CA2127570A1 - Functionalization of polymers via enamine of acetoacetate - Google Patents

Functionalization of polymers via enamine of acetoacetate

Info

Publication number
CA2127570A1
CA2127570A1 CA002127570A CA2127570A CA2127570A1 CA 2127570 A1 CA2127570 A1 CA 2127570A1 CA 002127570 A CA002127570 A CA 002127570A CA 2127570 A CA2127570 A CA 2127570A CA 2127570 A1 CA2127570 A1 CA 2127570A1
Authority
CA
Canada
Prior art keywords
functional
acetoacetate
polymer
enamine
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002127570A
Other languages
French (fr)
Inventor
Alvin C. Lavoie
Daniel A. Bors
Ward T. Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Publication of CA2127570A1 publication Critical patent/CA2127570A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/10Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton
    • C07C251/12Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton being acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/30Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages

Abstract

ABSTRACT

The present invention relates to the preparation of polymers bearing reactive functional groups. More particularly, this invention relates to the preparation of polymers containing functional acetoacetate groups and then following the polymerization reacting the acetoacetate group with a functional amine to form an enamine.

Polymers of the present invention have many uses including coatings, sealants, adhesives and saturant applications, and are most useful as solutions or dispersions in water or water-cosolvent mixtures.

Description

2127~

PATENT APPLICATION
OF
ALVIN CHARLES LAVOIE
DANIEL ARTHUR BORS
AND
WARD THOMAS BROWN
FOR
FUNCTIONALIZATION OF POLYMERS VIA ENAMINE OF ACETOACETATE
DN 90-045 MJP:dp ', ~" ''~''~',', FIELD OF THE INVENTION ~ ~
'~" . ''-' ' The present invention relates to the preparation of polymers bearing reactive ~ ;
functional groups. More particularly, this invention relates to the preparation of polymers containing functional acetoacetate groups and then following the polymerization reacting the acetoacetate group with a functional amine to form an ~ -:
enamine.
~: . . ~.. , ~
Polymers of the present invention have many uses including coatings, ~ --sealants, adhesives and saturant applications, and are most useful as solutions or dispersions in water or water-cosolvent mixtures.

Coatings produced from polymers of the present invention exhibit improved properties such as, for example, solvent resistance, dirt pickup resistance, print and block resistance, mar resistance, adhesion and tensile properties, such as impact resistance and tensile strength.

U.S. Postal Service Express Mail Label No. OB220667920 -. .
~ ',' '~ ~ ":

21~73~0 BACKGROUN'D OF THE INVENTION

It is generally known to be useful to modify the properties of polymers by incorporating desired functional groups of one sort or another into the polymer molecules. The desired functional groups may be incorporated either by employing, as a monomer during the preparation of the polymer, a compound which already has such functional groups, or by post-reacting the polymer having precursor groups with suitable reagents to convert to the desired functional groups.

A novel, unanticipated and useful process is now discovered for post-reacting ~ -a polymer having precursor groups for purpose of incorporating desired functional groups into a polymer. -An advantage of the invention is to provide a process which produces a functional polymer by post-polymerization reaction.

Another advantage of the invention is to provide new monomers bearing functional groups.

An additional advantage of the invention is to provide polymers bearing -functional groups which are incompatible with polymerization processes.

PRIOR RELATED ART

Although it is generally known to modify the properties of polymers by incorporating desired functional groups, none of the related art disdoses the preparation of polyrners containing functional acetoacetate groups, and post-polymerization reacts the acetoacetate group with a functional amine to form an enamine.

European Patent Application EP 0 442 653 A2 discloses a process for the production of a polymer having desired groups, denoted as Y, by reacting a polymer having carbon or nitrogen-bound-NH2 and/or-NH2- precursor groups, which groups are reactable with enolic carboxyl groups, with at least one compound having a single enolic carboxvl group and at least ore Y, wherein by an enolic carbonylgroup is meant a carboxyl group having enolic character by virtue of being bonded to -:- .

21~7C)7~

an alpha methylene or methane group which is itself bonded to an electron withdrawing group.

European Patent Application EP 0 483 583 A2 discloses that polyacetoacetates or polyacetoaceteamides can be reacted with amino group-containing alkoxy-silanes to give polyenaznines which permit a long processing time and which crosslink without the action of atmospheric humidity. This is alleged to be an advantage for film thickness greater than 50~

SUMMARY OF THE INVENTION

In one aspect of the invention, an acetoacetate functional polymer is reacted ;~
with a compound bearing an amine group and at least one additional functional - -group, to produce a polymer bearing the additional functional group attached through the enamine of the acetoacetate group. `~
: ,, In another aspect of the invention, acetoacetate functional monomer is reacted with a compound bearing an amine group and at least one additional ;
functional group, to produce a new functional monomer. This monomer can be subsequently polymerized to form a functionalized polymer. ~;

DETAILED DESCRIPTION -;

In one aspect of the invention, an acetoacetate functional polyzner is reacted with a compound bearing an amine group and at least one additional functional `
group, to produce a polymer bearing the additional functional group attached through the enamine of the acetoacetate group. ~ ~ -In another aspect of the invention, acetoacetate functional monomer is reacted with a compound bearing an amine group and at least one additional functional group, to produce a new functional monomer. This monomer can be `~-subsequently polymerized to form a functionalized polymer.

In still another aspect of the invention, polymers prepared by polymerizing -acetoal etate functional monomers are reacted with a compound bearing an amine funchonal group and at least onc incompatible functional group, a group which .

~, 21~7~7~

would not have maintained functional viability under the conditions of the polymerization process. A new polymer is produced, bearing the incompatible functional group attached to the polymer via the enamine of the acetoacetate group.

In a further aspect of the invention, a polymer functionalization package and a method of functiona~izing is provided. Acetoacetate functional polymer backbones can be prepared, and the proportion of compound bearing an amine group and at least one additional functional group can be varied over a range from about a molar excess of amine, based on acetoacetate, to substantially less than a molar excess, to fit the particular property requirements of the end use application.
This allows one to maintain an inventory of relatively few types of polymerization products and offer a diverse line of end use polymers by custom-functionalizing the polymers with the selected amount of amine functional reactant.

In still a further aspect of the invention, a method is provided which allows the incorporation of desired functional groups, concentrated in desired areas, for example, at the surface of a polymer particle.

Polymers bèaAng functional groups attached through the enamine of acetoacetate groups are useful in coatings, adhesives, polymer blends, plastics additives, dispersants, Qocculants and separation technologies.

Polymers The preferred polymers for use in this invention are vinyl polymers with pendant acetoacetate groups, alternately known as beta-ketoesters. The term "pendant" is used in the specification to mean "attached to the polymer backboneand available for further reaction." Pendant should not be read in the strict sense whidh would exdude the attachment of such groups at the termini of a polymer chain. Thus, polymer having acetoacetate functionality introduced on the chain end by an acetoacetate functional mercaptan, as taught in U.S. Patent 4,960,924,would be useful in this invention.' Generally, the pendant acetoacetate groups are attached to the polymer backbone via an organic divalent radical R1 which in turn is attached to the acetoacetate moiety or by a trivalent organic radical R2 bearing two acetoacetate groups.
2~2'7~

o o o o ::
-R1 O C CH2 1 CHs R2 (o C CH2 C CH3)2 The acetoacetate functional polymers can be prepared by means known in the art. A preferred method is polymerization through incorporation which includes an acetoacetate functional monomer. A preferred monomer is acetoacetoxyethyl methacrylate which is conveniently referred to throughout this specification as AAEM, shown below.

O O O ~ -' CH2=~--C CH2CH2o C CH2C CH3 CH3 ~:
Examples of other monomers useful for introduction of acetoacetate ~-functionality are acetoacetoxyethyl acrylate, acetoacetoxypropyl methacrylate, allyl - :
acetoacetate, acetoacetoxybutyl methacrylate, 2,3-di(acetoacetoxy)propyl methacrylate, and the like. In general, any polymerizable hydroxy functional monomer can be converted to the corresponding acetoacetate by reaction with diketene or other suitable acetoacetylating agent (See e.g. Comparison of Methods for the Preparation of Acetoacetvlated Coating Resins. Witzeman, J. S.; Dell Nottingham, W.; Del Rector, F. J. Coatings Technology; Vol. 62,1990,101. (and references contained -therein)). - -The vinyl polymers of this invention are most often copolymers of the acetoacetate functional monomer and other monomers. Examples of useful comonomers are simple olefins such as ethylene, alkyl acrylates and methacrylates where the alkyl group has 1 to 20 carbon atoms (more preferably 1 to 8 carbon atoms), vinyl acetate, acrylic acid, methacrylic acid, acrylonitrile, styrene, isobornyl ~ -methacrylate, acrylamide, hydroxyethyl acrylate and methacrylate, hydroxypropyl methacrylate and acrylate, N-vinyl pyrolidinone, butadiene, isoprene, vinyl halides ~ ~-such as vinyl chloride and vinylidene chloride, alkyl maleates, alkyl fumarates,fumaric acid, maleic acid, itaconic acid, and the like. It is also possible and sometimes desirable to indude low levels of divinyl or polyvinyl monomers such as glycol polyacrylates, allyl methacrylate, divinyl ben7ene, and the like, to introduce a controlled amount of gel in the latex particle. It is important, however, to be sure ~:

.:

~ 7~7~ :
that when this is done, the quality of the film formation is not seriously impaired.
Additionally, one may wish to include chain transfer agents to control molecularweight of the polymer.

The acetoacetate functional polymer may contain from about 0.5% to 100% of the acetoacetate functional monomer by weight. In any application, the amount ofacetoacetate functional monomer required will vary from case to case depending upon the desired degree of post functionalization necessary for the particular end-use application. Generally, however, the acetoacetate monomer concentration willbe between 1 and 40%. Conventional coatings will usually contain from about O.S to 20% acetoacetate monomer by weight. Polymers having a molecular weight of from 1,000 to over one million can be used. The lower molecular weight polymers should contain a sufficiently high level of acetoacetate to maximize the degree of post functionalization. For example, a copolymer of AAEM having a molecular weight under 10,000 would typically contain 30% or more of AAEM.

Generally, the vinyl polymer is prepared as a dispersion or emulsion polymer in water by a suitable free radical initiated polymerization technique, using a free radical initiator and appropriate-heating. Since a film-forming polymer is sometimes desired, useful emulsion polymers will generally have glass transitiontemperatures under 60C, since these polymers with coalescent will form good quality films at ambient temperatures. If soluble polymers are used in the film formation proeess, polymers of higher glass transition temperature are readily used since they are film-forming.

In certain aspects of the invention, polymerization in an aqueous medium and, in particular, aqueous emulsion polymerization, is used to prepare the polymer. Conventional dispersants can be used (e.g. anionic and/or nonionic emulsifiers such as alkali or ammonium alkyl sulfates, alkyl sulfonic acids, and fatty acids, oxyethylated alkyl phenols, and the like). The amount of dispersant used is usually 0.1 to 6% by weight based on the weight of total monomer. Either thermalor redox initiation processes may be used. Conventional free radical initiators may be used (hydrogen peroxide, organic hydroperoxides such as t-butyl hydroperoxide, cumene hydroperoxide, t-amyl hydroperoxide, ammonium and/or alkali persulfates, organic peroxides such as t-butyl perpivalate, t-butyl perbenzoate,benzoyl peroxide, di(n-propyl) peroxydicarbonate, acetyl cyclo-hexylsulfonyl peroxide, and the like); typically 0.05 to 3.0 % by weight based on the weight of total monomer. Redox systems using the same initiators coupled with a suitable reductant (for example: reducing sugars such as isoascorbic acid, sodium bisulfite, ~ -sodium thiosulfate, hydroxyl amine, hydrazine, sodium hydrosulfite) can be used at sirnilar levels, oftentimes in conjunction with a metal catalyst such as salts of transition metals, examples of which are iron sulfate, copper sulfate, vanadium ~ -sulfate, and the like. Additionally, non-oxidizing thermal initiators such as 2,2'-Azo-bis-isobutyronitrile, 4,4'-Azo-bis(4-cyanopentanoic acid), 2,2'-Azo-bis(2-amidinopropane) dihydrochloride, and the like. Frequently, a low level of chain transfer agent such as a mercaptan (for example: n-octyl mercaptan, n-dodecyl mercaptan, butyl or methyl mercaptopropionate, mercaptopropionic acid at 0.05 to6% by weight based on total weight of monomer) is employed to control molecular weight.

The invention may also be practiced using a solvent-soluble or water-soluble polymer. When this is desired, the polymer may be prepared directly in water if the monomer mix is water-soluble or, as is most often the case, the polymerization solvent is a water miscible solvent such as isopropanol, butyl cellosolve, propylene glycol, and the like. In this case, water may be included in the polymerization mixture or post added after the polymerization is complete. In some cases, the polymer is prepared in a conventional organic solvent such as xylene, butyl acetate, methyl ethyl ketone, methyl tertiary butyl ether, and the like. When organic solvent is employed with or without water, it is convenient to use organic soluble-free radical initiators such as azo-bis-isobutyronitrile, t-butyl-peroctoate, or benzoyl peroxide and whatever heat is convenient to assure smooth copolymerization.
Another route to preparation of a water-soluble polymer for this invention is to -~
prepare a vinyl dispersion polymer having enough acrylic or methacrylic acid or other polymerizable acid monomer (usually greater than 10%) so that the emulsionpolymer can be solubilized by addition of ammonia or other base. Water-soluble polymers of this type are advantageously used as blends with conventional dispersion polymers, preferably those which also have pendant acetoacetate functionality. The blend of alkali-soluble resin and latex polymer has a particularly advantageous property combination of gloss and rheology and is useful in coatings and printing ink applications.

2 ~ 27~0 In another embodiment of this invention, an aqueous dispersion contains copolymer particles made up of at least two mutually incompatible copolyrners.
These mutually incompatible copolymers may be present in the following morphological configurations, for example, core/shell, core/shell particles withshell phases incompletely encapsulating the core, core/shell particles with a multiplicity of cores, interpenetrating network particles, and the like. In all of these cases, the majoAty of the surface area of the particle will be occupied by at least one outer phase and the interior of the particle will be occupied by at least one inner phase. The mutual incompatibility of the two polymer compositions may be determined in various ways known in the art. The use of scanning electron microscopy using staining techniques to emphasize the difference between the appearance of the phases, for example, is such a technique.

The emulsion polymerization techniques used to prepare such dispersions are well known in the art. It is sometimes advantageous to introduce some crosslinking or gel structure by the sequential polymerization process in the core via 3 low levels of a crosslinking monomer such as allyl methacrylate, diallylphthalate, diallyl maleate, butylene glycol dimethacrylate, divinyl benzene, triallyl isocyanurate, ethylene glycol diacrylate, and the like. The lightly crosslinked core does not adversely affect film formation and does in some cases result in bettercoatings, particularly when the pendant acetoacetate is concentrated in the shell.

As indicated above, a major use for this technology is for functionalizing vinyl polymers dispersed or dissolved in aqueous solvents. Unfortunately, vinyl polymers containing pendant acetoacetate are prone to hydrolysis in water, particularly on heat aging. The hydrolysis occurs at nearly any pH and yields acetoacetic acid, ,q -:
CH3C CH3 ~ C2 1` . .~ :~
~ q H20 1 Iq -R OCCH2CCH3 > -R OH ~ CH3CCH2COH
which in turn decomposes to acetone and carbon dioxide.
. '' . . :
~;:
:

2~tJ7~7~ : ~

In an earlier application, U.S. Serial No. 632,302, the solution to this problemwas provided by treating the aqueous acetoacetate polymer after preparation withone molar equivalent of ammonia or a primary arnine such as ethanolamine, methyl amine, or isopropyl arnine. As described in that application, typically, the polyrner is neutralized to a basic pH with one of the aforementioned amines, preferably to a pH greater than 9. Under these conditions the enamine is formed.The reaction to forrn the enarnine is generally rapid with the rate of formationincreasing with temperature. In general, enarnine formation is complete within 8hours. An alternative approach is to raise the pH to about 9, allow the system to equiiibrate, and readjust the pH to about 9 to replace the amine consumed by enamine formation. The enarnine is stable to hydrolysis at pH's typically greater than 7.

We have now found that the enamine reaction route provides a method of attaching additional functional groups, or functionalized side chains to acetoacetate polyrners. As shown in the following formula in which R2 represents a functionalgroup or a linking group which bears a functional group.

_Rl OCCH2 C CH3 - ) -R1 OCCH= C CH3 Sterically hindered primary amines such as t-butyl amine and aromatic amines such as aniline are generally less suitable because of incomplete enarnine forrnation. The enamine formation is a reversible reaction so the amine compoundshould be non-volatile if the composition is likely to be exposed to the at nosphere -prior to the application use of the functional group. The wet composition is quite ~ :
storage stable, however, as long as it is stored under conditions (such as a closed container) where the volatile amine cannot evaporate.

Another approach to preparation of vinyl polymers containing equivalent pendant enamine functionally is to use preformed enamine monomers derived from the appropriate arnine and the acetoacetate monomer. In this case, the pH
must be kept on the alkaline side during polymerization to avoid hydrolysis of the enamine back to the acetoacetate.
.

9 ~- ~

2 ~ ~ 7 ~ 7 ~
: -`

Functional Groups In the formula -R2NH2, R2 can be a functional group, or a linking group bearing a functional group. Examples of linking groups are divalent groups such as C2 to C18 alkyl, alkoxyl and polyalkoxyl, such as polyoxyethylene and polyoxypropylene chains, having molecular weights of from about 72 to about 400,000.

Examples of types of property-imparting functional groups which may be attached through this method include crosslinlcing groups, adhesion promoters, ultraviolet blocking groups, surface active compounds, latex stabilizing groups,binding groups for separation, etc. Functional groups of this type are well known in the art such as, for example, mercaptoethyl a;nine, taurine, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethyoxysilane, polyoxypropyleneamine, polyoxyethyleneamine, 2-aminoethylethyleneurea, 2-dimethylaminoethylamine, amino acids, allylamine, 4-amino-2,2,6,6-tetramethylpiperidinyloxy-free radical, and the like.

In one embodiment, the compound bearing amine functionality and an additional functional group contains both primary amine functionality, for enamine forrnation, and a secondary or tertiary amine functionality. In the case of the tertiary amine, a route to a cationic latex is provided; when the tertiary amine functional polymer is treated with a proton source or alkylating agent, an ammonium cation can be produced.

A sterically stabilized latex can be produced for example through reaction of an acetoacetate polymer with a polyethoxylated amine. This technique also provides a route to control the polarity of the polymer by selecting from hydrophilic or hydrophobic amines. Similarly, the refractive index of the polymer can be adjusted using appropriate functional group on the a~riine to either raise or lower the refractive index. The compatibility of various pairs of polymers could also be -improved for blending by adding selected functionalities on one or both polymers.

Monomers bearing certain functional groups are not generally suitable for incorporation into polvmers, either due to the likelihood that the functionality :
would be chemically altered under the conditions of polymerization, or due to the tendency of the functional group to produce an undesired effect on the :.
n :~ :
::

2~7~7ia polymerization process. For example, a mercaptan functional group could cause a chain transfer effect during free radical polymerization, thus skewing the product profile toward lower molecular weight products than if a functionality that does not :
have a chain transfer effect were used. An olefinic functional group is likely to be consumed in a free radical polymerization process, but could be post-added according to the invention. A secondary amine can cause retardation and chain transfer during free radical polymerization.

Additives The polymers and additives of this invention may be formulated for the chosen end use. Additives such as thickeners, dispersants, pigrnent, extenders, fillers, anti-freeze agents, plasticizers, adhesion promoters, coalescents, weffing agents, defoamers, colorants, non-aldehyde based biocides, soaps and slip agents may be incorporated.

The following examples are provided to illustrate some embodiments of the invention. They should not be read as limiting the scope of the invention which is more fully described in the specification and claims.

Unless otherwise indicated, percentages are by weight based on the total solids.

A polymer was prepared from a monomer mixture that contained 501.7 ~ -grams of water, 18.1 grams of Rhodapex C0-436 (an ammonium salt of sulfated nonylphenoxypoly (ethyleneoxy) ethanol; RhOne Poulenc), 7.5 grams of methacrylicacid, 597.6 grams of acetoacetoxyethyl methacrylate, 888.9 grams of methyl methacrylate, and 44.9 grams of n-dodecyl mercaptan. From this monomer ~ -emulsion mixture, 47.2 grams was removed and added to a kettle containing a mixture of 1317.9 grams of water and 8.74 grams of Rhodapex C0-436 heated to 85C.
An initiator charge of 2.26 grams of sodium persulfate dissolved in 50.0 grams of water was added. Starting ten minutes later, the remaining monomer emulsion was gradually added over a two hour period along with 1.13 grams of sodiurn persulfate dissolved in 50 grams of water in a separate feed. After the two hourperiod, the emulsion was cooled to ambient temperature.
, ' ':

,: .. .,.,, . . ,j . .~ ~. .

- . 2l2~.,7a Solubilization of Polvmer To 500 grams of the emulsion which l,vas reduced to 41.~% solids with water was added 370 grams (0.95 equivalents based acetoacetate functionality~ of a 1000 molecular weight primary amine terminated polyethoxylate (Jeffamine M-1000, Texaco). The resulting mixture became a clear solution of a highly viscous material (Brookfield viscosity of 7160 cps) with solution like rheology.

This example illustrates that, with the appropriate amine, emulsion polymers can be solubilized to form uniform solution resins by enamine formation.

A polymer was prepared from a monomer mixture that contained 501.7 grams of water, 45.7 grams of a 23% solution of sodium dodecyl benzene sulfonate, 19.42 grams of methacrylic acid, 298.8 grams of acetoacetoxyethyl methacrylate, 578.2 ~ -grams of methyl methacrylate, 597.6 grams of butyl acrylate and 3.0 grams of n~
dodecyl mercaptan. From this monomer emulsion mixture, 47.2 grams was removed and added to a kettle containing a mixture of 1317.9 grams of water and Z.0 grams of the sodium dodecyl benzene sulfonate solution heated to 85C. An initiator charge of 2.26 grams of sodium persulfate dissolved in 50.0 grams of water was added. Starting ten minutes later, the remaining monomer emulsion was gradually added over a two hour period along with 1.13 grams of sodium persulfate dissolved in 50 grams of water in a separate feed. After the two hour period, the emulsion was cooled to arnbient temperature. To aliquots of the emulsion was added 1 equivalent of the amine listed in Table A. The latex polymers were equilibrated for two days prior to freeze drying and the Tg of the polymer was `-determined by differential scanning calorimetry.
Table A - Effect of Forrnation of Enamines on the Tg of the Polvmer Amine Tg(C) ! ~ '""
control (none) 23 ammonia 26 ethanolamine 30 4-amine-2,2,6,6-tetramethylpiperidine 39 .

2 ~ 2 7 ;~ r~
.

This example illustrates that the Tg of the polymer can be adjusted after polyrner formation by post addition of the selected primary amine and formation of the corresponding enamine.

Functional Monomer 1 (ethvlethvleneureaenamine of allvl acetoac~tate?
A functionalized monomer was prepared by treating allylacetoacetate (77 gm, 0.543 moles) with aminoethylethyleneurea (70 gm, 0.543 moles) in 149 grarns of ethylacetate cont?ining 0.4 grams of phenothiazine. The reaction mixture was heated to reflux while connected to a Dean-Stark trap (used to azeotropically remove water) for a total of 13 hours. The reaction solvent was then removed under reduced pressure using a rotoevaporator yielding a total of 122 grams of product~
:: ~
EXAMPLE 4 ~ ~ -Functional Monomer 2 (hydroxvethylenamine of AAEM) A functionalized monomer was prepared by treating acetoacetoxyethylmethacrylate (AAEM) (200 gm) with ethanolamine (62.~ gm) in 500 gm of methylene chloride. The reaction mixture was stirred at room temperature for 20 minutes then heated to reflux for 1 hour then cooled to room ~ ~ -temperature. The cooled reaction mixture was poured into a separatury funnel andwashed twice with saturated sodium chloride solution. The organic solution was then dried using anhydrous potassium carbonate. The dried organic solution was ~ -~
filtered to remove the potassium carbonate. The resulting organic solution was -~
then concentrated under reduced pressure using a rotoevaporator to yield 239 grarns -of the desired product lH NMR (270 MHz, CDCL3) d 1.85 (br s, 6H), 3.3 (br q, 2H), 3.62 Q~r t, 2H), 3.8 (m, IH), 4.2 (m, 4H), 4.35 (s, IED, 6.02 (s, IH), 5.5 (m, IH).

,.

i~ 5d~

2~ 7~3 Preparation of Solution Polvmer Using an Enamine Functionalized MonomerA reaction flask containing 286 grams of xylene was heated to 105C under a nitrogen atmosphere. A mixture of 120 grams of butylmethacrylate, 67 grams of butylacrylate, 10 grams of the enamine formed from (AAEM and ethanolarnine in Example 4), and 3 grams of methacrylic acid was feed to the reaction kettle concurrently with a mixture of 6 grams of t-butylperoctoate dissolved in 14 grams of xylene over a period of 2 hours. The reaction was then held at 105C for an additional 30 minutes at which time 0.5 grams of t-butylperoctoate was added to the reaction mixture. The reaction was held an additional 10 minutes at 105C then cooled to room temperature. The final solution was shown to contain 38% by weight solid polymeric material by drying a sample in an oven at elevated temperature (150C for 30 sninutes). The polymer was shown to contain the enamine structure by taking a UV spectra of a thin film of the polymer cast on aquartz disk. The W spertra contained a large absorption characteristic of beta- -arninocrotonates at a wavelength of 283 nm.

Vinvl Acetate Emulsion Polymer An emulsion polymer of overall composition 96.45 vinyl acetate/3.3 allylacetoacetate/0.25 sodium vinylsulfonate was prepared by adding a monomer rnixhlre that contained 490 grams of water, 1.8 grams of a 58% soiution of the ; ~
ammonium salt of nonylphenoxypolyethylenoxidesulfonate (Rhodapex C0436), 3 ~ ~ -grams of acetic acid, 3.6 grams of sodium acetate, 2083.4 grams of vinyl acetate, 21.6 grams of sodium vinylsulfonate, and 71.3 grams of allyl acetoacetate to a reaction kettle containing 1026 grarns of water (heated to 60C ), 60 grams of a 45% solution containing 100 nm particles of a BA/MMA/MAA latex polymer, 24 grams of a 2.75%
aqueous solution of sodium persulfate, 24 grarns of a 1.25% aqueous solution of sodium bisulfite; 12.0 grams of a 0.2% aqueous solution of ferrous sulfate, 3 grasns of acetic acid, and 3 grams of sodium acetate. The above monomer emulsion was fed into the reaction kettle concurrently with a solution of 120 grams of 2.25% sodium bisulfite and a solution of 2.4 grams of t-butylhydroperoxide, 1.8 grams of sodium persulfate, and 120 grams of water over a period of 3.5 hours under a nitrogen atmosphere. Following the addition of monomer, the reaction was maintained at '. ~.

2:~7 ~7~

60C for 15 minutes then a solution of 30 grams of 8% aqueous t-butylhydroperoxide was added to the kettle along with a solution of 120 grams of 5% aqueous isoascorbic acid. The reaction was then cooled to room temperature to yield a latex containing 51.6% solids polymer.

Functionalization of a Vinyl Acetate Emulsion A sample of 100 grams of emulsion polymer from Example 6 was treated with 1.55 grams of aminoethylethyleneurea. The reaction was held at rooni temperature.
The next morning, a thin film of the polymer on a quartz disk was shown to contain ~ ~
the W absorption peak characteristic of the beta-aminocrotonate structure at a ; ;
wavelength of 280 nm).

EXAMPLE 8 ;

(Meth)acrylate Emulsion Polymer ~ ~
A polymer was prepared from a monomer mixture that contained 629.99 ~ -grams of water, 9.89 grams of a 23% aqueous solution of sodium dodecylbenzene sulfonate, 790.02 grams of butyl acrylate, 686.57 grams of methyl methacrylate, 376.20 grams of acetoacetoxyethylmethacrylate, and 28.22 grams of methacrylic acid. From this monomer emulsion, 58.72 grams was removed and added to a reaction kettle heated to 85C containing 1577.93 grams of water, 8.22 grams of a 23% aqueous solution of sodiurn dodecylbenzene sulfonate, 3.02 grams of sodium persulfate. The monomer emulsion was added to the kettle concurrently with 50 grams of a 1.7%
aqueous solution of sodium persulfate over 180 minutes. Following the additions,the reaction was held at 85C for 30 minutes then cooled to 65C. When the reaction mixture reaches 65C 1.0 grams of a 0.48 aqueous solution of ferrous sulfate,- 0.54 grams of 70% active t-butylhydroperoxide dissolved in 19 grams of water, and 0.38 grams of isoascorbic acid dissolved in 19 grams of water are added to the reaction kettle. The reaction is held at 65C for 15 minutes and the reaction cooled to room temperature. this produced an emulsion polymer at 43.3 % solids.

2~27~7~
.

Preparation of a Cationic Latex A 10 gram sample of experimental latex prepared in Example 8 was diluted with 33.3 grams of 0.1 molar potassium chloride and 0.18 grams of Triton X~05 (a70% aqueous solution, from Union Carbide). This latex sample was then treated with 0.356 grams of dimethylaminoethylamine and equilibrated overnight. The acoustophoretic mobility was measured while varying the pH of the system using aPenkem 7000 instrument. The relative acoustophoretic mobility (RAM) was approximately -1.8x10-10 from pH 10 to 8.5, from pH 8 to 2 the RAM was + 1.2x10-10.
T~is clearly demonstrates that the latex is anionic (negatively charged) at high pHs and cationic (positively charged) at low pHs, where the tertiary amine group is either uncharged or protonated respectively, and therefore the tertiary amine group must be attached to the latex particles.

Latex polymer A is a two stage emulsion polymer of composition 50 (54 2-ethylhexyl acrylate/2.0 styrene/25 acrylonitrile/4 methacrylic acid/15 acetoacetoxyethylacrylate)/ /50 (40 isobutylmethacrylate/58 methylmethacrylate/2 methacrylic acid) at 39.7% solids. Latex B is a two stage emulsion polymer of composition 50 (3 butylacrylate/91.6 styrene/4.4 divinylbenzene/l methacrylic acid)//50 (83 butylacrylate/10 acetoacetoxyethylacrylate/7 methacrylic acid) at 41.6% solids, both of which are prepared via conventional techniques well known in the art. The below listed examples are prepared by taking a sample of latex (100 gm) and treating it with butyl cellosolve (8.93 gm) and butyl Carbitol (2.98 grams) then adding the appropriate amount of the listed functional amine.

~ 6 .

: -~ . :

2 ~ h ~ 7 j 7 0 :, MEK Acetone Print Amine Amo~nt LatexSwell Ratio Spot Test Resistance none (control) 0 A 7.3 1 3 2-(2-aminoethyl)- 1.45 A 4.5 5 7 aminoethanol ~ -4-amino-2,2,6,6- 2.17 A 5.1 N/A 9 tetramethyl-piperidine none (control) 0 B 4.5 0 4 2-(2-aminoethyl)- 1.01 B 3.8 4 7 aminoethanol N-methyl 1.13 B 3.3 9 5 ethylenediamine 2-((3-aminopropyl 0.86 B 3.4 6 7 -amino) -propanel N-ethyl 0.72 B 3.3 6 4 -ethylenediamine The above examples demonstrate that the use of diamines (where one amine is a primary amine and the other amine is a secondary amine) can improve the solvent resishnce and print resistance of clear coatings for use on wood, as well as other solid substrates.

TEST METHODS

Print Resistance Test A film is cast 1 mil DFT on aiuminum and air dried for 4 hrs. A piece of cheesecloth is placed on the film and a weight is placed on the cheesedoth to give a pressure of 4 psi. After 4 hrs., the weight and cheesecloth are removed and the film is examined for any impression made by the cheesecloth. Ihe samples are rated ona 0 to 10 scale, where 0 represents complete failure, with the cheesecloth irreversibly adhered to the coating, and a 10 being no visual damage to the coating when the cheesedoth is removed.

.

~ 7 ~-,:

:,: ': -2~ ?~7..)7 Acetone Spot Test A film is cast 1 mil DFT on aluminum and air dried for 1 week. A glass fiber filter disk (Gelman 66075 or equiv.) is soaked in acetone and then placed on the film and covered with a watch glass. After 2 minutes, the filter is removed, the excess acetone is blotted off with a tissue, and the film is examined for any damage. The samples are rated on a 0 to 10 scale, where a 0 represents a complete failure with the coating dissolving in the solvent and a 10 representing a coating having no visual damage.

MEK Swell Ratio Test A film of the latex polymer, approximately 10 to 12 mils thickness wet leading to a dry film thickness of approximately 2 mils dry, is cast onto a sheet of polypropylene. The dry film is removed from the polypropylene and cut into a 1 cm by I cm square sample. The sample is soaked in methylethylketone for 2 hours.
The swollen sample is removed from the solvent and the length of one edge is measured. The resulting length is then cubed to give the reported swell value. Alower value represents inherently better solvent resistance of the coating.

GLOSSARY
.

When used in this application, the abbreviations shown in the following list have the meanings indicated:

The Tg of a polyrner is a measure of the hardness and melt flow of the polymer. The higher the Tg, the less the melt flow and the harder the coating. Tg is described in Principles of Polymer Chemistry (1953), Cornell University Press. The Tg can be actually measured or it can be calculated as described by Fox in Bull. Amer. ~ :
Physics Soc., 1,3, page 123 (1956). Tg, as used herein, refers to actually measured values. For measurements of the Tg of a polymer, differential scanning calorimeter tDSC) can be used (a rate of heating of 10 degrees centigrade per minute, with Tg taken at the first inflection point).

DFT is the Dry Film Thickness. ~ -.: .:
::: ~
1 ~

:', :'~;:' .: ~:

. -::;

Claims (16)

1. A process for producing functional polymers comprising reacting an acetoacetate-functional polymer with a compound which has primary amine and at least one other type of functional group at conditions which favor formation of the enamine.
2. A process for producing functional monomer comprising reacting an acetoacetate-functional monomer with a compound which has primary amine and at least one other type of functional group at conditions which favor formation of the enamine.
3. A process for preparing a polymer having functional groups comprising polymerizing a monomer mixture which contains acetoacetate monomer at conditions which are incompatible with a functional group and then after polymerization, reacting the acetoacetate-functional polymer product with a compound which has primary amine and the incompatible functional group at conditions which favor formation of the enamine.
4. The process of claims 1, 2, or 3 wherein the functional group is a linking group selected from the group consisting of divalent groups such as C2 to C18 alkyl, alkoxyl and polyalkoxyl chains, having molecular weights of from about 72 to about 400,000.
5. The process of claims 1, 2, or 3 wherein the functional group is selected from the group consisting of mercaptoethyl amine, taurine, 3-aminopropyltrimethoxysilane,3-aminopropyltriethyoxysilane, polyoxypropyleneamine, polyoxyethyleneamine, 2-aminoethylethyleneurea, 2-dimethylaminoethylamine, amino acids, allylamine, and 4-amino-2,2,6,6-tetramethylpiperidine.
6. The process of claims 1, 2, or 3 wherein the amount of functional amine can be varied over a range of from about a molar excess of amine to substantially less than a molar excess, based on the amount of acetoacetate functional group.
7. An emulsion polymer bearing mercaptan functional groups attached through an enamine of an acetoacetate functional group.
8. An emulsion polymer bearing alkoxy silane functional groups attached through an enamine of an acetoacetate functional group.
9. An emulsion polymer bearing olefinic functional groups attached to a vinylic polymer through an enamine of an acetoacetate functional group.
10. An emulsion polymer bearing secondary amine functional groups attached through an enamine of an acetoacetate functional group.
11. A coating composition using the emulsion polymer of claim 10 having print and solvent resistance.
12. An emulsion polymer bearing adhesion-promoting groups attached through an enamine of an acetoacetate functional group.
13. A coating composition containing the polymer of Claim 7, 8, 9 10 or 12.
14. The process of claims of claims 1, 2, or 3 wherein a water-soluble emulsion polymer is made from an insoluble emulsion polymer by adding an amine functional polyethylene oxide.
15. The process of claims 1, 2, or 3 wherein the Tg of the polymer is modified by the addition of functional amines.
16. An emulsion polymer bearing polyethyleneoxide groups attached through an enamine of an acetoacetate functional group to produce a sterically stabilized latex.
CA002127570A 1993-07-14 1994-07-07 Functionalization of polymers via enamine of acetoacetate Abandoned CA2127570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/091,489 US5525662A (en) 1993-07-14 1993-07-14 Functionalization of polymers via enamine of acetoacetate
US08/091,489 1993-07-14

Publications (1)

Publication Number Publication Date
CA2127570A1 true CA2127570A1 (en) 1995-01-15

Family

ID=22228053

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002127570A Abandoned CA2127570A1 (en) 1993-07-14 1994-07-07 Functionalization of polymers via enamine of acetoacetate

Country Status (12)

Country Link
US (5) US5525662A (en)
EP (1) EP0634425B1 (en)
JP (1) JP3787168B2 (en)
KR (2) KR100365104B1 (en)
CN (2) CN1051319C (en)
AU (1) AU687398B2 (en)
BR (1) BR9402671A (en)
CA (1) CA2127570A1 (en)
DE (1) DE69426659T2 (en)
IL (1) IL110136A (en)
RU (1) RU94026093A (en)
ZA (1) ZA944717B (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539073A (en) * 1995-04-12 1996-07-23 Eastman Chemical Company Waterborne polymers having pendant allyl groups
US5783626A (en) * 1995-04-12 1998-07-21 Taylor; James Wayne Waterborne polymers with pendant crosslinkable groups
US5772988A (en) * 1996-05-10 1998-06-30 Revlon Consumer Products Corporation Nail enamel compositions from acetoacetoxy methacrylate copolymer
US6417267B1 (en) 1996-05-28 2002-07-09 Eastman Chemical Company Adhesive compositions containing stable amino-containing polymer latex blends
US5998543A (en) * 1996-05-28 1999-12-07 Eastman Chemical Company Stable amino-containing polymer latex blends
CA2255702C (en) 1996-05-28 2003-06-17 Eastman Chemical Company Surfactant-containing acetoacetoxy-functional and enamine-functional polymers
US6028155A (en) * 1997-05-21 2000-02-22 Eastman Chemical Company Surfactant-containing acetoacetoxy-functional and enamine-functional polymers
US5891950A (en) * 1996-05-28 1999-04-06 Eastman Chemical Company Use of stable amino-functional latexes in water-based inks
US5962556A (en) * 1996-10-22 1999-10-05 Eastman Chemical Company Functional latexes resistant to hydrolysis
US6512042B1 (en) 1996-12-18 2003-01-28 Rohm And Haas Company Waterborne crosslinkable coating compositions
US5922790A (en) * 1997-01-09 1999-07-13 Eastman Chemical Company Non-polymeric acetoacetates as adhesion promoting coalescing agents
US5913970A (en) * 1997-01-16 1999-06-22 Eastman Chemical Company Stabilized non-polymeric acetoacetate esters that promote adhesion to metallic and oxidized substrates
GB2323599A (en) 1997-03-18 1998-09-30 Courtaulds Plc Compositions curable by a Michael reaction
JP4242930B2 (en) * 1997-05-21 2009-03-25 イーストマン ケミカル カンパニー Process for preparing chemically and physically stable reactive latex blends until film formation
BR9811167A (en) 1997-08-12 2000-07-25 Eastman Chem Co Alkyd modified with acrylic, water-based latex, preparation process, and coating composition
US6333378B1 (en) 1997-08-12 2001-12-25 Eastman Chemical Company Acrylic modified waterborne alkyd or uralkyd dispersions
US6201048B1 (en) 1997-09-18 2001-03-13 Eastman Chemical Company Stable waterborne polymer compositions containing poly(alkyleneimines)
US5990224A (en) * 1997-09-18 1999-11-23 Eastman Chemical Company Stable low foam waterborne polymer compositions containing poly(alkyleneimines)
US6005035A (en) * 1997-09-18 1999-12-21 Eastman Chemical Company Stable waterborne polymer compositions containing poly(alkylenimines)
US6649679B1 (en) 1997-09-18 2003-11-18 Eastman Chemical Company Stable waterborne polymer compositions containing poly(alkylenimines)
US6348623B2 (en) 1997-10-23 2002-02-19 Eastman Chemical Company Polymers of 3-butene esters, their preparation and use
US6121400A (en) * 1997-10-23 2000-09-19 Eastman Chemical Company Polymers of 3-butene esters, their preparation and use
US6121399A (en) * 1997-10-23 2000-09-19 Eastman Chemical Company Polymers of 3-butene esters, their preparation and use
US6277358B1 (en) 1997-12-15 2001-08-21 Revlon Consumer Products Corporation Cosmetic compositions containing crosslinkable polymers
US6037390A (en) * 1997-12-31 2000-03-14 E. I. Du Pont De Nemours And Company Smear resistant pigmented ink jet inks containing β-diketone or ureido dispersants
WO2000031196A1 (en) 1998-11-20 2000-06-02 The Sherwin-Williams Company Curable compositions comprising acetoacetoxy and imine functionality
US6221976B1 (en) 1999-01-25 2001-04-24 The Dow Chemical Company Polymers containing partially neutralized silanols
US6337106B1 (en) 1999-06-01 2002-01-08 Rohm And Haas Method of producing a two-pack fast-setting waterborne paint composition and the paint composition therefrom
JP3816697B2 (en) * 1999-07-07 2006-08-30 大日精化工業株式会社 Functional agent bound with polymer, method for producing the same, method for using them, and article using the same
US6229007B1 (en) * 1999-09-30 2001-05-08 Basf Corporation Amine functional cellulose ester compounds and methods of making the same
ATE308577T1 (en) * 2000-04-12 2005-11-15 Akzo Nobel Coatings Int Bv AQUEOUS CROSS-LINKABLE COMPOSITION OF TWO COMPONENTS
GB0015245D0 (en) * 2000-06-22 2000-08-16 Avecia Ltd Composition and process
US6521715B1 (en) 2000-08-22 2003-02-18 E. I. Du Pont De Nemours And Company Graft copolymer pigment dispersants
US6524656B2 (en) * 2001-02-23 2003-02-25 Rohm And Haas Company Coating method
US7396871B2 (en) * 2002-01-14 2008-07-08 Eastman Chemical Comapny Rubber modified acrylic and/or vinyl hybrid resins
US6893722B2 (en) 2002-04-29 2005-05-17 Exxonmobil Oil Corporation Cationic, amino-functional, adhesion-promoting polymer for curable inks and other plastic film coatings, and plastic film comprising such polymer
US7195818B2 (en) * 2002-05-01 2007-03-27 Exxonmobil Oil Corporation Sealable multi-layer opaque film
US20040105994A1 (en) * 2002-12-03 2004-06-03 Pang-Chia Lu Thermoplastic film structures with a low melting point outer layer
EP1431328A1 (en) * 2002-12-19 2004-06-23 Sika Technology AG 3-(N-Silylalkyl)-amino-propenate-containing polymers and their production
EP1697470B1 (en) 2003-12-06 2008-10-08 FUJIFILM Imaging Colorants Limited A process for preparing modified particulate solid materials and inks comprising the same
US20050131176A1 (en) * 2003-12-10 2005-06-16 Cheng-Le Zhao Process for production of polymer dispersions containing an acetoacetate moiety
GB0413630D0 (en) 2004-06-18 2004-07-21 Avecia Ltd Process
US20060046005A1 (en) * 2004-08-24 2006-03-02 Mcgee Dennis E Coating for polymeric labels
US7402624B2 (en) * 2004-11-08 2008-07-22 E.I. Du Pont De Nemours & Company Graft copolymers with segmented arms and their preparation and use
AU2007201184B8 (en) * 2006-04-11 2013-02-07 Rohm And Haas Company Dirt pickup resistant coating binder having high adhesion to substrates
TW200815556A (en) * 2006-06-01 2008-04-01 Akzo Nobel Coatings Int Bv Adhesive system
US20080134893A1 (en) * 2006-12-08 2008-06-12 Thauming Kuo Particulate filter media
US7855261B2 (en) 2006-12-08 2010-12-21 Eastman Chemical Company Aldehyde removal
US20080135058A1 (en) * 2006-12-08 2008-06-12 Ted Calvin Germroth Tobacco smoke filter and method for removal of aldehydes from tobacco smoke
US8906703B2 (en) 2006-12-21 2014-12-09 3M Innovative Properties Company Surface-bound fluorinated esters for amine capture
US8357540B2 (en) * 2006-12-21 2013-01-22 3M Innovative Properties Company Polymeric substrates with fluoroalkoxycarbonyl groups for amine capture
US20090163635A1 (en) * 2007-12-19 2009-06-25 Eastman Chemical Company Aqueous dispersions of adhesion promoters
US20100081752A1 (en) * 2008-09-26 2010-04-01 E. I. Du Pont De Nemours And Company Process for producing block copolymer pigment dispersants
EP2382241B1 (en) * 2009-01-23 2016-11-23 Bridgestone Corporation Polymers functionalized with polycyano compounds
US8962606B2 (en) 2009-10-21 2015-02-24 Bayer Intellectual Property Gmbh Substituted benzosulphonamides
KR101797788B1 (en) * 2010-01-22 2017-11-15 가부시키가이샤 브리지스톤 Polymers functionalized with nitrile compounds containing a protected amino group
US9029451B2 (en) 2010-12-15 2015-05-12 Eastman Chemical Company Waterborne coating compositions that include 2,2,4-trimethyl-3-oxopentanoate esters as reactive coalescents
US8809446B2 (en) 2010-12-15 2014-08-19 Eastman Chemical Company Substituted 3-oxopentanoates and their uses in coating compositions
US8809447B2 (en) 2010-12-15 2014-08-19 Eastman Chemical Company Acetoacetate-functional monomers and their uses in coating compositions
WO2012134695A1 (en) 2011-03-29 2012-10-04 Exxonmobil Oil Corporation Film coatings based on polyalkylimine condensation polymers
US20140141262A1 (en) * 2011-06-29 2014-05-22 Sun Chemical Corporation Vinyl alcohol polymers with silane side chains and compositions comprising the same
US20130084437A1 (en) 2011-09-29 2013-04-04 Dennis E. McGee Film Coatings Based on Polyalkylimine Condensation Polymers
KR101821157B1 (en) 2011-10-11 2018-03-08 롬 앤드 하스 캄파니 Aqueous polymer dispersion
US20130224404A1 (en) * 2012-02-28 2013-08-29 Cray Valley Usa, Llc Isocyanate-free insulated glass sealant and insulated glass units using the same
EP2748237A1 (en) 2012-05-01 2014-07-02 Jindal Films Americas, LLC Epoxylated polyalkyleneimine film coatings
EP2945994B1 (en) 2013-01-18 2018-07-11 Basf Se Acrylic dispersion-based coating compositions
KR101518504B1 (en) 2013-10-17 2015-05-11 제일모직주식회사 Adhesive composition for polarizing plate, adhesive film comprising the same, polarizing plate comprising the same and optical display apparatus comprising the same
EP3286247A4 (en) 2015-04-24 2018-12-26 The Penn State Research Foundation Clickable waterborne polymers and click-crosslinked waterborne polymers
ES2930250T3 (en) 2018-10-10 2022-12-09 Dow Global Technologies Llc Water-based composition
KR20220047288A (en) * 2019-08-09 2022-04-15 신쏘머 에스디엔. 비에이치디. Polymer Latex Composition for Making Elastic Films with Self-Healing Properties
CN111349393A (en) * 2020-02-25 2020-06-30 江西科技师范大学 Preparation method of novel vegetable oil-based organic-inorganic hybrid coating material
CN113372479B (en) * 2021-07-20 2023-04-28 安徽工程大学 Crosslinked acetoacetate-based ethyl methacrylate copolymer prepared by using functionalized amide dynamic covalent bond and preparation method thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328325A (en) * 1966-03-09 1967-06-27 Rohm & Haas Floor polish and method of use
GB1185216A (en) * 1966-05-28 1970-03-25 Basf Ag Production of coated, impregnated or bonded articles
US3467610A (en) * 1967-11-29 1969-09-16 Rohm & Haas Aqueous floor polish compositions containing a water-insoluble addition polymer and a polyvalent metal chelate
US4150005A (en) * 1977-03-17 1979-04-17 Rohm And Haas Company Internally plasticized polymer latex
US4254279A (en) * 1979-09-24 1981-03-03 Fmc Corporation Ester resolution process
JPS6121171A (en) * 1984-07-09 1986-01-29 Hoechst Gosei Kk Rapidly curable water-based adhesive and adhesion
US4626567A (en) * 1985-10-25 1986-12-02 Beecham Home Improvement Products Inc. Water-resistant clear and colored acrylic latex sealant
US4908403A (en) * 1986-05-02 1990-03-13 Union Oil Of California Pressure sensitive adhesives of acetoacetoxy-alkyl acrylate polymers
JPH0757863B2 (en) * 1987-12-29 1995-06-21 日本合成化学工業株式会社 Pressure sensitive adhesive composition
GB8811436D0 (en) * 1988-05-13 1988-06-15 Polyvinyl Chemie Holland Bv Aqueous coating compositions
DE68919600T2 (en) * 1988-08-26 1995-05-11 Nippon Oils & Fats Co Ltd Pigment dispersant.
US4960924A (en) * 1988-10-31 1990-10-02 Rohm And Haas Company Mercaptoalkyl acetoacetates
US5055506A (en) * 1988-12-30 1991-10-08 Union Oil Company Of California Polymer systems and methods for their production
EP0390370B1 (en) * 1989-03-29 1993-06-09 Zeneca Limited Aqueous coating compositions
JPH036236A (en) * 1989-06-01 1991-01-11 Nippon Oil & Fats Co Ltd Reactive resin particle
US5017676A (en) * 1989-12-18 1991-05-21 Texaco Chemical Company Acetoacetoxyethyl methacrylate in the cure of epoxy resins
GB9101205D0 (en) * 1990-02-14 1991-02-27 Ici Plc Incorporation of desired groups into polymers,the polymers so produced and composition containing them
DE4034279A1 (en) * 1990-10-27 1992-04-30 Bayer Ag USE OF ALKOXYSILYLAMINES AS HARDENERS FOR PLASTIC PREPARATORS HAVING ACETOACETATE OR ACETOACETAMIDE GROUPS
NL9002380A (en) * 1990-11-01 1992-06-01 Stamicarbon Binder composition based on an acrylate polymer and a cross-linking agent based on an acetate acetate compound.
US5124384A (en) * 1990-11-16 1992-06-23 Air Products And Chemicals, Inc. Transparent caulks containing fumed silica
JPH04189874A (en) * 1990-11-22 1992-07-08 Nippon Oil & Fats Co Ltd Resin composition for coating
DE69124354T3 (en) * 1990-12-21 2003-04-24 Rohm & Haas Air-curing polymer composition
US5391624A (en) * 1992-02-10 1995-02-21 S. C. Johnson & Son, Inc. Thermosettable compositions
AT396934B (en) * 1992-02-14 1993-12-27 Vianova Kunstharz Ag METHOD FOR THE PRODUCTION OF AQUEOUS, SELF-CROSSLINKING POLYMER DISPERSIONS AND THEIR USE AS A BINDING AGENT FOR STORAGE-COMPONENT VARNISHES
US5362816A (en) * 1992-06-04 1994-11-08 Rohm And Haas Company High cohesive strength pressure-sensitive adhesives incorporating acetoacetate
US5349026A (en) * 1992-11-20 1994-09-20 Rohm And Haas Company Reactive coalescents

Also Published As

Publication number Publication date
EP0634425A1 (en) 1995-01-18
KR100365104B1 (en) 2003-03-03
IL110136A0 (en) 1994-10-07
RU94026093A (en) 1996-05-27
CN1102414A (en) 1995-05-10
CN1051319C (en) 2000-04-12
EP0634425B1 (en) 2001-02-07
US5494975A (en) 1996-02-27
KR960014165A (en) 1996-05-22
AU6731894A (en) 1995-01-27
JP3787168B2 (en) 2006-06-21
CN1238342A (en) 1999-12-15
US5616764A (en) 1997-04-01
BR9402671A (en) 1995-05-02
ZA944717B (en) 1995-01-18
JPH07138317A (en) 1995-05-30
US5548024A (en) 1996-08-20
DE69426659T2 (en) 2001-06-21
US5525662A (en) 1996-06-11
IL110136A (en) 1999-09-22
AU687398B2 (en) 1998-02-26
US5494961A (en) 1996-02-27
KR100393405B1 (en) 2003-07-31
DE69426659D1 (en) 2001-03-15

Similar Documents

Publication Publication Date Title
US5494961A (en) Functionalization of polymers via enamine of acetoacetate
EP0492847B2 (en) Air curing polymer composition
US5426142A (en) Single package ambient curing polymers
JPH07507820A (en) Dispersions or solutions crosslinked with hydroxylamine or oxime ethers at room temperature
JP4500450B2 (en) Coating composition
US5428107A (en) Silane-modified floor finish vehicles
US6524656B2 (en) Coating method
US8829116B2 (en) Method for producing block copolymers
AU9048798A (en) Aqueous coating composition with extended open time
JPH11263936A (en) Coating composition
JP7236055B2 (en) Diallylamine/diallyl ether copolymer, production method and use thereof
JP3966913B2 (en) Silane modified floor finish vehicle
EP0618238A1 (en) Aqueous crosslinking resin composition
JPH08311407A (en) Aqueous composition containing acetoacetate functional polymer and polyfunctional amine
JP3549031B2 (en) Paint composition and method for producing the same
JPH09111180A (en) Water-base coating composition
AU689524B2 (en) Single package ambient curing polymers
MXPA95000788A (en) Polymers that cure the environment, from a solopaqu
CA2141228A1 (en) Single package ambient curing polymers
JP2022133971A (en) Antimicrobial material
JP2000104008A (en) Coating composition excellent in weatherability
JPS62280208A (en) Self-thermosetting resin composition
MXPA98009442A (en) Aqueous coating composition, with open timing of abert

Legal Events

Date Code Title Description
FZDE Discontinued