CA2126670C - Polymerization processes and toner compositions therefrom - Google Patents

Polymerization processes and toner compositions therefrom

Info

Publication number
CA2126670C
CA2126670C CA002126670A CA2126670A CA2126670C CA 2126670 C CA2126670 C CA 2126670C CA 002126670 A CA002126670 A CA 002126670A CA 2126670 A CA2126670 A CA 2126670A CA 2126670 C CA2126670 C CA 2126670C
Authority
CA
Canada
Prior art keywords
free radical
mixture
resins
accordance
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002126670A
Other languages
French (fr)
Other versions
CA2126670A1 (en
Inventor
Michael K. Georges
Richard P.N. Veregin
Peter M. Kazmaier
Gordon K. Hamer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of CA2126670A1 publication Critical patent/CA2126670A1/en
Application granted granted Critical
Publication of CA2126670C publication Critical patent/CA2126670C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen

Abstract

Disclosed is a free radical polymerization process for the preparation of a thermoplastic resin or resins comprising heating a mixture of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form a thermoplastic resin or resins with a high monomer to polymer conversion; cooling said mixture; optionally isolating the thermoplastic resin or resins, and optionally washing and drying thermoplastic resin or resins. Related free radical processes are also disclosed for the preparation of mixtures and block copolymer thermoplastic resins. Resins prepared by the disclosed processes possess a narrow polydispersity and a modality that is controlled by the selection of a free radical initiator and stable free radical agent addition step or steps. The figure is a plot of percent conversion versus molecular weight of a polystyrene homopolymer product obtained from a bulk or solventless stable free radical agent moderated polymerization of styrene at 130 degrees centigrade.

Description

-1- 2 12 ~ 6 7 0 POLYMERI~ATION PROCESSES AND TONER COMPOSITIONS THEREFROM

BACKGROUND OF THE INVENTION
The present invention relates to processes for the preparation of polymers, and more specifically to a polymerization process and to the polymer formed thereby. In one embodiment, the present invention relates to a stable free radical moderated process for producing a thermoplastic polymer resin or resins, that have narrow polydispersities, that is, narrow molecular weight distributions as defined by the ratio lo MW Mn~ where Mw is weight average molecular weight and Mn is number average molecular weight, and easily controllable modality, from at least one monomer compound comprising heating for an effective period of time a mixture of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound under conditions such that all polymer chain formations are initiated at about the same time; cooling the mixture to effectively terminate the polymerization; isolating the thermoplastic resin product; and optionally washing and drying the polymer resins. The polymer resins produced by the process of the present invention in embodiments are essentially monomodal and in embodiments by repeating the heating step, that is, the combined initiation and polymerization step, provides a means for obtaining mixtures of monomodal polymer resins, that are compositionally the same resin type having characteristics of both narrow polydispersity and known or selectable modality. In another embodiment the process of the instant invention provides a means for conducting bulk or neat free radical polymerization processes on multikilogram or larger scales. The aforementioned embodiments may be accomplished in a one or single pot reactor environment. In another embodiment polymeric chain growth proceeds by a pseudoliving mechanism and can provide resins of variable 30 molecular weights from very low to very high, for example, less than about 10,000 up to about 200,000 while maintaining narrow molecular weight distributions or polydispersities. In another embodiment block copolymers can be synthesized by the aforementioned stable free radical moderated free radical polymerization processes wherein each block formed is well defined in length by the reacted monomer and wherein each block formed possesses a narrow molecular weight distribution.
Of the known polymerization processes a preferred way to prepare polymers or copolymers having a narrow molecular weight distribution or polydispersity is by anionic processes. The use and WO 94/11412 PCI'/US93/09335 2,~266rl0 2-availability of resins having narrow polydispersities in industrial applications is limited because anionic polymerization processes must be performed in the absence of atmospheric oxygen and moisture, require difficult to handle and hazardous initiator reagents and consequently such polymerization processes are generally limited to small batch reactors. In addition, the monomers and solvents that are used must be of high purity and anhydrous rendering the anionic process more expensive than alternatives which do not have these requirements. Thus, anionic polymerization processes are difficult and costly. It is desirable to have a free radical polymerization process that would provide narrow molecular weight distribution resins that overcome the shortcomings and disadvantages of the aforementioned anionic polymerization processes.
Free radical polymerization processes are chemically less sensitive to impurities in the monomers or solvents typically used and are completely insensitive to water. There has been a long felt need for an economical free radical polymerization process which is suitable for preparing narrow polydispersity resins by suspension, solution, bulk or neat, emulsion and related processes.
Copolymers prepared by free radical polymerization processes inherently have broad molecular weight distributions or polydispersities, generally greater than about five. One reason is that free radical initiators have half lives that are relatively long, from several minutes to many hours, and polymeric chains are not all initiated at the same time and which initiators provide growing chains of various lengths at any time during the polymerization process. Another reason is that the propagating chains in a free radical process can react with each other in processes known as coupling and disproportionation, both of which are chain terminating reactions. In doing so, chains of varying lengths are terminated at different times during the reaction process which results in resins comprised of polymeric chains which vary widely in length from very small to very large. If a free radical polymerization process is to be enabled for producing narrow molecular weight distributions, then all polymer chains must be initiated at about the same time and premature termination by coupling or disproportionation processes must be avoided.
Otsu et.al., in Makromol Chem., Rapid Commun., 3, 127 (1982), introduced the use of iniferters as a means of producing block copolymers by a free radical polymerization process. A mechanism proposed for the reaction suggested that a pseudoliving propagating free radical chain exists and that it continues to grow with time. There are two major WO 94/11412 21 2 6 ~ 7 ~ PCI'/US93/09335 drawbacks associated with using iniferters. Iniferters tend to react very slowly and the percent conversion or degree of polymerization of monomer to polymer is low, for example, about 40 percent even after 20 hours of reaction time. Another drawback is that the free radical trap that 5 caps the end of the growing chain has the ability to initiate new chains at any time during the course of the reaction, see for example, S.R.Turner, R.W.Blevins, in Polymer Reprints, 29(2), Sept.1988. This initiation leads to new chains being initiated at various times during the polymerization and consequently leads to broadening of the polydispersity. Although the 10 approach in the aforementioned reference of Otsu was novel in using pseudoliving free radical propagating chains, it was not applicable to the synthesis of narrow molecular weight distribution resins particularly for polymerswith high molecularweights.
The use of stable free radicals are well known as inhibitors of 15 free radical polymerizations, see for example, G. Moad et.al., Polymer Bulletin 6, 589 (1982). Studies by, for example, G. Moad et.al. J.Macromol.
Sci.-Chem., A17(1), 51(1982) have reported on the use of stable free radicals as inhibitors of free radical polymerizations performed at low temperatures, for example, below 90~C and at low monomer to polymer 20 conversions. Little is known concerning the reaction of stable free radical agents at higher temperatures and at high monomer to polymer conversions.
In a hypothetical free radical polymerization of styrene, in which chains are continually initiated over the course of the 25 polymerization, and where chain termination by coupling processes is also occurring, calculations as described in, for example, G. G. Odian, Principles of Polymerization, pages 280 - 281, 2nd Ed., John Wiley & Sons, 1981 have shown that the narrowest polydispersity that one can theoretically possibly obtain is 1.5. In practice, polydispersities much greater than 1.5 30 are actually obtained. Polydispersities of between 2.0 and 2.4 are typical for free radical homopolymerizations of styrene. In the case of copolymer systems, polydispersities of greater than 4 are generally obtained.
The stable free radical polymerization system of the instant invention may readily afford polydispersities of between 1.15 and 1.25 for 35 polystyrene and as low as 1.5 for various copolymer systems. Stable free radical polymerization systems of the instant invention afford polydispersities that are comparable to those obtained in anionic polymerizations.

21~,66~ ~ -4-- Ir~ a patentability search report the following patents were recited:
U.S. Patent 4,581,429 to Solomon et al., issued April 8, 1986, discloses a free radical polymerization process which controls the growth 5 of polymer chains to produce short chain or oligomeric homopolymers and copolymers including block and graft copolymers. The process employs an initiator having the formula (in part) =N-O-X, where X is a free radical species capable of polymerizing unsaturated monomers. The molecular weights of the polymer products obtained are generally from about 2,500 to 7,000 having polydispersities generally of about 1.4 to 1.8, at low monomer to polymer conversion. The reactions typically have low conversion rates and use relatively low reaction temperatures of less than about 100 degrees C, and use multiple stages.
U.S. Patent 5,059,657 to Druliner et al., issued October 22,1991, discloses a polymerization process for acrylic and maleimide monomers by contacting the monomers with a diazotate, cyanate or hyponitrite, and N-chlorosuccinimide, N-bromosuccinimide or a diazonium salt. The polymer produced can initiate further polymerization, including use in block copolymer formation.
The following references are also of interest: U.S.Patents 3,682,875; 3,879,360; 3,954,722; 4,201,848; 4,777,230; 5,173,551; and 5,216,096.
In free radical polymerization reaction processes of the prior art, various significant problems exist, for example difficulties in predicting or controlling the polydispersity and modality of the polymers produced.
These free radical polymerization processes invariably produce polymers with high weight average molecular weights (Mw) and low number average molecular weights (Mn) resulting in broad polydispersities.
Further, bulk or neat free radical polymerization processes of the prior art are prone to generating excessive quantities of heat since the polymerization reaction is exothermic and as the viscosity of the reaction medium increases dissipation of heat becomes more difficult. This is referred to as the Trommsdorff effect as discussed and illustrated in Principles of Polymerization, G.Odian, 2nd Ed., Wiley-lnterscience, N.Y., 1981, page 272, the disclosure of which is entirely incorporated herein by reference. Moreover, the exothermic nature of free radical polymerization processes is often a limitation that severely restricts the concentration of reactants or the reactor size upon scale up.

~ 5~ 21 26670 It is known to form resins by bead suspension polymerization reference for example U.S. Patents 4,601,968 and 4,609,607.
Illustrated in U.S. Patent No. 5,274,057, issued December 28, 1993, Michael K. Georges et al is that free radical suspension polymerization reactions may also lead to undesirable deposits of polymer on the agitator, baffles, heating coils and reactor walls. In some situations, the suspension coalesces during the reaction producing large deposits of undesirable polymeric gel material which is difficult, expensive and hazardous to remove from the reactor.
Further, gel body formation in conventional free radical polymerization processes may result in a broad molecular weight distributions and/or difficulties encountered during filtering, drying and manipulating the product resin.
These and other disadvantages are avoided, or minimized with the processes of the present invention.
Thus, there remains a need for processes for the preparation of narrow polydispersity polymeric resins by economical and scalable free radical polymerization techniques and which polymers retain many or all of their desirable physical properties, for example, hardness, low gel content, processability, clarity, high gloss durability, and the like, while avoiding the problems of gel formation, exotherms, volume limited and multi-stage reaction systems, purification, performance properties of the polymer resin products, and the like associated with prior art free radical polymerization methodologies .
The polymerization processes and thermoplastic resin products of the instant invention are useful in many applications, for example, as a variety of specialty applications including toner resins used for electrophotographic imaging processes or where monomodal or mixtures of monomodal narrow molecular weight resins or block 3~'' ~, copolymers with narrow molecular weight distribution within each block component are suitable such as in thermoplastic films and coating technologies.

SUMMARY OF THE INVENTION
An object of an aspect of the present invention is to provide processes and polymers that overcome many of the problems and disadvantages of the aforementioned prior art.
An object of an aspect of the instant invention is to provide a free radical polymerization reaction system which affords narrow polydispersity homopolymeric or copolymeric thermoplastic resin prod ucts .
An object of an aspect of the instant invention is to provide a free radical polymerization reaction system which may be conducted in the presence or absence of conventional reaction media.
An object of an aspect of the instant invention resides in coupling or disproportionation termination reactions being prevented by reversibly terminating the propagating free radical chains with a stable free radical agent which serves to moderate the free radical polymerization process.
An object of an aspect of the instant invention is to provide the acceleration of the dissociation of the free radical peroxide initiator by the addition of promoter compounds which include, for example, tertiary amines, which ensure that all polymeric chains are initiated nearly simultaneously or about the same time.
An object of an aspect of the instant invention is the addition of small amounts of organic acids, for example, sulfonic or carboxylic acids, to the reaction medium to increase the rate of reaction without broadening the polydispersity of the polymeric resins.

- 6a - 2 1 2 6 6 7 0 An object of an aspect of the instant invention is to prepare thermoplastic resins by single pot processes employing a monomer or monomers, a suitable azo or peroxide free radical initiator, and a stable free radical agent.
Another object of an aspect of the instant invention is to prepare resins using polymerization processes wherein the molecular weight of the growing copolymer chains increase over the entire time period of the polymerization reaction and wherein the percent conversion or degree of polymerization of monomer to polymer with respect to time or number average molecular weight is approximately linear, that is, polymerization processes which occur without the aforementioned Trommsdorff effect.

Various aspects of the invention are as follows:

A free radical poiymerization process for the preparation of a thermoplastic resin or resins comprising:
heating from about 100 to about 160~C a mixture comprised of a free radical initiator, a stable free radical agent, and at leastone polymerizable monomer compound to form said thermoplastic resin or resins with a high monomer to polymer conversion and a narrow polyd ispersity;
cooling said mixture;
optionally isolating said thermoplastic resin or resins; and optionally washing and drying said thermoplastic resin or resi ns .
A free radical polymerization process for the preparation of thermoplastic resins comprising:
heating a first mixture comprised of a free radical initlator, a stable free radical agent, and at least one polymerizable monomer compound to form a first intermediate product resin;
optionally cooling said first mixture;
adding to said first intermediate product resin a second mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound, wherein said - 6b- 21 26670 polymerizable monomer compound of said second mixture contains the same components as said polymerizable monomer compound of said first mixture, and said free radical initiator and said stable free radical agent of said second mixture are the same or different from said free radical initiator and said stable free radical agent of said first mixture, and wherein there is formed a combined mixture;
heating said combined mixture to form a third mixture comprised of a mixture of thermoplastic resins comprised of a first product resin formed from said first intermediate product resin and added said second monomer and a second product resin formed from said second monomer;
cooling said third mixture;
optionally isolating said mixture of thermoplastic product resins from said third mixture; and optionally washing and drying said mixture of thermoplastic resins and wherein said first product resin and said second product resin each possess a narrow polydispersity.

A free radical polymerization process for the preparatlon of a block copolymer thermoplastic resin or resins comprising:
heating a first mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form a first intermediate product resin;
optionally cooling said first mixture;
optionally isolating said first intermediate product resin;
adding to said first intermediate product resin a second mixture comprised of at least one polymerizable monomer compound, wherein said polymerizable monomer compound of said second mixture is different from said polymerizable monomer compound of said first mixture, to form a combined mixture;
heating said combined mixture to form a third mixture comprised of a block copolymer thermoplastic resin comprised of a first product resin formed from said first intermediate product resin and added said second monomer;
cooling said third mixture;
optiona!ly isolating said block copolymer thermoplastic resin from said third mixture; and optionally washing and drying said block copolymer thermoplastic resin.

~, - 6c - 21 26670 A free radical polymerization process for the preparation of a thermoplastic resin or resins comprising:
heating from about 100 to about 160~C for an effective time period a water suspension mixture comprised of a peroxide free radical initiator, a nitroxide stable free radical agent, and at least one polymerizable monomer compound to form said thermoplastic resin or resins;
cooling said mixture;
optionally isolating said thermoplastic resin or resins; and optionally washing and drying said thermoplastic resin or resins, wherein said thermoplastic resin possesses a narrow polydispersity of from about 1.1 to about 1.5, a modality of 1, and wherein the process affords a monomer to polymer conversion of from about 10 to about 100 percent.

A free radical polymerization process for the preparation of a multiblock copolymer thermoplastic resin or resins comprising:
heating a first mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form a first intermediate product resin;
optionally cooling said first mixture;
optionally isolating said first intermediate product resin;
adding to said first intermediate product resin a second mixture comprised of at least one polymerizable monomer compound, wherein said polymerizable monomer compound of said second mixture is different from said polymerizable monomer compound of said first mixture, to form a combined mixture;
heating said combined mixture to form a third mixture comprised of a block copolymer thermoplastic resin comprised of a first product resin formed from said first intermediate product resin and added said second monomer;
cooling said third mixture;
optionally isolating said third mixture;

~ ' .

- 6d - 2 1 2 6 6 7 0 sequentially repeating the preceding steps of adding, heating and cooling, N times, to form a fourth mixture containing a multiblock copolymer thermoplastic resin or resins having N + 2 blocks and wherein N is the number of times said sequence is repeated;
optionally isolating said multiblock copolymer thermoplastic resin from said fourth mixture; and optionally washing and drying said multiblock copolymer thermoplastic resin and wherein said multiblock copolymer thermoplastic resin possesses a narrow polydispersity and a modality of 1.

A free radical polymerization process for the preparation of a thermoplastic resin or resins comprising heating from about 100 to about 1 60~C
a mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form said thermoplastic resin or resins with a narrow polydispersity.
A polymerization process for the preparation of a thermoplastic resin or resins comprising heating from about 100 to about 1 60~C a mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form said thermoplastic resin or resins with a high monomer to polymer conversion and a narrow polydispersity.

In embodiments, the present invention overcomes the problems and disadvantages of the prior art by forming narrow polydispersity polymeric resins by means, for example, a free radical polymerization process comprising heating a mixture of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form thermoplastic resin or resins with a high monomer to polymer conversion; cooling the mixture; optionally isolating said thermoplastic resin or resins; and optionally washing and drying the thermoplastic resin or resins and wherein the thermoplastic resin or resins possess a narrow polydispersity.

~ >
,, , WO 94/11412 PCI'/US93/09335 7 2I~67(i Another embodiment of the present invention is a free radical polymerization process for the preparation of thermoplastic resins comprising heating a first mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer 5 compound to form a first intermediate product resin; optionally cooling the first mixture; adding to the first intermediate product resin a second mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound, wherein the polymerizable monomer compound of the second mixture is the same as 10 the polymerizable monomer compound of the first mixture, and the free radical initiator and the stable free radical agent of the second mixture are the same or different from the free radical initiator and the stable free radical agent of the first mixture, to form a combined mixture; heating the combined mixture to form a third mixture comprised of a mixture of thermoplastic resins comprised of a first product resin formed from the first intermediate product resin and'added the second monomer and a second product resin formed from the second monomer; cooling the third mixture; optionally isolating the mixture of thermoplastic product resins from the third mixture; and optionally washing and drying the mixture of 20 thermoplastic resins and wherein the first product resin and the second product resin each possess a narrow polydispersity and the mixture of thermoplastic resins possesses a modality equal to 2. Higher modalities, for example, of from 3 to about 20 may be conveniently achieved if desired by the subsequent addition of fresh mixtures of monomer, free radical 25 initiator and stable free radical agent prior to a final cooling and isolation step.
In another embodiment of the instant invention is a free radical polymerization process for the preparation of a block copolymer thermoplastic resin or resins comprising heating a first mixture comprised 30 of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form a first intermediate product resin; optionally cooling the first mixture; optionally isolating the first intermediate product resin; adding to the first intermediate product resin a second mixture comprised of at least one polymerizable monomer 35 compound, wherein the polymerizable monomer compound of the second mixture is different from the polymerizable monomer compound of the first mixture, to form a combined mixture; heating the combined mixture to form a third mixture comprised of a block copolymer thermoplastic resin comprised of a first product resin formed from the first intermediate WO 94/11412 PCI'/US93/09335 ~,~26~irrolduct resin and added the second monomer; cooling the third mixture;
optionally isotating the block copolymer thermoplastic resin from the third mixture; and optionally washing and drying the block copolymer thermoplastic resin and wherein the block copolymer possesses a narrow 5 polydispersity and a modality equal to 1. The isolation of the intermediate product resin is preferred when highest purity and block integrity or homogenity is desired, that is, residual unreacted monomer or monomers of the first mixture may subsequently react with and be integrated into the growing polymer chain formed from the second mixture of polymerizable 10 monomer compounds. Thus, in preparing block copolymers by processes of the instant invention isolation by, for example, precipitation of intermediate products of polymerization reactions is preferred when high purity is desired or when the degree of polymerization is less than about 70 to 90 percent for a block or multiblock polymerization reaction.
In yet another embodiment of the present invention is a free radical polymerization process for the preparation of a thermoplastic resin comprising heating for an effective period a water suspension mixture of a peroxide free radical initiator, a nitroxide stable free radical agent, and at least one polymerizable monomer compound to form the thermoplastic 20 resin with a high monomer to polymer conversion; cooling the mixture;
isolating the thermoplastic resin; and optionally washing and drying the thermoplastic resin and wherein the thermoplastic resin possesses a narrow polydispersity of about 1.1 to about 1.5 and a modality of 1.
In embodiments of the aforementioned processes, polymer or 25 copolymer resin compositions are obtained wherein the resin or resins has a weight average molecular weight (Mw) of from about 10,000 to 200,000 and a number average molecular weight (Mn) of from about 9,000 to about 100,000 and a polydispersity of about 1.1 to 2Ø
Although not being desired to be limited by theory, it is 30 believed that when polymerization reaction processes of the instant invention are performed at a temperature at about or above 100 degrees C, the exact temperature depending on the initiator used, all the polymer chains are expected to be initiated at about the same time which is a primary reason for enabling forming polymer chain products having 35 narrow polydispersities.
The aforementioned undesirable chain coupling or disproportionation termination'reactions, so prevalent under the conditions of the prior art free radical polymerization systems, is suppressed under the conditions of the instant invention because the wo g4/ll4l2 2 1 2 6 6 7 0 PCI'/US93/09335 g effective concentration and availability of living free chains is extremely small. In addition, stable free radical agents of the instant invention do not initiate polymerization so that new chains are not initiated after an initial period during which all polymer chains are initiated at about the 5 same time.
Propagating chains of the instant invention are referred to as pseudoliving because the stable free radical agent adds to a propagating chain and the chain is temporarily, but reversibly, terminated. As shown in the accompanying scheme, the propagating polymer chain fluctuates or is 10 in an equilibrium condition between being temporarily terminated or suspended and being alive or living. As thermal energy is supplied from the reaction system to the bond joining the growing polymeric chain and the stable free radical (-SFR) agent, that is, the adduct in the accompanying scheme where, for example, the stable free radical agent (-SFR) is covalently bound to the propagating chain, for example, a substituted styrene, homolytically cleaves thereby temporarily generating a living chain end radical species shown in square bracketsll permitting another monomer unit to insert or add to the chain and is again instantaneously, albeit short lived as determined by diffusion control, 20 terminated or protected by the stable free radical agent as a thermally labile adduct above about 80~ to 100~ C or latent free radical chain. The free radical initiator, for example, benzoyl peroxide, is represented in the scheme as ~INIT. The term "protected" as used herein is meant to suggest that the chain radical species is available for selective rather than 25 indiscriminant further reaction with monomer. An unmoderated free radical polymerization chain, that is, a free radical polymerization process without a stable free radical agent present, in contrast has a reactive or "open" chain end throughout the reaction.
Processes of the present invention further comprises in an 30 embodiment a means for sequentially repeating the monomer addition or polymerization step and with additional stable free radical and free radical initiator of the process being added, N times, to provide a well defined mixture of thermoplastic resins wherein each resin in the mixture is comprised of polymers having discrete and narrow polydispersities and 35 wherein the mixture has a modality equal to N + 1 wherein N is the number of times the addition step of initiator, stable free radical agent and monomer is repeated.
The present invention provides several specific advantages in embodiments as follows.

WO 94/11412 PCI'/US93/09335 With the process of the present invention, polymer product polydispersities can be varied from between approximately 1.1 to approximately 2.0 depending on the monomer/comonomer system by varying the ratio of stable free radical agent to free radical initiator molar 5 concentration. When the polymerization process conditions of the present invention are attempted without using the a SFR additive, broad molecular weight resins are obtained.
The stable free radical agent moderated polymerization reactions may be performed in a variety of media for example, suspension, 10 emulsion, bulk, that is neat or without solvent, or in aqueous or non-aqueous solution, using preferably higher boiling solvents such as, toluene and xylene.

WO 94/11412 2 1 2 6 6 ~ O PCI'/US93/09335 (BZ0)2 ~R
heat 2 BzO- = INIT- , ~ SFR = >~
O-~SFR

INIl ~ ~SFR

D~R

INI~SFR ~SFR

R R R R

During the reaction of monomer or mixed monomers to form polymers, the reaction time may be varied over about 30 minutes to 60 hours, preferably over about 1 to 60 hours, more preferably between about 2 to 10 hours and optimally about 4 to 7 hours. The optimal reaction time may vary depending upon the temperature, the volume and scale of the reaction, and the quantity and type of polymerization initiator and stable free radical agent selected. For example, in embodiments of the present invention, the heating may be conducted for a period of from about 30 minutes to 30 hours, or from about 30 minutes to about 10 hours.
The polymerization reaction temperature is kept relatively constant throughout the heating step by providing an adjustable external heat source and the temperature is from about 60~C to about 1 60 ~ C, and preferably between 1 00 ~ C and 1 50 ~ C and 1 5 optimally in embodiments about 1 20~C to 1 40~C. Reactions performed above 1 60~C tend to result in a broadening of the polydispersity. A reaction volume may be selected for any size that enables simple adding, mixing, reacting and isolating the product resins on an economic or convenient scale.
For example, in an embodiment of the present invention, the mixture of free radical initiator, stable free radical agent and at least one polymerizable monomer compound is heated at a temperature of about 100 to about 1 60~C. In this heating process, the polymeric chains of the resin are formed simultaneously at from about 0 to 10 minutes after the heating has obtained about 100~C.
The free radical initiator can be any free radical polymerization initiator capable of initiating a free radical polymerization process and includes peroxycarbonate initiators~ peroxide initiators such as benzoyl peroxide and azo initiators such as azobisisobutyronitrile, and the like. The initiator concentration employed is about 0.2 to 2.5 weight percent, of the total weight of monomer to be .~

polymerized and is determined by the desired molecular weight of the resin. As the initiator concentration is decreased relative to the weight of molar equivalents of monomer used, the molecular weight of the thermoplastic resin product increases.
In embodiments of the present invention, it is preferred that the free radical initiator has a half life of less than or equal to 10 minutes at a temperature above 100~C. More preferably, the free radical initiator has a half life from about 5 seconds to about 10 minutes at above 100~C, and even more preferably has a half life less than or equal to 1 minute at a temperature above 100~C.
The stable free radical agent can be any stable free radical and includes nitroxide free radicals, for example, PROXYL (2,2 5,5-tetramethyl-1-pyrrolidinyloxy) and derivatives thereof, and TEMPO
(2,2,6,6-tetramethyl-1-piperidinyloxy) and derivatives thereof, and the like. These stable free radical agent materials are well known in the literature, for example G. Moad et. al., Tetrahedron Letters, 22.
1 165 (1981) as free radical polymerization inhibitors. However, under the polymerization conditions of the instant invention stable free radical agents function as moderators to harness the normally highly reactive and indiscriminate intermediate free radical species.
The molar ratio of the stable free radical (SFR) agent to free radical initiator (INIT) is from about 0.4 to 2.5, and preferably in the range from about 0.9 to 1.6. In another embodiment of the present invention, the molar ratio of the stable free radical (SFR) agent to free radical initiator (INIT) is preferable in the range from about 1.2 to 1.8. Although not wanting to be limited by theory, in an embodiment, the molar ratio [SFR:INIT.] of stable free radical agent, for example, TEMPO, to free radical initiator, for example, benzoyl peroxide, of about 1.3 is believed to be important for success of the process. If the [SFR:INIT.] is too high then the reaction rate is noticeably inhibited. If the [SFR:INIT.] is too low then the reaction - 13a- 21 2667Q

product has undesired increased polydispersity. It should be noted that when styrene is polymerized to polystyrene without the stable free radical agent of the instant process the product polymers isolated have polydispersities of 2.0 and above.
In embodiments, the molar ratio of monomer content to stable free radical agent to free radical initiator is from about 100:0.2:1 to about 10,000:2.5:1 and preferably in the range of about 300:1.3:1 to about 7,000: 1.3: 1.
Processes of the instant invention, in embodiments, provide for high monomer to polymer conversion rates, or degrees of polymerization, for example of 90 percent by weight or greater. In embodiments of the present invention, monomer-to-polymer conversion rates of greater than 10% can be achieved. In particula:, monomer-to-polymer conversion rates of greater than 50% and greater than 90% can be achieved. For example, the monomer-to-polymer conversion rate in particular embodiments can be within the ranges of about 10 to about 100%, from about 50 to about 100%, and from about 50 to about 90%.
Processes of the instant invention, in embodiments provide for relatively high weight average molecular weights, from weight average molecular weights ranging in size of from about 10,000 to about 200,000.
Processes of the instant invention in embodiments also provide for thermoplastic resins having a low gel content, for example of from 0.0 to about 0.5 wt%.
The monomers that can be used are any monomer capable of undergoing a free radical polymerization and include but are not limited to styrene, substituted styrenes and derivatives thereof, for example methylstyrene, acrylates, methacrylates, butadiene and any conjugated diene monomer sufficiently reactive under the specified stable free radical moderated polymerization reaction conditions to - 13b-afford a stable free radical reaction adduct and high molecular weight polymer product for example, isoprene and myrcene.
The polymerization reaction rate of the monomers may, in embodiments, be accelerated and the reaction time reduced to about 4 to 7 hours from greater than 16 hours by the addition of a - catalytic amount of a protic acid, that will not also initiate cationic polymerization, selected from the group consisting of organic sulfonic and carboxylic acids where camphorsulfonic acid is a preferred acid and where the molar ratio of stable free radical to aci is from about 1:1 to 1 1:1, with a preferred ratio of between about 1.5:1 and 5:1. Excessive addition of organic acid beyond the aforementioned amounts causes the resin polydispersity to broaden.
In addition, a promoter compound such as a tertiary amine can be added to the reaction mixture. Addition of such a promoter compound increases the rate of dissociation of the free radical initiator, particularly where the free radical initiator is an organic peroxide.
The stable free radical moderated polymerization process of the instant invention may be repeated a number of times within the same reaction vessel by the delayed and stepwise addition of more monomer or monomers with varying amounts of initiator and stable free radical agent to form a mixture of monomodal resins where eac'-, component has a distinct molecular weight and has a narrow molecular weight distribution and wherein the mixture has a modality of N + 1, where N represents the . . , 6~ 14-number of additional times that monomer, initiator and stable free radical agent are added.
By cooling the polymerization reaction to below 60 to 80~C, the stable free radical moderated reaction is effectively quenched or s terminated. Each new or subsequent addition of monomer, stable free radical and initiator accompanied by heating provides a new polymeric species having a narrow molecular weight distribution and each new polymer species continues to grow independent of the other polymer species already established.
Alternatively, block copolymer resins may also be prepared whereby after each desired block has been formed a new monomer or monomers is added without the addition of more initiator or stable free radical agent to form a new block wherein each block component is well defined in length and has a narrow molecular weight distribution and having properties depending on the repeated sequence and the monomers chosen for incorporation. ' Additional optional known additives may be used in the polymerization reactions which do not interfere with the objects of the invention and which may provide additional performance enhancements 20 to the resulting product, for example, colorants, lubricants, release or transfer agents, surfactants, stabilizers, antifoams, and the like.
Polymer resins possessing discrete mixture of monomodal, that is a well defined multimodal molecular weight distribution may in embodiments thereof provide several advantages, particularly for 2~ electrophotographic toner compositions such as: melt rheology properties including improved flow and elasticity; and improved performance properties such as triboelectrification, admix rates and shelf life stabilities.The processes of the present invention can be selected to form a wide variety of polymers. For example, it can be used to polymerize a 30 styrene monomer to form polystyrene or butadiene to form polybutadiene. The process of the present invention can be selected to polymerize a mixture of two or more different polymerizable monomers to form copoiymers therefrom, for example, polymerization of styrene and butadiene to form poly(styrene-butadiene), styrene and isoprene to 35 form poly(styrene-isoprene), styrene and acrylate to form poly(styrene-acrylate), styrene and methyl methacrylate to form poly(styrene-methyl methacrylate), and the like, and combinations thereof, including copolymers and terpolymers.

wo 94/11412 Pcr/~ss3/os33s A suitable reaction medlum employed for conductmg processes of the instant invention may be selected from the group consisting of bulk or neat, suspension, emulsion, and solution systems.
BRIEF DESCRIPTION Of THE DRAWING
Figure 1 is a plOt of percent conversion versus molecular weight of a polystyrene homopolymer product obtained from a bulk or solventless stable free radical agent moderated polymerization of styrene at 130 degrees centigrade.
In an embodiment. reference Figure 1, a monomer is polymerized in bulk or in the absence of a solvent or diluent, that is neat, using a mixture of styrene monomer, a free radical initiator, and a stable free radical agent at constant temperature. A plot of weight percent monomer conversion versus number average molecular weight indicates that a nearly linear relationship holds for this bulk polymerization and other aforementioned reaction media using stable free radical agent moderated processes of the instant invention. For example, at 20 percent conversion the number average molecular weight of the polystyrene polymer product is about 4,000 and at 65 percent conversion the number average molecular weight is about 10,000. The solid line slope of the plot was obtained by known best fit linear regression methods and supports the aforementioned belief that polymerization processes of the instant invention occur without complications arising from the known Trommsdorff effect, that is, known exothermic heating or autoacceleration of the monomer conversion reaction rate and randomization of molecular weights observed in unmoderated free radical polymerization reactions.
In embodiments, there can be incorporated into the monomer a waxy component, such as alkylenes, like polyethylene, polypropylene waxes, and mixtures thereof having a low molecular weight of from between about 1,000 to about 20,000. The use of such a component may be desirable for certain toner applications. Suitable low molecular weight waxes are disclosed in U.S. Patent 4,659,641.

Toner compositions can be prepared by a number of known methods, such as admixing and heating resin particles obtained with the processes of the instant invention such as styrene butadiene copolymers, pigment particles such as magnetite, carbon blac~, or mixtures thereof, and cyan, yellow, magenta, green, brown, red, or mixtures thereof, and preferably from about 0.5 percent to about S percent of charge enhancing ., ;,~ 1 :l WO 94/11412 PCI'/US93/09335 2~2651~ - 16-additives in a toner extrusion device, such as the ZSK53 available from Werner Pfleiderer, and removing the formed toner composition from the device. Subsequent to cooling, the toner composition is subjected to grinding utilizing, for example, a Sturtevant micronizer for the purpose of 5 achieving toner particles with a volume median diameter of less than about 25 microns, and preferably of from about 6 to about 12 microns, which diameters are determined by a Coulter Counter. Subsequently, the toner compositions can be classified utilizing, for example, a Donaldson Model B classifier for the purpose of removing toner fines, that is toner 10 particles less than about 4 microns volume median diameter.
Illustrative examples of suitable toner resins selected for the toner and developer compositions of the present invention include polyamides, styrene acrylates, styrene methacrylates, styrene butadienes, vinyl resins, including homopolymers and copolymers of two or more vinyl 15 monomers; vinyl monomers include styrene, p-chlorostyrene, butadiene, isoprene, and myrcene; vinyl esters like esters of monocarboxylic acids including methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, dodecyl acrylate, n-octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, and butyl methacrylate; acrylonitrile, 20 methacrylonitrile, acrylamide; and the like. Preferred toner resins include styrene butadiene copolymers, mixtures thereof, and the like. Other preferred toner resins include styrene/methacrylate copolymers, PLIOLITES~; suspension polymerized styrene butadienes, reference U.S.
Patent 4,558,108, the disclosure of which is totally incorporated herein by 25 reference.
In toner compositions, the resin particles are present in a sufficient but effective amount, for example from about 70 to about 90 weight percent. Thus, when 1 percent by weight of the charge enhancing additive is present, and 10 percent by weight of pigment or colorant, such 30 as carbon black, is contained therein, about 89 percent by weight of resin is selected. Also, the charge enhancing additive may be coated on the pigment particle. When used as a coating, the charge enhancing additive is present in an amount of from about 0.1 weight percent to about S
weight percent, and preferably from about 0.3 weight percent to about 1 35 weight percent.
Numerous well known suitable pigments or dyes can be selected as the colorant for the toner particles including, for example, carbon black like REGAL 3300, nigrosine dye, aniline blue, magnetite, or mixtures thereof. The pigment, which is preferably carbon black, should wo 94/11412 Pcr/~s93/os33s -"- 21 2667n ~e present In a sufficient amount to render the toner comDosition highly colored. Generally, the pigment particles are present in amounts of from about 1 percent by weight to about 20 percent by weight, and preferably from about 2 to about 10 weight percent based on the total weight of the 5 toner composition; however, lesser or greater amounts of pigment particles can be selected.
When the pigment particles are comprlsed of magnetites, thereby enabling single component toners in some instances, which magnetites are a mixture of iron oxides (FeO Fe2O3) including those commercially available as Mapico Black, they are present in the toner composition in an amount of from about 10 percent by weight to about 70 percent by weight, and preferably in an amount of from about 10 percent by weight to about 50 percent by weight. Mixtures of car~on black and magnetite with from about 1 to about 15 weight percent of carbon black, and preferably from about 2 to about 6 weight percent of carbon black, and magnetite, such as MAPICO BL,4CK~, in an amount of, for example, - from about S to about 60, and preferably from about 10 to about 50 weight percent can be selected.
There can also be blended with the toner compositions of the 20 present invention external additive particles including flow aid additives, which additives are usually present on the surface thereof. Examples of these additives include colloidal silicas, such as AEROSIL~, metal salts and metal salts of fatty acids inclusive of zinc stearate, aluminum oxides, cerium oxides, and mixtures thereof, which additives are generally present 25 in an amount of from about 0.1 percent by weight to about 5 percent by weight, and preferably in an amount of from about 0.1 percent by weight to about 1 percent by weight. Several of the aforementioned additives are illustrated in U.S. Patents 3,590,000 and 3,800,588.

With further respect to the present invention, colloidal silicas, such as AEROSIL~, can be surface treated with the charge additives in an amount of from about 1 to about 30 weight percent and preferably 1 weight percent followed by the addition thereof to the toner in an amount of from 0.1 to 10 and preferably 0.1 to 1 weight percent.
Also, there can be included in the toner compositions low molecular weight waxes, such as polypropylenes and polyethylenes commercially available from Allied Chemical and Petrolite Corporation, EPOLENE N-15~ commercially available from Eastman Chemical Products, Inc., VISCOL 550-P~, a low weight average molecular weight polypropylene , _ wo 94/1 1412 Pcr/~ss3/o933s available from Sanyo Kasei K.K.. and similar materiais. The commercially available polyethylenes selected have a molecular weight of from about 1,000 to about 1,500, while the commercially available polypropylenes utilized for the toner compositions are believed to have a molecuiar weight of from about 4,000 to about 5,000. Many of the polyethylene and polypropylene compositions useful in the present invention are illustrated in British Patent No. 1,442,835.

The low molecular weight wax materials are present in the toner composition or the polymer resin beads of the present invention in various amounts, however, generally these waxes are present in the toner composition in an amount of from about 1 percent by weight to about 15 percent by weight, and preferably in an amount of from about 2 percent by weight to about 10 percent by weight and may in embodiments function as fuser roll release agents.
Encompassed within the scope of the present invention are colored toner and developer compositions comprised of toner resin particles, carrier particles, the charge enhancing additives illustrated herein, and as pigments or colorants red, blue, green, brown, magenta, cyan and/or yellow particles, as well as mixtures thereof. More specifically, with regard to the generation of color images utilizing a developer composition with charge enhancing additives, illustrative examples of magenta materials that may be selected as pigments include, for example, 2,9-dimethyl-substituted quinacridone and anthraquinone dye identified in the Color Index as Cl 60710, Cl Dispersed Red 15, diazo dye identified in the Color Index as Cl 26050, Cl Solvent Red 19, and the like. Illustrative examples of cyan materials that may be used as pigments include copper tetra-4-(octadecyl sulfonamido) phthalocyanine, X-copper phthahcyanine pigment listed in the Color Index as Cl 74160, Cl Pigment Blue, and Anthrathrene Blue, identified in the Color Index as Cl 69810, Special Blue X-2137, and the like; while illustrative examples of yellow pigments that may be selected are diarylide yellow 3,3-dichlorobenzidene acetoacetanilides, a monoazo pigment identified in the Color Index as Cl 12700, Cl Solvent Yellow 16, a nitrophenyl amine sulfonamide identified in the Color Index as Foron Yellow SE/GLN, Cl Dispersed Yellow 33, 2,5-dimethoxy-4-sulfonanilide phenylazo-4'-chloro-2,5-dimethoxy acetoacetanilide, and Permanent Yellow FGL. The aforementioned pigments are incorporated into the toner composition in various suitable effective amounts providing the objectives of the present invention are achieved. In one embodiment, these colored pigment particles are present in the toner composition in an amount of from about 2 percent by weight to about 15 percent by weight calculated on the weight of the toner resin particles.
For the formulation of developer compositions, there are mixed with the toner particles carrier components, particularly those that are capable of triboelectrically assuming an opposite polarity to that of the toner composition. Accordingly, the carrier particles are selected to be of a 0 negative polarity enabling the toner particles, which are positively charged, to adhere to and surround the carrier particles. Illustrative examples of carrier particles include iron powder, steel, nickel, iron, ferrites, including copper zinc ferrites, and the like. Additionally, there can be selected as carrier particles nickel berry carriers as illustrated in U.S.
Patent 3,847,604.
The selected carrier particles can be used with or without a coating, the coating generally containing terpolymers of styrene, methylmethacrylate, and a silane, such as triethoxy silane, reference U.S.
Patent 3,526,533, U.S. Patent 4,937,166, and U.S. Patent 4,935,326 including for example KYNAR and polymethylmethacrylate mixtures (40/60). Coating weights can vary as indicated herein; generally, however, from about 0.3 to about 2, and preferably from about 0.5 to about 1.5 weight percent coating weight is selected.
Furthermore, the diameter of the carrier particles, preferably spherical in shape, is generally from about 50 microns to about 1,000 microns, and in embodiments about 175 microns thereby permitting them to possess sufficient density and inertia to avoid adherence to the electrostatic images during the development process. The carrier component can be mixed with the toner composition in various suitable combinations, however, best results are obtained when about 1 to 5 parts per toner to about 10 parts to about 200 parts by weight of carrier are selected .

, ~

21 2667n -19a-The toner composition of the present invention can be prepared by a number of known methods as indicated herein including extrusion melt blending the toner resin particles, pigment particles or colorants, and a charge enhancing additive, followed by mechanical attrition. Other methods include those well known in the art such as spray drying, melt dispersion, and extrusion processing. Also, as indicated herein the toner composition without the charge enhancing additive in the bulk . , 2,12667 ~ - 20 -toner can be prepared, followed by the addition of charge additive surface treated colloidal silicas.
The toner and developer compositions may be selected for use in electrostatographic imaging apparatuses containing therein 5 conventional photoreceptors providing that they are capable of being charged positively or negatively. Thus, the toner and developer compositions can be used with layered photoreceptors that are capable of being charged negatively, such as those described in U.S. Patent 4,265,990, the disclosure of which is totally incorporated herein by reference.
10 Illustrative examples of inorganic photoreceptors that may be selected for imaging and printing processes include selenium; selenium alloys, such as selenium arsenic, selenium tellurium and the like; halogen doped selenium substances; and halogen doped selenium alloys.
The toner compositions are usually jetted and classified subsequent to preparation to enable toner particles with a preferred average diameter of from about S to about 25 microns, and more preferably from about 8 to about 12 microns. Also, the toner compositions preferably possess a triboelectric charge of from about 0.1 to about 2 femtocoulombs per micron as determined by the known charge 20 spectrograph. Admix time for toners are preferably from about 5 seconds to 1 minute, and more specifically from about 5 to about 15 seconds as determined by the known charge spectograph. These toner compositions with rapid admix characteristics enable, for example, the development of images in electrophotographic imaging apparatuses, which images have 25 substantially no background deposits thereon, even at high toner dispensing rates in some instances, for instance exceeding 20 grams per minute; and further, such toner compositions can be selected for high speed electrophotographic apparatuses, that is those exceeding 70 copies per minute.
Also, the toner compositions prepared from resins of the present invention possess desirable narrow charge distributions, optimal charging triboelectric values, preferably of from 10 to about 40, and more preferably from about 10 to about 35 microcoulombs per gram as determined by the known Faraday Cage methods with from about 0.1 to about 5 weight percent in one embodiment of the charge enhancing additive; and rapid admix charging times as determined in the charge spectrograph of less than 15 seconds, and more preferably in some embodimentsfrom about 1 toabout 14seconds.

WO94/11412 21 ~6~ 7~ PCI/US93/09335 The following Examples are being supplied to further define various species of the present invention, it being noted that these Examples are intended to illustrate and not limit the scope of the present invention. Parts and percentages are by weight unless otherwise indicated. Comparative Examples are also provided.
COMPARATIVE EXAMPLE I
Suspension Free Radical Polymerization of Styrene Without A Stable Free Radical Agent A suspension of tricalcium phosphate (3.0 g) in a solution of Alkanol (48 mg), a naphthalene sulfonate available from DuPont, in water (100 mL) was added to a modified Parr reactor and the reactor was heated to 80~C over 30 minutes while it was purged with nitrogen. A solution of benzoyl peroxide (2.0 9, 0.008 mol) in styrene (78 9, 0.75 mol) was added to the reactor under 60 pounds per square inch of nitrogen and the reaction was continued at 80~C for three hours and twenty minutes. The reaction was then heated to 95~C and continued at that temperature for an additional two hours and twenty mihutes. Samples were removed from the reactor at the time interval or reaction time in minutes indicated in Table I, cooled, treated with concentrated nitric acid to dissolve the suspending agent, rinsed with water and dried. The molecular weight properties of the intermediate materials and the final polystyrene product are shown in Table I. Polydispersity (MWlMn) is indicated in the column labeled PD.
EXAMPLE I
Suspension Free Radical Polymerization of Styrene with a Stable Free Radical Agent Additive (TEMPO) A suspension of tricalcium phosphate (3.0 g) in a solution of Alkanol (48 mg) in water (100 mL) was added to a modified Parr reactor and the reactor was heated to 80~C over 30 minutes while it was purged with nitrogen. A solution of benzoyl peroxide (3.2 9, 0.013 mol) and TEMPO (1 9, 0.0064 mol), a stable free radical, in styrene (78 9, 0.75 mol) was added to the reactor under 60 pounds per square inch of nitrogen and the reaction was continued at 80~C for three hours and thirty minutes. The reaction was then heated to 95~C and continued at that temperature for an additional one hour and twenty minutes. Samples were removed from the reactor at time intervals as indicated in Table II, cooled, treated with concentrated nitric acid to dissolve the suspending agent, rinsed with water and dried. The molecular weight properties of the intermediate materials and the final polystyrene product are shown in Table II.

2~6 6 ~ - 22 -Table I

Example I (grtaSFR) TjRmae(tmoin~ ) Mn(103) M~103) PD

Ia 0 60 18.9 33.01.75 Ib 0 120 17.9 32.81.83 Ic 0 200 16.4 32.01.9~
Id 0 280 13.0 30.62.36 Table I shows the change of molecular weight with time of a typical suspension free radical polymerization reaction (control reaction).
Note that high molecular weight polymers are obtained immediately (Ia) since the polymer chains are initiated and grow in milliseconds to a given 5 length and then terminate. As the,reaction continues and monomer is consumed, the Mn and Mw are reduced because the polymer chains initiated later in the reaction have less free monomer available for continued grov~th and so terminate at shorter chain lengths. As the reaction proceeds and the viscosity of the reaction medium increases, the 20 polydispersity (P~), that is the molecular weight distribution (Mw/Mn), of the resin increases from 1.75 to 2.36.

Table II

Samples (gtaSFs) TReaction M ( PD
Ia 1.0 60 1.6 4.3 2.76 Ib 1.0 95 9.4 18.1 1.93 Ic 1.0 200 17.8 32.9 1.85 Id 1.0 310 20.4 38.3 1.87 Table II shows the molecular weight changes of a free radical polymerization in the presence of a stable free radical ager.t. At the beginning of the reaction (Ia) the molecular weight is very low but 35 continues to increase as the reaction proceeds indicating that pseudoliving chains continue to add monomer units. In comparative Example I, in some cases monomer only adds to a given polymer chain for a fraction of a second and then termination occurs. In the presence of a stable free radical agent, monomers continue to add to a given chain over the course -23- - 2~26~
of several hours and will continue to add monomer units for as long as there is monomer present in the reaction mixture. The polydispersity of the final product is smaller or less disperse in the stable free radical moderated polymerization of Example I (Id) than in the Control Example I
5 (Id). When Example I reaction is performed at temperatures below 100 degrees centigrade and the TEMPO to BPO molar ratio is less than one as is the case in Example I, only modest improvement, from 2.36 to 1.87, in polydispersity is achieved.
EXAMPLE II
10 Bulk Polymerization of Styrene with a Stable Free Radical Agent (TEMPO) A solution of styrene (15 9, 0.144 mol), benzoyl peroxide ~0.385 9, 0.0016 mol) and TEMPO (0.292 9, 0.0019 mol) was heated under argon for 3.5 hours at 95~C. It is assumed, based on the half-life of benzoyl peroxide (BPO) and that TEMPO is known to act as a promoter for the dissociation of benzoyl peroxide, that no benzoyl peroxide remains in the reaction mixture after this time. The reaction mixture is heated to 123~C over a period of 45 minutes and the reaction was continued at this temperature for 69 hours. Samples were removed from the reaction mixture over the course of the reaction as indicated and the molecular weight properties of the polystyrene products and percent conversion values of these samples are summarized in Table III.
Example II demonstrates that the reaction can be conveniently accomplished in the absence of a solvent or in bulk. As indicated by the incremental increase in molecular weight the reaction appears to be 25 proceedir.g via a pseudoliving mechanism. The molar ratio of TEMPO to BPO was 1.3 compared to Experiment l which had a ratio of 0.5. After the 95~C heating period no polymeric material was observed by gel permeation chromatography(GPC). Reacting this mixture at 123~C resulted in very narrow polydispersities (1.26). In Example II, polydispersities below 30 the aforementioned theoretical calculated value of 1.5 for the free radical polymerization of styrene, were achieved. Note also that the polydispersity of the polystyrene product does not increase with percent conversion. This Example also provides a demonstration of achieving high percent conversions of monomer to polymer while retaining narrow 35 polydispersities in the polymeric resin products.
EXAMPLE III
Solution Polymerization of Styren~ in Toluene with a Stable Free Radical Agent Additive A solution of styrene (7.5 9, 0.072 mol), benzoyl peroxide (0.1509, 0.0006 mol) and TEMPO (0.097 9, 0.0006 mol) was added, under 6rl & - 24 - .~
argon, to refluxing toluene (10 mL) heated in an oil bath maintained for 7 hours at 125~C. The solution was cooled and maintained at room temperature for 16 hours. The solution was thereafter heated for an additional 5.75 hours. Samples were withdrawn from the reaction mixture 5 as indicated and the molecular weight properties of these polystyrene intermediates and products are shown in Table IV. The Example demonstrates that stable free radical agent moderated reactions can be performed in solution. The molecular weights increase with time in an incremental or linear fashion and narrow polydispersities are obtained.
Table III
Example Reaction M (103) Mw(1o3) PD Conversion IIa 21 1.7 2.2 1.28 20 IIb 29 3.2 4.1 1.27 51 IIc 45 6.8 8.2 1.21 76 IId 69 8.7 10.9 1.26 90 Other control reactions were conducted where the reaction temperature was lower (95~C) and the TEMPO to BPO molar ratio was lower, for example, 0.5 compared to 1.0 of Example III. The reactions employing lower temperatures and lower TEMPO to BPO molar ratios failed to proceed by a pseudoliving mechanism and appeared to proceed by a conventional free radical polymerization mechanism and as a result, high molecular weight polystyrene material was obtained early in the reaction and the polydispersity was not significantly narrower than a control. That is, at lower reaction temperatures and lower TEMPO to BPO
molar ratios the polydispersity of the product polystyrenes were higher than with the conditions used for the stable free radical moderated polymerizations of styrene.
EXAMPLE IV
Bulk Polymerization of Styrene at 150~C. A solution of styrene (15 g, 0.144 mol), benzoyl peroxide (0.150 g, 0.00062 mol) and TEMPO (0.125 g, 0.00080 mol) was heated, under argon, in an oil bath maintained at 1 50~C
for 6.5 hours. The molecular weight properties of the resulting polystyrene polymer are shown in Table V. By increasing the oil bath temperature from 125~C to 150~C, the reaction times can be dramatically WO 94/11412 21 ~ 6 6 7 0 PC,/US93,09335 reduced. In Example II, the oil bath temperature was 123~C and the reaction time for 90% conversion required about 69 hours. With an oil bath tem~era~ure of 150~C, 86% conversion can be obtained in 6.5 hours.
In contrast to Exampie II no prior reaction at 95~C was required and no 5 broadening of the polydispersity results even when all reactants and reagent are immediately reacted together at high temperature.
Table IV

Sample Reaction Mn Mw PD
IIIa 1.25 680 1725 2.5 IIIb 3.6 1132 2119 1.9 IIIc 7.1 1997 2743 1.4 IIId 12.9 3411 4409 1.3 Table V

20Example V Mn(103) MW(103) PD Conversion IVa 14.0 17.3 1.24 86 EXAMPLE V
Bulk Poly.. ,eriLa~ion of Styrene at 150~C. A solution of styrene (15 9, 0.144 mol), benzoyl peroxide (0.075 9, 0.00031 mol) and TEMPO (0.063 9, 0.00040 mL) was heated, under argon, in an oil bath maintained at 150~C
- for 7 hours. The molecular weight properties of the resutting polystyrene polymer are shown in Table VI.
EXAMPLE VI
Bulk Polymerization of Styrene at 150~C. A solution of styrene (15 9, 0.144 mol), benzoyl peroxide (0.075 9, 0.00031 mol) and TEMPO ~0.073 g, 0.00047 mol) was heated, under argon, in an oil bath maintained at 1 50~C
35 for 7 hours. The molecular weight of the resulting polystyrene polymer are shown in Table VI.
EXAMPLE VII
Bulk POIYIIIE. i~ation of Styrene at 150~C. A solution of styrene (159, 0.144 mol), benzoyl peroxide (0.0759, 0.00031 mol) and TEMPO (0.0879, O.G0056 J~,6rl ~ - 26 -mol) was heated, under argon, in an oil bath maintained at a temperature of 150~C for 7 hours. The physical properties of the resulting polystyrene polymer are shown in Table VI.
Table VI

Example BPO Mn(103) Mw(103) PDConversion V 1.3 26.9 35.4 1.3 86 VI 1.5 16.0 21.1 1.2 92 VII 1.8 13.9 17.1 1.3 86 In Examples V, VI and VII, the ratio of benzoyl peroxide to styrene is kept constant while the molar ratio of TEMPO to benzoyl peroxide is varied. It can be seen that the TEMPO/BPO molar ratio has little affect on the conversion when the reaction is performed in an oil bath maintained at 150~C. It is believed that the difference in conversions of 86% and 92% is within experimental error of the method used to calculate percent conversion as determined by gas chromatography on a Carbowax 20 20M column, available from Supelco.
There is a pronounced influence of the TEMPO/BPO molar ratio on the molecular weight of the resulting polymer. As the TEMPO/BPO
molar ratio is increased, the molecular weight of the resulting polymer decreases indicating that the more TEMPO that is present, the more 25 efficient the free radical initiator, that is the same amount of free radicalinitiator is capable of initiating more polymer chains sooner than at lower TEMPO to BPO molar ratios. Therefore, it would appear that the free radical initiator efficiency can be influenced by the amount of stable free radical agent used.
EXAMPLE VIII
Bulk Polymerization of Styrene for High Molecular Weight Polystyrene A
solution of styrene (15 9, 0.144 mol), benzoyl peroxide (0.025 g, 0.00010 mol) and TEMPO (0.021 9, 0.00013 mol) was heated, under argon, in an oil bath maintained at 150~C for 2.5 hours. The molecular weight properties 35 of the resulting polymer are shown in Table VII. This experiment demonstrates that the molecular weight of the product polymer resin can be controlled by varying the amount of BPO used and that high molecular weight resins can be obtained while maintaining narrow polydispersities.

WO 94/11412 2 1 ~ ~ 6 7 o PCI/US93/09335 Table VII
Example Mn(103) MW(103) PD
VIII 57.7 67.0 1.16 EXAMPLE IX
Suspension Copolymerization of Styrene and Myrcene Without a Stable Free Radical Agent A suspension of to dissolve residual suspension agent tricalcium phosphate (3.0 9) in a solution of Alkanol (48 mg) in water (100 mL) was added to a modified Parr reactor and the reactor was heated to 95~C over 30 minutes while it was purged with nitrogen. A solution of benzoyl peroxide (5.0g, 0.021 mol) and TAEC[O,0-t-amyl-0-(2-ethylhexyl)monoperoxycarbonate] (0.2 mL), in styrene (46.8 9, 0.45 mol) and myrcene (10.6 9, 0.08 mol) was added to the reactor under 60 pounds per square inch of nitrogen and the reactor was heated at 95 ~C for 192 m i nutes, heated to 125 ~C over 40 m inutes a nd maintained at 1 25~C for one hour. The reactor was cooled and the copolymer was removed from the reactor, treated with concentrated nitric acid, rinsed with water to yield a 20 thick oil that gave a slightly off-white solid when precipitated from a methylene chloride solution into methanol. The molecular weight properties of the styrene-myrcene copolymer material are shown in Table VIII.
EXAMPLE X
25 Suspension Copolymerization of Styrene and Myrcene with a Stable Free Radical Agent ( TEMPO) A suspension of tricalcium phosphate (3.0 9) in a solution of Alkanol (48 mg) in water (100 mL) was added to a modified Parr reactor and the reactor was heated to 95~C over 30 minutes while it was purged yvith nitrogen. A solution of benzoyl peroxide (0.30 g, 0.012 mol) and TEMPO (0.20 g, 0.0013 mol), in styrene (60 9, 0.58 mol) and myrcene (10 g, 0.07 mol) was added to the reactor under a pressure of nitrogen and the reactor was heated to 143~C over 15 minutes and then maintained at that temperature for 7.5 hours. The reactor was cooled and the copolymer was removed from the reactor, treated with concentrated nitric acid, rinsed with water to yield a thick oil that gave a slightly off-white solid when precipitated from a methylene chloride solution into methanol. The molecular weight properties of the styrene-myrcene copolymer material are shown in Table VIII. The lH NMR of the sample confirmed the product to be a copolymer of styrene and myrcene.

WO 94/11412 PCr/US93/09335 ~,~'1,6Ç~ 28-Table VIII
Example ~Mn(103) MW(103) PD
IX 8.7 38.9 4.4 X 19.2 31.3 1.6 Examples IX and X demonstrate that copolymers can be obtained and that narrow polydispersities are maintained using processes of the instant invention. The control reaction Example IX is a typical free radical suspension polymerization process that gives a copolymer with approximately the same Mw as the copolymer prepared in the presence of TEMPO as Example X. The Example X reaction performed in the presence of TEMPO yielded a copolymer with a polydispersity of 1.6 which was considerably lower than the polydispersity 4.4 value obtained without a stable free radical agent present.
In Example X, in the presence of TEMPO the monomer to BPO
molar ratio was 1:542, whereas, in the control reaction in Example IX the ratio was 1:25. It would appear that the TEMPO has an affect on the initiator efficiency and greatly improves it. This enhanced efficiency feature allows the use of considerably tess initiator to prepare a copolymer of a given molecular weight as compared to a free radical polymerization process without a stable free radical agent present.
EXAMPLE XI
Magnetic Toner Preparation and Evaluation The polymer resin (74 weight percent of the total mixture) obtained by the stable free radical polymerization processes in Example I may be melt extruded with 10 weight percent of REGAL 3300 carbon black and 16 weight percent of MAPICO BLACK0 magnetite at 120~C, and the extrudate pulverized in a Waring blender and jetted to 8 micron number average sized particles. A
positively charging magnetic toner may be prepared by surface treating the jetted toner (2 grams) with 0.12 gram of a 1:1 weight ratio of AEROSIL
R9720 (Degussa) and TP-302 a naphthalene sulfonate and quaternary ammonium salt (Nachem/Hodogaya Sl) charge control agent.
Developer compositions may then be prepared by admixing 3.34 parts by weight of the aforementioned toner composition with 96.66 parts by weight of a carrier comprised of a steel core with a polymer mixture thereover containing 70 percent by weight of KYNAR0, a polyvinylidene fluoride, and 30 percent by weight of polymethyl WO 94/11412 2 1 2 gj ~ 7 o PCI/US93/09335 methacrylate; the coating weight being about 0.9 percent. Cascade development may be used to develop a Xerox Model D photoreceptor using a "negative" target. The light exposure may be set between 5 and 10 seconds and a negative bias used to dark transfer the positive toned 5 images from the photoreceptor to paper.
Fusing evaluations may be carried out with a Xerox 5028~ soft silicone roll fuser, operated at 7.62 cm (3 inches) per second.
The minimum fix and hot offset temperatures of stable free radical polymerization polymers having narrow polydispersities as toners 10 are expected to be improved over toners prepared from resins synthesized by a free radical polymerization process without a stable free radical agent present affording broad polydispersities. The actual fuser roll temperatures may be determined using an Omega pyrometer and was checked with wax paper indicators. The degree to which a developed toner image adhered to paper after fusing is evaluated using a Scotch0 tape test. The fix level is expected to be excellent and comparable to that fix obtained with toner compositions prepared from other methods for preparing toners having resins with high molecular weights and narrow polydispersities. Typically greater than 95 percent of the toner image 20 remains fixed to the copy sheet after removing a tape strip as determined by a densitometer.
Images may be developed in a xerographic imaging test fixture with a negatively charged layered imaging member comprised of a supporting substrate of aluminum, a photogenerating layer of trigonal 25 selenium, and a charge transport layer of the aryl amine N,N'-diphenyl-N,N'-bis(3-methylphenyl)1,1'-biphenyl-4,4'-diamine, 45 weight percent, dispersed in 55 weight percent of the polycarbonate MAKROLON~, reference U.S. Patent 4,265,990, the disclosure of which is totally incorporated herein by reference; images for toner compositions prepared 30 from the copolymers derived from for example, Example XI are expected to be of excellent quality with no background deposits and of high resolution over an extended number of imaging cycles exceeding, it is believed, about 75,000 imaging cycles.
Other toner compositions may be readily prepared by 35 conventional means from the polymer and copolymer resins of the present invention including colored toners, single component toners, multi-component toners, toners containing speciai performance additives, and the like.

WO 94/11412 PCI'/US93/09335 2~ 6~;r? 9 30-The aforementioned stable free radical agent moderated polymerization process may be applied to a wide range of organic monomers to provide novel toner resin materials with desirable electrophotographic properties. For example, the block copolymers have 5 application as dispersants for photoreceptor pigments. The multimodal resins have application to low melt resins and certain monomodal resins may be used to modify the surface of carbon black and pigment particles to make the pigment particles more miscible with a host polymer or dispersing medium. Narrow molecular weight resins such as poly(styrene-10 butadiene) find application as improved toner resins for generalapplication.
Other modifications of the present invention may occur to those skilled in the art based upon a review of the present application and these modifications, including equivalents thereof, are intended to be included within the scope of the present invention.

Claims (46)

WHAT IS CLAIMED IS:
1. A free radical polymerization process for the preparation of a thermoplastic resin or resins comprising:
heating from about 100 to about 160°C a mixture comprised of a free radical initiator, a stable free radical agent, and at leastone polymerizable monomer compound to form said thermoplastic resin or resins with a high monomer to polymer conversion and a narrow polydispersity;
cooling said mixture;
optionally isolating said thermoplastic resin or resins; and optionally washing and drying said thermoplastic resin or resins.
2. A free radical polymerization process for the preparation of thermoplastic resins comprising:
heating a first mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form a first intermediate product resin;
optionally cooling said first mixture;
adding to said first intermediate product resin a second mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound, wherein said polymerizable monomer compound of said second mixture contains the same components as said polymerizable monomer compound of said first mixture, and said free radical initiator and said stable free radical agent of said second mixture are the same or different from said free radical initiator and said stable free radical agent of said first mixture, and wherein there is formed a combined mixture;
heating said combined mixture to form a third mixture comprised of a mixture of thermoplastic resins comprised of a first product resin formed from said first intermediate product resin and added said second monomer and a second product resin formed from said second monomer;
cooling said third mixture;
optionally isolating said mixture of thermoplastic product resins from said third mixture; and optionally washing and drying said mixture of thermoplastic resins and wherein said first product resin and said second product resin each possess a narrow polydispersity.
3. A free radical polymerization process for the preparation of a block copolymer thermoplastic resin or resins comprising:
heating a first mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form a first intermediate product resin;
optionally cooling said first mixture;
optionally isolating said first intermediate product resin;
adding to said first intermediate product resin a second mixture comprised of at least one polymerizable monomer compound, wherein said polymerizable monomer compound of said second mixture is different from said polymerizable monomer compound of said first mixture, to form a combined mixture;
heating said combined mixture to form a third mixture comprised of a block copolymer thermoplastic resin comprised of a first product resin formed from said first intermediate product resin and added said second monomer;
cooling said third mixture;
optionally isolating said block copolymer thermoplastic resin from said third mixture; and optionally washing and drying said block copolymer thermoplastic resin.
4. A process in accordance with claim 1 wherein the heating is conducted in a solvent or diluent.
5. A process in accordance with claim 1 wherein the heating of said mixture is conducted with said mixture as a suspension in water or in a polar liquid which is not miscible with said monomer compound.
6. A process in accordance with claim 1 wherein the heating of said mixture is conducted with said mixture neat or in the absence of solvent.
7. A process in accordance with claim 1 wherein the thermoplastic resin product has a polydispersity of from about 1.1 to about 1.45 and a monomer to polymer conversion of greater than 50 percent.
8. A process in accordance with claim 1 wherein the heating is from about 1 to 60 hours.
9. A process in accordance with claim 1 wherein said polydispersity of said thermoplastic resin remains about constant throughout said polymerization process.
10. A process in accordance with claim 1 wherein said free radical initiator is selected from the group consisting of organic peroxides, azobisalkylnitriles, peroxycarbonates, and mixtures thereof.
11. A process in accordance with claim 1 wherein the stable free radical agent is comprised of a nitroxide stable free radical.
12. A process in accordance with claim 1 wherein the stable free radical agent is comprised of nitroxide stable free radicals selected from the group of consisting of 2,2,5,5-tetramethyl-1-pyrrolidinyloxy, derivatives thereof, 2,2,6,6-tetramethyl-1-piperidinyloxy, derivatives thereof, and mixtures thereof.
13. A process in accordance with claim 1 wherein the stable free radical agent to free radical initiator molar ratio is from about 0.4 to 2.5.
14. A process in accordance with claim 1 wherein the stable free radical agent to free radical initiator molar ratio is from about 0.9 to 1.8.
15. A process in accordance with claim 1 wherein the monomer to free radical initiator molar ratio is from about 100:1 to about 10,000:1.
16. A process in accordance with claim 1 wherein said monomer to polymer conversion is at least 90 percent by weight.
17. A process in accordance with claim 1 wherein the monomer compound is selected from the group consisting of styrene and derivatives thereof, conjugated dienes and derivatives thereof, acrylates and derivatives thereof, and mixtures thereof.
18. A process in accordance with claim 1 wherein said heating is from about 110°C to about 160°C.
19. A process in accordance with claim 1 wherein said thermoplastic resin has a gel content of from 0.0 to about 0.5 weight percent.
20. A process in accordance with claim 1 wherein the weight average molecular weight (Mw) of the resin or resins are from 10,000 to 200,000.
21. A process in accordance with claim 1 wherein the heating is from about 100 to about 160 °C and wherein the polymeric chains of said resin are formed simultaneously at from about 0 to 10 minutes after said heating has attained about 100°C.
22. A process in accordance with claim 1 further comprising adding an organic sulfonic or organic carboxylic acid during heating of said mixture thereby increasing the rate of formation of said thermoplastic resin or resins from said polymerization of said monomer compound.
23. A process in accordance with claim 1 further comprising adding a tertiary amine promoter compound to said mixture thereby increasing the rate of dissociation of said free radical initiator and where said free radical initiator is an organic peroxide.
24. A process in accordance with claim 1 wherein said thermoplastic resin or resins has a polydispersity of from about 1.1 to about 2.0 and a monomer to polymer conversion of about 50 to about 90 percent.
25. A process in accordance with claim 1 wherein the molar ratio of monomer to stable free radical agent to free radical initiator is from about 100:0.2:1 to about 10,000:2.5:1.
26. A free radical polymerization process for the preparation of a thermoplastic resin or resins comprising:
heating from about 100 to about 160°C for an effective time period a water suspension mixture comprised of a peroxide free radical initiator, a nitroxide stable free radical agent, and at least one polymerizable monomer compound to form said thermoplastic resin or resins;
cooling said mixture;
optionally isolating said thermoplastic resin or resins; and optionally washing and drying said thermoplastic resin or resins, wherein said thermoplastic resin possesses a narrow polydispersity of from about 1.1 to about 1.5, a modality of 1, and wherein the process affords a monomer to polymer conversion of from about 10 to about 100 percent.
27. A toner composition comprised of pigment particles, and resin comprised of at least one resin obtained from the polymerization process of Claim 1.
28. A free radical polymerization process for the preparation of a multiblock copolymer thermoplastic resin or resins comprising:
heating a first mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form a first intermediate product resin;
optionally cooling said first mixture;
optionally isolating said first intermediate product resin;
adding to said first intermediate product resin a second mixture comprised of at least one polymerizable monomer compound, wherein said polymerizable monomer compound of said second mixture is different from said polymerizable monomer compound of said first mixture, to form a combined mixture;
heating said combined mixture to form a third mixture comprised of a block copolymer thermoplastic resin comprised of a first product resin formed from said first intermediate product resin and added said second monomer;
cooling said third mixture;
optionally isolating said third mixture;
sequentially repeating the preceding steps of adding, heating and cooling, N times, to form a fourth mixture containing a multiblock copolymer thermoplastic resin or resins having N + 2 blocks and wherein N is the number of times said sequence is repeated;
optionally isolating said multiblock copolymer thermoplastic resin from said fourth mixture; and optionally washing and drying said multiblock copolymer thermoplastic resin and wherein said multiblock copolymer thermoplastic resin possesses a narrow polydispersity and a modality of 1.
29. A process in accordance with Claim 28, wherein N is from 1 to about 20.
30. A process in accordance with Claim 2, wherein the mixture of thermoplastic resins possesses a modality of 2.
31. A process in accordance with Claim 3, wherein said block copolymer possesses a narrow polydispersity and a modality of 1.
32. A toner composition comprised of pigment particles, and resin comprised of resins obtained from the polymerization process of Claim 2.
33. A toner composition comprised of pigment particles, and resin comprised of at least one resin obtained from the polymerization process of Claim 3.
34. A polymer or copolymer resin composition obtained by the process of Claim 2 wherein said resins have a weight average molecular weight (Mw) of from about 10,000 to 200,000 and a number average molecular weight (Mn) of from about 9,000 to about 100,000 and a polydispersity of about 1.1 to 2Ø
35. A process in accordance with Claim 1 wherein said heating is for a period of from about 30 minutes to 30 hours.
36. A process in accordance with Claim 1 wherein the stable free radical agent to free radical initiator molar ratio SFR:INIT is from about 1.2 to 1.8.
37. A process in accordance with Claim 26 wherein said effective time period is from about 30 minutes to 10 hours.
38. A process in accordance with Claim 1 wherein said high monomer to polymer conversion is of from about 10 to about 100 percent and said narrow polydispersity is in excess of about 1.0 to about 2Ø
39. A process in accordance with Claim 1 wherein said free radical initiator has a half life of less than or equal to 10 minutes at above 100°C.
40. A process in accordance with Claim 1 wherein said free radical initiator has a half life of less than or equal to 1 minute at above 100°C.
41. A process in accordance with Claim 1 wherein said free radical initiator has a half life of from about 5 seconds to about 10 minutes at above 100°C.
42. A process in accordance with Claim 1 wherein said high conversion is from about 50 to 100 percent.
43. A process in accordance with Claim 1 wherein said narrow polydispersity in from about 1.1 to about 1.45.
44. A process in accordance with Claim 1 wherein said narrow polydispersity in from about 1.1 to about 1.45 and wherein said conversion is from about 10 to 100 percent.
45. A free radical polymerization process for the preparation of a thermoplastic resin or resins comprising heating from about 100 to about 160°C
a mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form said thermoplastic resin or resins with a narrow polydispersity.
46. A polymerization process for the preparation of a thermoplastic resin or resins comprising heating from about 100 to about 160°C a mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form said thermoplastic resin or resins with a high monomer to polymer conversion and a narrow polydispersity.
CA002126670A 1992-11-16 1993-10-01 Polymerization processes and toner compositions therefrom Expired - Fee Related CA2126670C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/976,604 1992-11-16
US07/976,604 US5322912A (en) 1992-11-16 1992-11-16 Polymerization processes and toner compositions therefrom

Publications (2)

Publication Number Publication Date
CA2126670A1 CA2126670A1 (en) 1994-05-26
CA2126670C true CA2126670C (en) 1997-12-16

Family

ID=25524269

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002126670A Expired - Fee Related CA2126670C (en) 1992-11-16 1993-10-01 Polymerization processes and toner compositions therefrom

Country Status (13)

Country Link
US (3) US5322912A (en)
EP (1) EP0621878B1 (en)
JP (1) JP3260023B2 (en)
KR (1) KR100260274B1 (en)
CN (1) CN1046538C (en)
AU (1) AU5295593A (en)
BR (1) BR9305751A (en)
CA (1) CA2126670C (en)
DE (1) DE69329848T2 (en)
ES (1) ES2153388T3 (en)
MX (1) MX9307085A (en)
MY (1) MY134744A (en)
WO (1) WO1994011412A1 (en)

Families Citing this family (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0754196B1 (en) * 1994-04-04 2000-06-28 Xerox Corporation Aqueous polymerization processes
US5487847A (en) * 1994-04-11 1996-01-30 Xerox Corporation Process for the preparation of conductive polymeric particles with linear and crosslinked portions
US5412047A (en) * 1994-05-13 1995-05-02 Xerox Corporation Homoacrylate polymerization processes with oxonitroxides
US6258911B1 (en) * 1994-08-18 2001-07-10 Xerox Corporation Bifunctional macromolecules and toner compositions therefrom
US5545504A (en) * 1994-10-03 1996-08-13 Xerox Corporation Ink jettable toner compositions and processes for making and using
US6320007B1 (en) * 1994-11-18 2001-11-20 Xerox Corporation Process for producing thermoplastic resin polymers
US5449724A (en) * 1994-12-14 1995-09-12 Xerox Corporation Stable free radical polymerization process and thermoplastic materials produced therefrom
US5530079A (en) * 1995-01-03 1996-06-25 Xerox Corporation Polymerization processes
US5610249A (en) * 1995-01-24 1997-03-11 Kansai Paint Co., Ltd. Process for production of styrene or styrene derivative polymer of narrow molecular weight distrubition
FR2730241B1 (en) * 1995-02-07 1997-02-28 Atofina PROCESS FOR MANUFACTURING A COMPOSITION COMPRISING A VINYLAROMATIC POLYMER AND A RUBBER BY POLYMERIZATION IN THE PRESENCE OF A FREE STABLE RADICAL
FR2730240A1 (en) * 1995-02-07 1996-08-09 Atochem Elf Sa STABILIZATION OF A POLYMER BY A STABLE FREE RADICAL
US5529719A (en) * 1995-03-27 1996-06-25 Xerox Corporation Process for preparation of conductive polymeric composite particles
US5498679A (en) * 1995-03-30 1996-03-12 Xerox Corporation Process for producing telechelic, branched and star thermoplastic resin polymers
JPH08269107A (en) * 1995-03-30 1996-10-15 Xerox Corp Free radical polymerization method
US5773510A (en) * 1995-03-30 1998-06-30 Xerox Corporation Processes for the preparation of branched polymers
US5608023A (en) * 1995-03-30 1997-03-04 Xerox Corporation Rate enhanced polymerization processes
KR100333508B1 (en) * 1995-03-31 2002-07-18 타다시 마츠다 Process for preparing solvent-type acrylic pressure-sensitive adhesives and medical pressure-sensitive adhesive
DE19516967A1 (en) * 1995-05-12 1996-11-14 Basf Ag Process for the preparation of polymers of vinylic monomers with a narrow molecular weight distribution by controlled radical polymerization
US5928611A (en) * 1995-06-07 1999-07-27 Closure Medical Corporation Impregnated applicator tip
US6676322B1 (en) * 1995-06-07 2004-01-13 Closure Medical Corporation Impregnated applicator tip
US20020018689A1 (en) * 1995-06-07 2002-02-14 Badejo Ibraheem T. Adhesive applicators with improved polymerization initiators
US6217603B1 (en) 1997-08-29 2001-04-17 Closure Medical Corporation Methods of applying monomeric compositions effective as wound closure devices
JP3296153B2 (en) * 1995-09-06 2002-06-24 住友化学工業株式会社 Method for producing styrenic polymer, styrenic resin composition and molded article thereof
US5627248A (en) * 1995-09-26 1997-05-06 The Dow Chemical Company Difunctional living free radical polymerization initiators
US5739229A (en) * 1995-11-07 1998-04-14 Xerox Corporation Polymerization processes
KR970027117A (en) * 1995-11-10 1997-06-24 고사이 아끼오 Process for producing styrene based polymer
US5552502A (en) * 1995-11-16 1996-09-03 Xerox Corporation Polymerization process and compositions thereof
EP0876414B1 (en) 1996-01-25 1999-08-25 Basf Aktiengesellschaft Block copolymers
US5604076A (en) * 1996-02-01 1997-02-18 Xerox Corporation Toner compositions and processes thereof
JP3344201B2 (en) * 1996-03-27 2002-11-11 住友化学工業株式会社 Method for producing styrenic polymer
CN1130403C (en) * 1996-03-29 2003-12-10 陶氏环球技术公司 In situ block copolymer formation during polymerization of vinyl axomatic monomer
JPH09291106A (en) * 1996-04-25 1997-11-11 Kansai Paint Co Ltd Preparation of curable styrene resin having narrow molecular weight distribution
FR2748484B1 (en) * 1996-05-13 1998-07-24 Atochem Elf Sa POLYMERIZATION IN THE PRESENCE OF A STABLE FREE RADICAL AND A FREE RADICAL INITIATOR
KR970064016U (en) 1996-05-31 1997-12-11 Front panel of VSI
WO1997046593A1 (en) * 1996-06-04 1997-12-11 Elf Atochem S.A. Method for preparing telechelic 1,3-diene oligomers by the controlled free radical polymerization of 1,3-dienes in presence of a stable free radical
US5723511A (en) * 1996-06-17 1998-03-03 Xerox Corporation Processes for preparing telechelic, branched and star thermoplastic resin polymers
KR100427677B1 (en) * 1996-08-07 2004-07-16 간사이 페인트 가부시키가이샤 Process for production of styrene or styrene derivative polymer of narrow molecular weight distribution
US5728747A (en) * 1996-08-08 1998-03-17 Xerox Corporation Stable free radical polymerization processes and compositions thereof
US5910549A (en) * 1996-08-22 1999-06-08 Carnegie-Mellon University Method for preparation of alkoxyamines from nitroxyl radicals
US6075105A (en) * 1996-08-26 2000-06-13 Xerox Corporation Polymerization processes and resin particles formed thereby
DE19636996A1 (en) 1996-09-12 1998-03-19 Basf Ag Process for the preparation of polymers in the presence of triazolyl radicals
FR2755969B1 (en) * 1996-11-20 1998-12-24 Atochem Elf Sa POLYMERIZATION IN THE PRESENCE OF A STABLE FREE RADICAL AND AN INIFERTER
US5744560A (en) * 1997-01-21 1998-04-28 Xerox Corporation Metal accelerated polymerization processes
WO1998037105A1 (en) * 1997-02-19 1998-08-27 Ciba Specialty Chemicals Holding Inc. (co)polymers by photopolymerization
US6242546B1 (en) * 1997-02-24 2001-06-05 Daicel Chemical Industries, Ltd. Process for producing vinyl polymers
US6281311B1 (en) * 1997-03-31 2001-08-28 Pmd Holdings Corp. Controlled free radical polymerization process
US5968705A (en) * 1997-05-23 1999-10-19 Nippon Zeon Co., Ltd. Process for producing a polymerized toner
US6111025A (en) * 1997-06-24 2000-08-29 The Lubrizol Corporation Block copolymer surfactants prepared by stabilized free-radical polymerization
US6156858A (en) * 1997-06-25 2000-12-05 Xerox Corporation Stable free radical polymerization processes
DE19727505A1 (en) * 1997-06-27 1999-01-07 Basf Ag Preparation of radically initiated aqueous polymer dispersion
DE19727502A1 (en) * 1997-06-27 1999-01-07 Basf Ag Radical emulsion polymerisation of ethylenic monomers in presence of N-oxyl radicals
DE69812633T2 (en) * 1997-07-15 2003-10-23 Ciba Sc Holding Ag POLYMERIZABLE COMPOSITIONS CONTAINING ALKOXYAMINE COMPOUNDS DERIVED FROM NITRONE OR NITROSO COMPOUNDS
US5817824A (en) * 1997-08-01 1998-10-06 Xerox Corporation Processes for stabel free radicals
CN1134408C (en) 1997-08-07 2004-01-14 巴斯福股份公司 Process for stabilising (metha) acrylic acid esters against unwanted radical polymerisation
US5891971A (en) * 1997-08-15 1999-04-06 Xerox Corporation Polymerization processes
DE19738081A1 (en) * 1997-09-01 1999-03-04 Basf Ag Process for the production of particulate polymers using a stable N-oxyl radical
FR2768739B1 (en) 1997-09-19 2004-08-06 Atochem Elf Sa SHOCK VINYLAROMATIC POLYMER OBTAINED FROM A RUBBER CARRIER OF A GROUP GENERATING A STABLE FREE RADICAL
US6368239B1 (en) 1998-06-03 2002-04-09 Cabot Corporation Methods of making a particle having an attached stable free radical
AU1283099A (en) 1997-10-31 1999-05-24 Cabot Corporation Particles having an attached stable free radical, polymerized modified particles, and methods of making the same
US6068688A (en) * 1997-11-12 2000-05-30 Cabot Corporation Particle having an attached stable free radical and methods of making the same
JPH11166005A (en) * 1997-12-03 1999-06-22 Menicon Co Ltd Production of molding
FR2773158B1 (en) 1997-12-30 2000-02-04 Atochem Elf Sa METHOD OF CONTROLLED RADICAL POLYMERIZATION INVOLVING A LOW QUANTITY OF STABLE FREE RADICAL
US6107425A (en) * 1998-02-06 2000-08-22 Shipley Company, L.L.C. Narrow molecular weight distribution polymers and use of same as resin binders for negative-acting photoresists
DE19806853A1 (en) * 1998-02-19 1999-09-02 Basf Ag Process for the preparation of polymers from N-vinyl compounds
CA2265345A1 (en) 1998-03-25 1999-09-25 The Lubrizol Corporation Vinyl aromatic-(vinyl aromatic-co-acrylic) block copolymers prepared by stabilized free radical polymerization
DE19813353A1 (en) * 1998-03-26 1999-09-30 Bayer Ag Processes for the production of telecheles, telecheles thus produced and their use
US20050196431A1 (en) * 1998-04-30 2005-09-08 Upvan Narang Adhesive applicator tip with a polymerization initiator, polymerization rate modifier, and/or bioactive material
US6103380A (en) * 1998-06-03 2000-08-15 Cabot Corporation Particle having an attached halide group and methods of making the same
FR2779437B1 (en) 1998-06-03 2004-10-15 Atochem Elf Sa VINYLAROMATIC POLYMER SHOCK BY POLYMERIZATION OF A VINYLAROMATIC MONOMER IN THE PRESENCE OF A STABLE FREE RADICAL AND A POLYMERIZATION PRIMER
FR2781487B1 (en) * 1998-07-10 2000-12-08 Atochem Elf Sa EMULSION POLYMERIZATION IN THE PRESENCE OF A STABLE FREE RADICAL
ATE266687T1 (en) 1998-07-10 2004-05-15 Du Pont MICROGELS AND METHOD FOR THE PRODUCTION THEREOF
FR2781486B1 (en) * 1998-07-10 2000-09-08 Atochem Elf Sa EMULSION POLYMERIZATION IN THE PRESENCE OF A STABLE FREE RADICAL
US6252025B1 (en) 1998-08-11 2001-06-26 Eastman Kodak Company Vinyl hyperbranched polymer with photographically useful end groups
JP4516212B2 (en) * 1998-09-03 2010-08-04 チバ ホールディング インコーポレーテッド Grafting of ethylenically unsaturated monomers onto polymers
WO2000014135A1 (en) * 1998-09-03 2000-03-16 Ciba Specialty Chemicals Holding Inc. Grafting of ethylenically unsaturated monomers onto polymers
US6433100B1 (en) * 1998-09-29 2002-08-13 Ciba Specialty Chemicals Corporation Process for the preparation of polymers containing N-O terminal groups
US6369162B1 (en) 1998-10-26 2002-04-09 The Lubrizol Corporation Radial polymers prepared by stabilized free radical polymerization
SG79291A1 (en) * 1998-11-20 2001-03-20 Daicel Chem Rubber-containing styrenic resin and process for producing the same
US6472486B2 (en) * 1999-03-09 2002-10-29 Symyx Technologies, Inc. Controlled stable free radical emulsion polymerization processes
EP1165625A1 (en) * 1999-03-09 2002-01-02 Symyx Technologies, Inc. Controlled free radical emulsion and water-based polymerizations and seeded methodologies
JP2000297106A (en) * 1999-04-14 2000-10-24 Brother Ind Ltd Polymerized resin particle and binder for toner
US6355756B1 (en) 1999-05-18 2002-03-12 International Business Machines Corporation Dual purpose electroactive copolymers, preparation thereof, and use in opto-electronic devices
US6716948B1 (en) 1999-07-31 2004-04-06 Symyx Technologies, Inc. Controlled-architecture polymers and use thereof as separation media
DE19939031A1 (en) * 1999-08-18 2001-02-22 Basf Ag N-oxyl radicals
US6713552B1 (en) 1999-08-23 2004-03-30 Rohm And Haas Company Pressure sensitive adhesive with improved peel strength and tack
ES2208197T3 (en) 1999-09-07 2004-06-16 Bayer Ag FUNCTIONALIZED ALCOXAMINE INITIATORS.
US7034079B2 (en) * 1999-10-20 2006-04-25 The Lubrizol Corporation Radial polymers prepared by stabilized free radical polymerization
TW546311B (en) 1999-11-25 2003-08-11 Ciba Sc Holding Ag Composition and method for color improvement of nitroxyl containing polymers
FR2804118B1 (en) * 2000-01-26 2003-08-22 Atofina CONTROLLED RADICAL POLYMERIZATION OR COPOLYMERIZATION OF HIGH PRESSURE ETHYLENE IN THE PRESENCE OF FREE PRIMERING RADIALS AND CONTROLLING INDOLINIC NITROXIDE RADIALS
DE10016651A1 (en) 2000-04-04 2001-10-11 Basf Ag Process for the production of polymers
KR100842407B1 (en) 2000-05-19 2008-07-01 시바 홀딩 인코포레이티드 Process for the controlled increase in the molecular weight of polyethylenes or polyethylene blends
TWI225492B (en) * 2000-09-25 2004-12-21 Ciba Sc Holding Ag Composition and process for enhancing controlled free radical polymerization
US6420502B1 (en) 2000-10-23 2002-07-16 The Penn State Research Foundation Living free radical initiators based on alkylperoxydiarylborane derivatives and living free radical polymerization process
EP1353750B1 (en) * 2001-01-23 2004-08-25 Ciba SC Holding AG Stable free nitroxyl radicals as oxidation catalysts and process for oxidation
EP1393398A2 (en) 2001-05-15 2004-03-03 Ballard Power Systems Inc. Ion-exchange materials with improved ion conductivity
WO2003068861A1 (en) 2002-01-31 2003-08-21 Atofina Antistatic strenique polymer compositions
US6762263B2 (en) * 2002-02-01 2004-07-13 Atofina Chemicals, Inc. High-solids coatings resins via controlled radical polymerization
EP1375476A1 (en) * 2002-06-25 2004-01-02 Bayer Aktiengesellschaft A new process for the synthesis of alkoxyamines active in controlled radical polymerization
EP1375457A1 (en) 2002-06-25 2004-01-02 Bayer Aktiengesellschaft One-pot process for the preparation of functionalized alkoxyamines
US7323528B2 (en) * 2002-07-19 2008-01-29 Cid Centro De Investigacion Y Desarrollo Tecnologico, S.A. De C.V. Block copolymers containing functional groups
DE60229446D1 (en) * 2002-08-06 2008-11-27 Otsuka Chemical Co Ltd ORGANIC TELLUR COMPOUND, PROCESS FOR THE PRODUCTION THEREOF, INITIATOR FOR LIVING RADICAL POLYMERIZATION, METHOD FOR PRODUCING A POLYMER USING THEREOF, AND POLYMER
US6992156B2 (en) 2002-12-31 2006-01-31 The Goodyear Tire & Rubber Company Controlled polymerization
US6967228B2 (en) * 2003-05-01 2005-11-22 Firestone Polymers, Llc Stable free radical polymers
US20040220345A1 (en) * 2003-05-01 2004-11-04 Firestone Polymers, Llc Stable free radical polymers
KR20060056900A (en) * 2003-06-24 2006-05-25 폴리머스 오스트레일리아 프로프라이어터리 리미티드 Acrylic dispersing agents in nanocomposites
EP1496091A1 (en) * 2003-07-08 2005-01-12 Rohm And Haas Company Aqueous polymer composition
CN100475892C (en) * 2003-08-27 2009-04-08 西巴特殊化学品控股有限公司 Composition and process for the controlled synthesis of block copolymers
US7893174B2 (en) * 2004-03-05 2011-02-22 Carnegie Mellon University Atom transfer radical polymerization process
US7528204B2 (en) * 2004-05-17 2009-05-05 The Goodyear Tire & Rubber Company Hydrogenation and epoxidation of polymers made by controlled polymerization
WO2006074969A1 (en) 2005-01-11 2006-07-20 Ciba Specialty Chemicals Holding Inc. Process for the post-modification of homo and copolymers prepared by controlled free radical polymerization processes
US7279527B2 (en) * 2005-04-22 2007-10-09 Bridgestone Corporation Method of converting anionic living end to protected free radical living end and applications thereof
US7009011B1 (en) 2005-05-31 2006-03-07 Xerox Corporation Copolymers of maleic anhydride by stable free redical polymerization
WO2007025086A2 (en) 2005-08-23 2007-03-01 Carnegie Mellon University Atom transfer radical polymerization in microemulsion and true emulsion polymerization
US20100311920A1 (en) 2005-08-26 2010-12-09 Cid Centro De Investigacion Y Desarrollo Tecnologico Sa De Cv Using Reactive Block Copolymers as Chain Extenders and Surface Modifiers
WO2007025310A1 (en) * 2005-08-26 2007-03-01 Carnegie Mellon University Polymerization process with catalyst reactivation
KR100727983B1 (en) 2005-09-24 2007-06-13 삼성전자주식회사 Method for preparing toner using modified plant oil and toner prepared by using the method
US20090178966A1 (en) * 2005-10-07 2009-07-16 Kyoto University Process for Producing Organic Porous Material and Organic Porous Column and Organic Porous Material
US7517928B2 (en) * 2005-11-07 2009-04-14 Xerox Corporation Siloxane-acrylate interpenetrating networks and methods for producing the same
CA2633263A1 (en) * 2005-12-16 2007-07-12 Arkema Inc. Low surface energy block co-polymer preparation methods and applications
US20070259995A1 (en) * 2006-05-05 2007-11-08 Peter Frenkel Compatibilizers for composites of PVC and cellulosic materials
US7433113B2 (en) * 2006-05-19 2008-10-07 Xerox Corporation Electrophoretic display medium and device
US7280266B1 (en) 2006-05-19 2007-10-09 Xerox Corporation Electrophoretic display medium and device
US7426074B2 (en) * 2006-05-19 2008-09-16 Xerox Corporation Electrophoretic display medium and display device
US7417787B2 (en) * 2006-05-19 2008-08-26 Xerox Corporation Electrophoretic display device
US7430073B2 (en) 2006-05-19 2008-09-30 Xerox Corporation Electrophoretic display device and method of displaying image
US7344750B2 (en) 2006-05-19 2008-03-18 Xerox Corporation Electrophoretic display device
US7492504B2 (en) * 2006-05-19 2009-02-17 Xerox Corporation Electrophoretic display medium and device
US7298543B1 (en) 2006-05-19 2007-11-20 Xerox Corporation Electrophoretic display and method of displaying images
US7403325B2 (en) 2006-05-19 2008-07-22 Xerox Corporation Electrophoretic display device
US7345810B2 (en) * 2006-05-19 2008-03-18 Xerox Corporation Electrophoretic display and method of displaying images
US7382521B2 (en) 2006-05-19 2008-06-03 Xerox Corporation Electrophoretic display device
US7443570B2 (en) * 2006-05-19 2008-10-28 Xerox Corporation Electrophoretic display medium and device
US7652656B2 (en) * 2006-05-19 2010-01-26 Xerox Corporation Electrophoretic display and method of displaying images
US7440159B2 (en) 2006-05-19 2008-10-21 Xerox Corporation Electrophoretic display and method of displaying images
US7502161B2 (en) 2006-05-19 2009-03-10 Xerox Corporation Electrophoretic display medium and device
US7349147B2 (en) * 2006-06-23 2008-03-25 Xerox Corporation Electrophoretic display medium containing solvent resistant emulsion aggregation particles
US20100311849A1 (en) 2006-08-23 2010-12-09 Cid Centro De Investigacion Y Desarrollo Tecnologico Sa De Cv Using Reactive Block Copolymers as Chain Extenders and Surface Modifiers
US8367051B2 (en) * 2006-10-09 2013-02-05 Carnegie Mellon University Preparation of functional gel particles with a dual crosslink network
US7560509B2 (en) * 2006-12-29 2009-07-14 Bridgestone Corporation Method of directing grafting by controlling the location of high vinyl segments in a polymer
US7396887B1 (en) * 2006-12-29 2008-07-08 Bridgestone Corporation Insitu removal of chelator from anionic polymerization reactions
US7737218B2 (en) * 2006-12-29 2010-06-15 Bridgestone Corporation Method for generating free radical capable polymers using tin or silicon halide compounds
US8030410B2 (en) * 2006-12-29 2011-10-04 Bridgestone Corporation Method for generating free radical capable polymers using carbonyl-containing compounds
US20080157641A1 (en) * 2006-12-31 2008-07-03 Rachael Wren Grout Multi-use Free Standing Seating and Storage Unit
WO2008112373A1 (en) * 2007-03-09 2008-09-18 Dow Global Technologies Inc. A free radical initiator system and a high pressure, freeradical polymerization process for producing a low density polyethylene polymer
BRPI0809708A2 (en) * 2007-04-25 2014-10-07 Dow Global Technologies Inc "MULTI-STAGE PROCESS FOR PREPARING A (CO) POLYMER COMPOSITION"
KR101171980B1 (en) 2007-04-30 2012-08-08 주식회사 엘지화학 Optical films, retardation films, and liquid crystal display comprising the sames
WO2009023353A1 (en) * 2007-05-23 2009-02-19 Carnegie Mellon University Hybrid particle composite structures with reduced scattering
US8252880B2 (en) * 2007-05-23 2012-08-28 Carnegie Mellon University Atom transfer dispersion polymerization
US8362150B2 (en) * 2008-02-20 2013-01-29 Bridgestone Corporation Gas-phase anionic polymerization
EP2151457A1 (en) 2008-07-28 2010-02-10 Total Petrochemicals France Process to make a diblock copolymer having a monovinylaromatic polymer block
EP2160945A1 (en) 2008-09-09 2010-03-10 Polymers CRC Limited Antimicrobial Article
EP2160946A1 (en) 2008-09-09 2010-03-10 Polymers CRC Limited Process for the preparation of an antimicrobial article
KR20100052948A (en) * 2008-11-11 2010-05-20 삼성전자주식회사 Composition for radical polymerization and method for fabricating a pattern using the composition
GB2481561B (en) 2009-03-27 2013-12-11 Univ Carnegie Mellon Preparation of functional star macromolecules
US9309391B2 (en) 2010-06-29 2016-04-12 Basf Se Process for improving the flow of properties of polymer melts
US9644042B2 (en) 2010-12-17 2017-05-09 Carnegie Mellon University Electrochemically mediated atom transfer radical polymerization
WO2013028756A1 (en) 2011-08-22 2013-02-28 Carnegie Mellon University Atom transfer radical polymerization under biologically compatible conditions
MX2014004939A (en) 2011-10-25 2014-07-30 Basf Se Use of comb or block copolymers as soil antiredeposition agents and soil release agents in laundry processes.
WO2013126745A2 (en) 2012-02-23 2013-08-29 Carnegie Mellon University Ligands designed to provide highly active catalyst complexes
JP5952788B2 (en) * 2012-10-04 2016-07-13 住友ゴム工業株式会社 Branched conjugated diene copolymer, rubber composition and pneumatic tire
KR20150135489A (en) 2013-03-27 2015-12-02 바스프 에스이 Block copolymers as soil release agents in laundry processes
US9982070B2 (en) 2015-01-12 2018-05-29 Carnegie Mellon University Aqueous ATRP in the presence of an activator regenerator
CN107810204B (en) 2015-06-17 2020-04-14 巴斯夫欧洲公司 Composition for immediate termination of free radical polymerization
WO2018007869A1 (en) 2016-07-02 2018-01-11 Rheomod De Mexico, S.A.P.I. De C.V. Grafted polymers
WO2018132582A1 (en) 2017-01-12 2018-07-19 Carnegie Mellon University Surfactant assisted formation of a catalyst complex for emulsion atom transfer radical polymerization processes
CN111278934B (en) 2017-10-23 2022-04-12 巴斯夫欧洲公司 Aqueous silicone polymer emulsions
EP4204467A1 (en) 2020-08-25 2023-07-05 Merck Patent GmbH Fluorine containing polymers
CN116490535A (en) 2020-11-30 2023-07-25 巴斯夫欧洲公司 Method for producing polymer dispersions
CN117062872A (en) 2021-03-26 2023-11-14 巴斯夫欧洲公司 Polymer composition comprising a polyacrylic block copolymer and an aromatic polyoxyalkylene as dispersant

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965021A (en) * 1966-01-14 1976-06-22 Xerox Corporation Electrostatographic toners using block copolymers
GB1271613A (en) * 1969-04-14 1972-04-19 Intercontinental Chem Co Ltd Improvements in or relating to anaerobic curing compositions
BE792115A (en) * 1971-12-30 1973-05-30 Xerox Corp ELECTROSTATOGRAPHIC DEVELOPER
IT978001B (en) * 1973-01-03 1974-09-20 Mintedison Fibre Spa IMPROVED PROCESS FOR BULK CURING OF L ACRYLONITRILE
DE2343871A1 (en) * 1973-08-31 1975-04-03 Basf Ag PROCESS FOR THE PRODUCTION OF UNIFORM POLYMERIZES.
SU478838A1 (en) * 1973-09-17 1975-07-30 Отделение ордена Ленина института химической физики АН СССР Method of inhibiting radical polymerization of oligoester acrylates
US4201848A (en) * 1976-01-01 1980-05-06 Japan Synthetic Rubber Co., Ltd. Process for preparing polymers having high molecular weight
US4207266A (en) * 1979-03-09 1980-06-10 Rohm And Haas Company Process for the preparation of trifluoromethylated aromatic compounds
DE2952286C2 (en) * 1979-12-24 1982-04-29 Henkel KGaA, 4000 Düsseldorf Anaerobic curing adhesives and sealants
US4537936A (en) * 1981-04-30 1985-08-27 Sumitomo Chemical Company, Limited Diene rubber composition, method of preparing the same and tire employing said composition
IE54465B1 (en) * 1982-05-26 1989-10-25 Loctite Ltd Two-part self-indicating adhesive composition
US4736004A (en) * 1983-04-05 1988-04-05 Green Cross Corporation Persistent perfluoroalkyl free radicals useful as polymerization catalyst
KR930000892B1 (en) * 1983-07-11 1993-02-11 커몬웰스 사이언티픽 앤드 인더스트리얼 리셔치 오가니제이숀 New polymerization process and polymers produced thereby
AU571240B2 (en) * 1983-07-11 1988-04-14 Commonwealth Scientific And Industrial Research Organisation Alkoxy-amines, useful as initiators
JPS60229035A (en) * 1984-04-27 1985-11-14 Canon Inc Developing method
US4777230A (en) * 1985-05-30 1988-10-11 Pennwalt Corporation Solution polymerization of acrylic acid derived monomers using tertiary alkyl(ηC5)hydroperoxides
CA1321851C (en) * 1988-01-11 1993-08-31 Kathleen Anne Hughes Process for preparing functionalized polymeric compositions
JP2641497B2 (en) * 1988-05-27 1997-08-13 株式会社日立製作所 Pattern formation method
US5173551A (en) * 1990-03-09 1992-12-22 Board Of Control Of Michigan Technological University Free-radical retrograde precipitation-polymerization process
US5059657A (en) * 1990-08-06 1991-10-22 E. I. Du Pont De Nemours And Company Polymerization of selected vinyl monomers
US5334756A (en) * 1991-03-26 1994-08-02 Sandoz Ltd. Carboxylate of certain polyoxyalkylene amines
US5145762A (en) * 1991-03-29 1992-09-08 Xerox Corporation Processes for the preparation of toners
US5216096A (en) * 1991-09-24 1993-06-01 Japan Synthetic Rubber Co., Ltd. Process for the preparation of cross-linked polymer particles
US5215846A (en) * 1992-02-28 1993-06-01 Xerox Corporation Toner and developer compositions with coupled liquid glass resins

Also Published As

Publication number Publication date
EP0621878A1 (en) 1994-11-02
DE69329848T2 (en) 2001-04-26
EP0621878B1 (en) 2001-01-10
CA2126670A1 (en) 1994-05-26
MY134744A (en) 2007-12-31
MX9307085A (en) 1994-06-30
KR100260274B1 (en) 2000-07-01
US5401804A (en) 1995-03-28
CN1087349A (en) 1994-06-01
CN1046538C (en) 1999-11-17
WO1994011412A1 (en) 1994-05-26
BR9305751A (en) 1997-01-28
EP0621878A4 (en) 1996-01-17
JPH06199916A (en) 1994-07-19
AU5295593A (en) 1994-06-08
US5322912A (en) 1994-06-21
KR940703872A (en) 1994-12-12
ES2153388T3 (en) 2001-03-01
DE69329848D1 (en) 2001-02-15
US5549998A (en) 1996-08-27
JP3260023B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
CA2126670C (en) Polymerization processes and toner compositions therefrom
EP0759039B1 (en) Acrylate polymerization processes
US5608023A (en) Rate enhanced polymerization processes
US5530079A (en) Polymerization processes
US5919861A (en) Processes for the preparation of branched polymers
US5723511A (en) Processes for preparing telechelic, branched and star thermoplastic resin polymers
US6087451A (en) Process for preparing polymers using bifunctional free radical reactive compounds
US5552502A (en) Polymerization process and compositions thereof
US5891971A (en) Polymerization processes
US6121397A (en) Polymerization processes using oligomeric compound, monomer and surfactant
US5728747A (en) Stable free radical polymerization processes and compositions thereof
US5739229A (en) Polymerization processes
US6075105A (en) Polymerization processes and resin particles formed thereby
US5744560A (en) Metal accelerated polymerization processes
EP0735051A1 (en) Stable free polymerization under supercritical conditions and polymers produced thereby
EP0754196B1 (en) Aqueous polymerization processes
EP0780733A1 (en) Polymerization multiblock copolymer process and compositions thereof
US5817824A (en) Processes for stabel free radicals
MXPA96004554A (en) Acu plumbing processes

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed