first section is a generally elongated straight section, wherein merged with the distal end of said first section is the second section which is a curved section curved with a radius of about 0.5 in. to about 1.5 in. to form an arc of approximately 150 to 270 degrees, ending in the distal end of the second section of the inner guiding introducer.
13. The method of Claim 8 wherein the outer guiding introducer is comprised of first, second and third sections, each with proximal and distal ends, wherein the first section is a generally elongated straight section, wherein merged with the distal end of said first section is the second section which is comprised of a curved portion and a straight portion, wherein the curved portion has a radius of about 0.4 in. to about 0.6 in. to form an arc of approximately 40 to about 60 degrees, wherein the straight section is from about 0.4 to about 0.7 in. in length, wherein merged with the distal end of the second section is the third section, which is comprised of a curved portion with a radius of about 0.75 to about 1.25 in. to form an arc of approximately 30 to about 60 degrees and wherein the third section is generally coplanar with the second section.
14. A method for the treatment of Wolfe-Parkinson-White syndrome within the right side of the heart comprising (a) introducing into the right side of the heart a guiding introducer system comprised of an inner guiding introducer and an outer guiding introducer wherein each of the inner and outer guiding introducers contains a lumen passing therethrough, a proximal and a distal end;

(b) introducing the inner guiding introducer into the lumen of the outer guiding introducer and extending the distal end of said inner guiding introducer through the lumen of the outer guiding introducer;
(c) introducing into the lumen of the inner guiding introducer a catheter, wherein said catheter has one or more electrodes; and (d) extending said distal tip of the catheter through the lumen of the inner guiding introducer and beyond the distal end of the inner and outer guiding introducers to permit the electrodes of the catheter to ablate anomalous conduction pathways within the right side of the heart as a treatment for Wolfe-Parkinson-White syndrome.
15. The method for treatment of Wolfe-Parkinson-White syndrome of Claim 14 wherein the inner guiding introducer is comprised of a first and second sections each with proximal and distal ends, wherein the first section is a generally elongated straight section, wherein merged with the distal end of said first section of said inner guiding introducer is the second section which is a curved section with a radius of about 0.5 in. to about 1.5 in. to form an arc of approximately 150 to 270 degrees, ending in the distal end of the second section of the inner guiding introducer.
16. The method for the treatment of Wolfe-Parkinson-White syndrome of Claim 14 wherein the outer guiding introducer is comprised of first, second and third sections each with proximal and distal ends, wherein the first section is a generally elongated straight section, wherein merged with the distal end of said first section is the second section which is comprised of a curved portion and a straight portion, wherein the curved portion is curved with a radius of about 0.4 in. to about 0.6 in. to form an arc of approximately 40 to 60 degrees, wherein the straight section is from about 0.4 to about 0.7 in. in length, wherein merged with the distal end of the second section is the third section, which is comprised of a curved portion with a radius of about 0.75 to about 1.25 in. to form an arc of about 30 to about 60 degrees, wherein the third section is generally coplanar with the second section and ending in the distal end of the third section of the outer guiding introducer.
CA002140388A 1994-11-03 1995-01-17 Guiding introducer system for use in right atrium Abandoned CA2140388A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/333,759 US5628316A (en) 1993-11-03 1994-11-03 Guiding introducer system for use in the right atrium
US08/333,759 1994-11-03

Publications (1)

Publication Number Publication Date
CA2140388A1 true CA2140388A1 (en) 1996-05-04

Family

ID=23304147

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002140388A Abandoned CA2140388A1 (en) 1994-11-03 1995-01-17 Guiding introducer system for use in right atrium

Country Status (6)

Country Link
US (2) US5628316A (en)
EP (1) EP0714672B1 (en)
JP (1) JP3259250B2 (en)
AT (1) ATE269740T1 (en)
CA (1) CA2140388A1 (en)
DE (1) DE69533184T2 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161543A (en) 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
US5640955A (en) * 1995-02-14 1997-06-24 Daig Corporation Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US6203531B1 (en) * 1993-11-03 2001-03-20 Daig Corporation Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US5833673A (en) * 1994-11-02 1998-11-10 Daig Corporation Guiding introducer system for use in the treatment of left ventricular tachycardia
US5814029A (en) * 1994-11-03 1998-09-29 Daig Corporation Guiding introducer system for use in ablation and mapping procedures in the left ventricle
US6540755B2 (en) 1995-02-14 2003-04-01 Daig Corporation Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US6251104B1 (en) 1995-05-10 2001-06-26 Eclipse Surgical Technologies, Inc. Guiding catheter system for ablating heart tissue
US5882346A (en) * 1996-07-15 1999-03-16 Cardiac Pathways Corporation Shapable catheter using exchangeable core and method of use
US7052493B2 (en) * 1996-10-22 2006-05-30 Epicor Medical, Inc. Methods and devices for ablation
US5938660A (en) * 1997-06-27 1999-08-17 Daig Corporation Process and device for the treatment of atrial arrhythmia
US6251109B1 (en) 1997-06-27 2001-06-26 Daig Corporation Process and device for the treatment of atrial arrhythmia
US6080151A (en) 1997-07-21 2000-06-27 Daig Corporation Ablation catheter
US6371943B1 (en) 1997-09-08 2002-04-16 Epimed International, Inc. Spring tip needle combination
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US6129750A (en) * 1999-03-23 2000-10-10 Cardiac Pacemakers, Inc. Fixation mechanism for a coronary venous pacing lead
US20040097996A1 (en) 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
US6994092B2 (en) 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
US7056294B2 (en) * 2000-04-13 2006-06-06 Ev3 Sunnyvale, Inc Method and apparatus for accessing the left atrial appendage
US6650923B1 (en) 2000-04-13 2003-11-18 Ev3 Sunnyvale, Inc. Method for accessing the left atrium of the heart by locating the fossa ovalis
US7387629B2 (en) 2003-01-21 2008-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter design that facilitates positioning at tissue to be diagnosed or treated
US20040199154A1 (en) * 2003-04-02 2004-10-07 Cryocath Technologies Inc. Device for tissue ablation
US20040210140A1 (en) * 2003-04-15 2004-10-21 Omnisonics Medical Technologies, Inc. Apparatus and method for preshaped ultrasonic probe
US20040220461A1 (en) * 2003-04-29 2004-11-04 Yitzhack Schwartz Transseptal facilitation using sheath with electrode arrangement
US7789877B2 (en) * 2003-07-02 2010-09-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter electrode arrangement
US7229437B2 (en) * 2003-09-22 2007-06-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical device having integral traces and formed electrodes
US7234225B2 (en) * 2003-09-22 2007-06-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Method for manufacturing medical device having embedded traces and formed electrodes
US8147486B2 (en) * 2003-09-22 2012-04-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical device with flexible printed circuit
US7794414B2 (en) 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US8801746B1 (en) 2004-05-04 2014-08-12 Covidien Lp System and method for delivering a left atrial appendage containment device
US20050273096A1 (en) * 2004-05-27 2005-12-08 Roop John A Anchoring introducer sheath with distal slots for catheter delivery and translation
US7678081B2 (en) * 2004-07-12 2010-03-16 Pacesetter, Inc. Methods and devices for transseptal access
US8029470B2 (en) * 2004-09-30 2011-10-04 Pacesetter, Inc. Transmembrane access systems and methods
US20060079787A1 (en) * 2004-09-30 2006-04-13 Whiting James S Transmembrane access systems and methods
US20070083168A1 (en) * 2004-09-30 2007-04-12 Whiting James S Transmembrane access systems and methods
US8273285B2 (en) 2005-01-10 2012-09-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable catheter and methods of making the same
JP4680007B2 (en) * 2005-08-29 2011-05-11 日本ライフライン株式会社 Stylet
US7972359B2 (en) 2005-09-16 2011-07-05 Atritech, Inc. Intracardiac cage and method of delivering same
US20070270741A1 (en) * 2006-05-17 2007-11-22 Hassett James A Transseptal needle assembly and methods
US20070299438A1 (en) * 2006-06-23 2007-12-27 Holzbaur Michael C Torque transfer agent for introducer and method
US20070299403A1 (en) * 2006-06-23 2007-12-27 Crowe John E Directional introducer
US8597288B2 (en) * 2008-10-01 2013-12-03 St. Jude Medical, Artial Fibrillation Division, Inc. Vacuum-stabilized ablation system
US9314298B2 (en) * 2007-04-17 2016-04-19 St. Jude Medical, Atrial Fibrillation Divisions, Inc. Vacuum-stabilized ablation system
US8317810B2 (en) 2008-12-29 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Tissue puncture assemblies and methods for puncturing tissue
US8388549B2 (en) 2008-12-29 2013-03-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Anatomical thermal sensing device and method
US8696620B2 (en) 2010-07-30 2014-04-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter with a mechanism for omni-directional deflection of a catheter shaft
CN110831520B (en) 2017-04-27 2022-11-15 波士顿科学国际有限公司 Occlusive medical devices with fabric retention barbs
CN112218679A (en) 2018-04-02 2021-01-12 心脏起搏器股份公司 Bundle of his lead delivery catheter, system and method
CN112714632A (en) 2018-08-21 2021-04-27 波士顿科学医学有限公司 Barbed protruding member for cardiovascular devices
EP3998962A1 (en) 2019-07-17 2022-05-25 Boston Scientific Scimed, Inc. Left atrial appendage implant with continuous covering
EP3986284A1 (en) 2019-08-30 2022-04-27 Boston Scientific Scimed, Inc. Left atrial appendage implant with sealing disk
US11903589B2 (en) 2020-03-24 2024-02-20 Boston Scientific Scimed, Inc. Medical system for treating a left atrial appendage

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE390886B (en) * 1975-06-23 1977-01-31 Siemens Elema Ab CATHETER FOR SELECTIVE CORONAR ARTERIOGRAPHY OF LEFT CORONAR SPECIES
US4033331A (en) * 1975-07-17 1977-07-05 Guss Stephen B Cardiac catheter and method of using same
US4581017B1 (en) * 1983-03-07 1994-05-17 Bard Inc C R Catheter systems
US4785815A (en) * 1985-10-23 1988-11-22 Cordis Corporation Apparatus for locating and ablating cardiac conduction pathways
US4641649A (en) * 1985-10-30 1987-02-10 Rca Corporation Method and apparatus for high frequency catheter ablation
EP0277366A1 (en) * 1987-01-06 1988-08-10 Advanced Cardiovascular Systems, Inc. Guiding catheter assembly and method for making it
US4882777A (en) * 1987-04-17 1989-11-21 Narula Onkar S Catheter
US5231994A (en) * 1987-10-27 1993-08-03 Dietrich Harmjanz Hose or tubular guide catheter
US4810244B1 (en) * 1987-12-17 1998-06-16 Thomas C Allen Trocar assembly for drawing fluids from a body part
US4883058A (en) * 1988-01-06 1989-11-28 Sherwood Medical Company Right coronary angiographic method
US5016640A (en) * 1988-01-06 1991-05-21 Sherwood Medical Company Angiographic catheter for use in the right coronary artery
US4935017A (en) * 1988-04-29 1990-06-19 C. R. Bard, Inc. Variable shaped catheter system and method for catheterization
US4898591A (en) * 1988-08-09 1990-02-06 Mallinckrodt, Inc. Nylon-PEBA copolymer catheter
US4945912A (en) * 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
DK0439932T3 (en) * 1990-01-12 1994-12-12 Schneider Usa Inc Telescopic Lead Catheter System
US5120323A (en) * 1990-01-12 1992-06-09 Schneider (Usa) Inc. Telescoping guide catheter system
US5066285A (en) * 1990-01-26 1991-11-19 Cordis Corporation Catheter introducer sheath made of expanded polytetrafluoroethylene
US5147336A (en) * 1990-06-05 1992-09-15 The Kendall Company Adapter kit for a catheter introducer
US5279546A (en) * 1990-06-27 1994-01-18 Lake Region Manufacturing Company, Inc. Thrombolysis catheter system
US5348545A (en) * 1990-08-21 1994-09-20 Advanced Cardiovascular Systems, Inc. Guiding catheter for the right coronary artery
WO1992012754A1 (en) * 1991-01-23 1992-08-06 Jan Voda Guide catheter construction
US5290229A (en) * 1991-07-15 1994-03-01 Paskar Larry D Transformable catheter and method
US5304131A (en) * 1991-07-15 1994-04-19 Paskar Larry D Catheter
US5215540A (en) * 1992-01-31 1993-06-01 St. Jude Medical, Inc. Right coronary catheter
US5242441A (en) * 1992-02-24 1993-09-07 Boaz Avitall Deflectable catheter with rotatable tip electrode
US5385146A (en) * 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5476495A (en) * 1993-03-16 1995-12-19 Ep Technologies, Inc. Cardiac mapping and ablation systems

Also Published As

Publication number Publication date
DE69533184D1 (en) 2004-07-29
DE69533184T2 (en) 2005-07-07
JP3259250B2 (en) 2002-02-25
EP0714672A2 (en) 1996-06-05
EP0714672A3 (en) 1998-07-01
EP0714672B1 (en) 2004-06-23
JPH08252318A (en) 1996-10-01
ATE269740T1 (en) 2004-07-15
US5840027A (en) 1998-11-24
US5628316A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
EP0714672B1 (en) Guiding introducer system for use in right atrium
EP0714671B1 (en) Guiding introducer system for use in left atrium
US5715818A (en) Method of using a guiding introducer for left atrium
EP0650741B1 (en) Introducer for right atrium
US5640955A (en) Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US6203531B1 (en) Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US6540755B2 (en) Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US5879296A (en) Guiding introducers for use in the treatment of left ventricular tachycardia
US7248913B2 (en) Guiding introducer system for use in medical procedures in the left ventricle
US5833673A (en) Guiding introducer system for use in the treatment of left ventricular tachycardia
US5814027A (en) Guiding introducer used for medical procedures within the right ventricle associated with the right ventricular outflow track
EP0738518A2 (en) Guiding introducers used for medical procedures within the right ventricle associated with the tricuspid valve
EP0737486A2 (en) Guiding introducer used for medical procedures within the right ventricle associated with the right ventricular outflow track
EP0727238A2 (en) Guiding introducer system for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
WO1999025411A1 (en) Catheter guiding introducers for use in pediatric hearts

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued