CA2120768C - Transmitter power control system - Google Patents

Transmitter power control system Download PDF

Info

Publication number
CA2120768C
CA2120768C CA002120768A CA2120768A CA2120768C CA 2120768 C CA2120768 C CA 2120768C CA 002120768 A CA002120768 A CA 002120768A CA 2120768 A CA2120768 A CA 2120768A CA 2120768 C CA2120768 C CA 2120768C
Authority
CA
Canada
Prior art keywords
signal
power
spread spectrum
spectrum communication
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002120768A
Other languages
French (fr)
Other versions
CA2120768A1 (en
Inventor
Charles E. Wheatley, Iii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25097112&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2120768(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CA2120768A1 publication Critical patent/CA2120768A1/en
Application granted granted Critical
Publication of CA2120768C publication Critical patent/CA2120768C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

A system and method for controlling transmission signal power in a cellular mobile telephone system in which system users communicate information signals between one another via at least one cell site using code division multiple access spread spectrum communication signals. A
transceiver using the power control system is also disclosed. The power control system controls transmission signal power for each cellular mobile telephone in the cellular mobile telephone system wherein each cellular mobile telephone has an antenna, transmitter and receiver and each cell-site also has an antenna, transmitter and receiver. Cell-site transmitted signal power is measured as received at the mobile unit. Transmitter power is adjusted at the mobile unit in an opposite manner with respect to increases and decreases in received signal power. A power control feedback scheme may also be utilized. At the cell-site communicating with the mobile unit, the mobile unit transmitted power is measured as received at the cell-site.
A command signal is generated at the cell-site and transmitted to the mobile unit for further adjusting mobile unit transmitter power corresponding to deviations in the cell-site received signal power. The feedback scheme is used to further adjust the mobile unit transmitter power so that mobile unit transmitted signals arrive at the cell-site at a desired power level.

Description

METHOD AND SYSTEM FOR CONTROLLING TRANSMISSION SIGNAL POWER
AND TRANSCEIVER USING THE SYSTEM
BACKGROUND OF THE INVENTION
I. Field of the Invention The present invention relates to a novel and improved method and system for controlling transmission signal power in a code division multiple access (CDMA) cellular mobile telephone system and a transceiver using the power control system.
II. Description of the Related Art The use of code division multiple access (CDMA) modulation techniques is one of several techniques for facilitating communications in which a large number of system users are present. Although other techniques such as time division multiple access (TDMA) frequency division multiple access (FDMA) and AM modulation schemes such as amplitude companded single sideband (ACSSB) are known, CDMA
has significant advantages over these other techniques. The use of CDMA techniques in a multiple access communication system is disclosed in U.S. Patent No. 4,901,307 issued Feb.
13, 1990 entitled "SPREAD SPECTRUM MULTIPLE ACCESS
COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL
REPEATERS", assigned to the assignee of the present invention.
In the just mentioned patent, a multiple access technique is disclosed where a large number of mobile telephone system users each having a transceiver communicate through satellite repeaters or terrestrial base stations (also known as cell-sites stations, or for short cell-sites) 1a using code division multiple access (CDMA) spread spectrum communication signals. In using CDMA communications, the frequency spectrum can be reused multiple times thus permitting an increase in system user capacity. The use of CDMA results in a much higher spectral efficiency than can be achieved using other multiple access techniques. In a CDMA system, increases in system capacity may be realized by controlling the transmitter power of each mobile user so as to reduce interference to other system users.
2 PC'T/US92/08613 z In the satellite application of the CDMA communication techniques, the mobile unit transceiver measures the power level of a signal received via a satellite repeater. Using this power measurement, ' along with knowledge of the satellite transponder downlink transmit power level and the sensitivity of the mobile unit receiver, the mobile unit transceiver can estimate the path loss of the channel between the mobile unit and the satellite. The mobile unit transceiver then determines the appropriate transmitter power to be used for signal transmissions between the mobile unit and the satellite, taking into account the path loss measurement, the transmitted data rate and the satellite receiver sensitivity.
The signals transmitted by the mobile unit to the satellite are relayed by the satellite to a Hub control system earth station. The Hub measures the received signal power from signals transmitted by each active mobile unit transceiver. The Hub then determines the deviation in the received power level from that which is necessary to maintain the desired communications. Preferably the desired power level is a minimum power level necessary to maintain quality communications so as to result in a reduction in system interference.
2 0 The Hub then transmits a power control command signal to each mobile user so as to adjust or ~fine tune" the transmit power of the mobile unit. This command signal is used by the mobile unit to change the transmit power level closer to a minimum level required to maintain the desired communications. As channel conditions change, typically due to 2 5 motion '~ of the mobile unit, both the mobile unit receiver power measurement and the power control feedback from the Hub continually readjust the transmit power level so as to maintain a proper power level.
The power control feedback from the Hub is generally quite slow due to round trip delays through the satellite requiring approximately I/2 of a 3 0 second of propagation time.
One important difference between satellite or terrestrial base .
stations systems are the relative distances separating the mobile units and the satellite or cell site. Another important different in the satellite versus the terrestrial system is the type of fading that occurs in these channels.
3 S Thus, these differences require various refinements in the approach to system power control for the terrestrial system.

WO 93/07702 ~ ~ $ PGT/US92/08613 In the satellite/mobile unit channel, i.e. the satellite channel, the satellite repeaters are normally located in a geosyncluonous earth orbit.
As such, the mobile units are all at approximately the same distance from the satellite repeaters and therefore experience nearly the same propagation loss. Furthermore, the satellite channel has a propagation loss characteristic that follows approximately the inverse square law, i.e.
the propagation loss is inversely proportional to the square of the distance between the mobile unit and the satellite repeater in use. Accordingly, in the satellite channel the variation in path loss due to distance variation is typically on the order of only 12 dB.
In contrast to the satellite channel, the terrestrial/mobile unit channel, i.e. the terrestrial channel, the distance between the mobile units and the cell sites can vary considerably. For example, one mobile unit may be located at a distance of five miles from the cell site while another mobile unit aiay be located only a few feet away. The variation in distance may exceed a factor of one hundred to one. The terrestrial channel experiences a propagation loss characteristic as did the satellite channel.
However; in the terrestrial channel the propagation loss characteristic corresponds to an inverse fourth-power law, i.e. the path loss is 2 0 proportional to the inverse of the path distance raised to the fourth power.
Accordingly, path loss variations .may be encountered which are on the order of over 80 dB in a cell having a radius of five miles.
The satellite channel typically experiences fad ;ng that is characterized as Ri~cian. Acourdingly the received signal consists of a direct 2 S component summed with a multiply reflected component having gayl~~ fading statistics: The power ratio between the direct and reflected component is typically on the order of 6-10 dB, depending upon the characteristics of he mobile unit antenna and the environment about the mobile unit.
3 0 Contrasting the satellite channel with the terrestrial channel, the terrestrial ch nnel experiences signal fading that typically consists of the Rayleigh faded component without a direct component. Thus, the terrestrial channel presents ~a more severe fading environment than the satellite chaiu~el where Rician fading is the dominant fading characteristic.
3 5 The Rayleigh fading characteristics in the terrestrial channel signal is caused by the signal being reflected from many different features of the physical environment. As a result, a signal arrives almost simultaneously at a mobile unit receiver from many directions with different transmission delays. At the UHF frequency bands usually employed for mobile radio communications, including those of cellular mobile telephone systems, significant phase differences in signals traveling on different paths may occur. The possibility for destructive summation of the signals may result, with on occasion deep fades occurring.
Terrestrial channel fading is a very strong function of the physical position of the mobile unit. A small change in position of the mobile unit 1 0 changes the physical delays of all the signal propagation paths, which further results in a different phase for each path. Thus, the motion of the mobile unit through the environment can result in a quite rapid fading process. For example, in the 850 MHz cellular radio frequency band, this fading can typically be fast as one fade per second per mile per hour of 1 5 vehicle speed. Fading on this order can be extremely disruptive to signals in the terrestrial channel resulting in poor communication quality.
However, additional transmitter power can be used to overcome the problem of fading.
The terrestrial cellular mobile telephone system typically requires a 2 0 full-duplex channel to be provided in order to allow both directions of the telephone conversation to be simultaneously active such as provided by the conventional wired telephone system. This full-duplex radio channel is normally provided by using one frequency band for the outbound link, i.e. transmissions from the cell-site transmitter to the mobile unit 2 5 receivers. A different frequency band is utilized for the inbound link, i.e.
transmissicuns from the mobile unit transmitters to the cell-site receivers.
Accordingly, !this frequency band separation allows a mobile unit transmitter and receiver to be active simultaneously without feedback or interference from the transmitter into the receiver.
3 0 The use of different frequency bands has significant implications in the power control of the cell-site and mobile unit transmitters. Use of different frequency bands causes the multipath fading to be independent processes for the inbound and outbound channels. A mobile unit cannot simply measure the outbound channel path loss and assume that the 3 5 same path loss is present on the inbound channel. A basic technique for overcoming the power control problems associated with this situation is disclosed in U.S. Pdtent No. 5,056,109 entitled "METHOD AND
APPARATUS FOR CONTROLLING A TRANSMISSION POWER IN A CDMA
CELLULAR TELEPHONE SYSTEM", issued October 8, 1992, assigned to the assignee of the present invention. The present 5 invention is an improvement on the mobile telephone power control circuit implementation of the just mentioned patent.
Furthermore, in the terrestrial cellular mobile telephone the mobile phone is capable of communications through multiple cell-sites as disclosed in U.S. Patent No.
5,101,507 issued March 31, 1992 entitled "METHOD AND SYSTEM
FOR PROVIDING A SOFT HANDOFF IN COMMUNICATIONS IN A CDMA
CELLULAR TELEPHONE SYSTEM", assigned to the assignee of the present invention. In communications with multiple cell-sites the mobile unit and cell-sites include a multiple receiver scheme as disclosed in the just mentioned application and further detailed in U.S. Patent No.
5,109,390 issued April 26, 1992 entitled "DIVERSITY RECEIVER
IN A CDMA CELLULAR TELEPHONE SYSTEM", assigned to the assignee of the present invention.
In the cell diversity environment in which the mobile phone is communicating with another user through multiple cell-sites, mobile phone transmitter power must also be controlled so as to avoid adverse interference with other communications in all cells.
It is therefore, an object of the present invention to provide a novel and improved method and apparatus for controlling transmitter power in the terrestrial channel in a cell diversity environment so as to overcome deleterious fading without causing unnecessary system interference which can adversely affect overall system capacity.
SLIwiMARY OF THE INVENTION
In a terrestrial CDMA cellular mobile telephone system, it is desirable that the transmitter power of the mobile units be controlled so as to produce at the cell site receiver a nominal received signal power from each and every mobile unit transmitter operating within the cell. Should all of the mobile unit transmitters within an area of coverage of the cell-site have transmitter power controlled accordingly, the total signal power received at the cell-site would be equal to the nominal receiver power of 1 0 the mobile unit transmitted signal multiplied by the number of mobile units transmitting within the cell. To this is added the noise power received at the cell-site from mobile units in adjacent cells.
The CDMA receivers of the cell-site respectively operate by converting a wideband CDMA signal from a corresponding one of the 1 5 mobile unit transmitters into a narrowband digital information carrying signal. At the same time, other received CDMA signals that are not selected remain as wideband noise signals. The bit-error-rate performance of the cell-site receiver is thus determined by the ratio of the power of the desired signal to that of the undesired signals received at the cell-site, i.e., 2 0 the received signal power in the desired signal transmitted by the selected mobile unit transmitter to that of the received signal power in undesired signals transmitted by the other mobile unit transmitters. The bandwidth reduction processing, a correlation process which results in what is commonly called "processing gain", increases the signal to noise 2 5 interference ratio from a negative value to a positive value thus allowing operation within an acceptable bit-error-rate.
In a terrestrial CDMA cellular mobile telephone system it is extremely desirable to maacimize the capacity in terms of the number of simultaneous telephone calls that may be handled in a given system 3 0 bandwidth System ~pacity can be ma~dmized if the transmitter power of each mobile unit is controlled such that the transmitted signal arrives at the cell-site receiver at the minimal signal to noise interference ratio which allows acceptable data recovery. If a signal transmitted by a mobile unit arrives at the cell-site receiver at a power level that is too low, the bit-3 5 error-rate may be too high to permit high quality communications. On the other hand if the mobile unit transmitted signal is at a power level 74759-~6 that is too high when received at the cell-site receiver, communication ~,"i~ this particular mobile unit will be acceptable. However, this high power signal acts as interference to other mobile unit transmitted signals that are snaring the same ~aru~el, i.e. bandwidth. This interference may adversely affect communications with other mobile units unless the total number of communicating mobile units is reduced.
The path loss of signals in the UHF frequency band of the cellular mobile telephone channel can be characterized by two separate phenomena, average path loss and fading. The average path Ions can be described statistically by a log-normal distribution whose mean is proportional to the inverse fourth-power of the path distance, and whose standard deviation is approximately equal to 8 dB. The second phenomenon is a fading process caused by multipath propagation of the signals which is characterized by a Rayleigh distribution. The average path 1 5 loss, which is a log-normal distribution, can be considered to be the same for both the inbound and outbound frequency bands, as is for the conventional cellular mobile telephone systems. However, as mentioned previously., Rayleigh fading is an independent phenomerion for the inbound and outbound link frequency bands. The log-normal distribution 2 0 of the average path loss is a relatively slow varying function of position.
In contrast, the Rayleigh distribution varies relatively fast as a function of position.
In the terrestrial environment where multipath signal propagation is common a signal transmitted by a transmitter may travel several 2 5 different paths to a receiver. Each version of the same signal as travelling upon a different propagation path may experience Rayleigh and /or Rician fading. However the total received power of the signal as measured at the receiver does not fade much As disclosed herein, a CDMA approach to multiple user access in a 3 0 cellular mobile telephone system is implemented. In such a systeat all the cell-sites in a region transmit a "pilot" signal of the same frequency and code. The use of a pilot signal in CDMA systems is well In this particular application, the pilot signal is used by the mobile units for initial synchronization of the mobile unit receiver. The pilot signal is also 3 5 used as a phase and frequency reference, and a time reference for demodulation of the digital speech signals transmitted by the cell-site.

_ 8 Each mobile unit estimates the path loss in signals transmitted from the cell-site to the mobile unit. 1n order to make this signal path loss estimate, the combined power of all cell-site transmitted signals as received at the mobile unit is measured. This power level sum measurement is used for purposes of instantaneous open loop power control. This power level sum measurement control is particularly applicable to the situation where the mobile unit might temporarily obtain a better path to a more distant cell-site than to a normally preferred closest cell-site. In this situation the power level sum is used to reduce the 1 0 mobile unit transmitter power to prevent unnecessary interference to the other users. The mobile unit also measures the pilot signal power as received from the cell-site to which the mobile unit is communicating for assigning data receivers. The mobile unit also measures the signal power of communication signals intended for the mobile unit as transmitted 1 5 from the cell-site to which the mobile unit is in communication with for purposes of generating a request for an increase in the cell-site transmission power.
The outbound link path loss estimate at the mobile unit is used by the mobile unit to adjust the mobile unit transmitter power. Thus, the 2 0 stronger the received signal, the lower the mobile unit transmitter power will be. Reception of a strong signal from the cell-site indicates that the mobile unit is either close to the cell-site or else an unusually good path to the cell-site exists. Reception of a strong signal means that a relatively smaller mobile unit transmitter power level is required.
2 ~ In the case of a sudden degradation in the channel, a sudden decrease in signal power in signals received at the mobile unit is experienced. Although the mobile unit transmitter power increases in response to this channel condition, the power incense is controlled from being incensed at an excessively high rate through a closed loop power 3 0 control scheme. The rate of increase of the mobile unit transmitter transmit power is within a rate of control, e.g. 0.5 dB per 1.25 milliseconds, provided through closed loop power adjustment commands transmitted from the cell-site, as described below. Using the cell-site generated power adjustment commands, the mobile unit transmitter power will be 3 5 prevented from being increased to a level significantly higher than the level required for communications, particularly when a sudden channel degradation occurs in only the outbound link path and not in the inbound link path.
In addition to measuring the received signal strength in the mobile unit, it is also desirable for the processor in the mobile unit to know the cell-site transmitter power and antenna gain (EIRP), the cell-site G/T
(receive antenna gain G divided by receiver noise level T) the mobile unit antenna gain, and the number of calls active at this cell-site. This information allows the mobile unit processor to properly compute the reference power level for the local power setting function. This computation is done by calculating the cell- site to mobile link power budget, solving for the path loss. This path loss estimate is then used in the mobile cell-site link budget equation, solving for the mobile unit transmit power required to produce a desired signal level. This capability allows the system to have cell-sites with differing EIRP levels to correspond to the size of the cells. For example, a small radius cell need not transmit with as high a power level as a large radius cell. However, when the mobile unit is a certain distance from a low power cell, it would receive a weaker signal than from a high power cell. The mobile unit 2 0 would respond with a higher transmit power than would be necessary for the short range. Hence, the desirability of having each cell-site transmit information as to its characteristics for power control.
The cell-site transmits information such as cell-site EIRP, G/T and number of active calls on a cell-site setup channel. The mobile unit 2 5 receives this information when first obtaining system synchronization and continues to monitor this channel when idle for pages for calls originated within the public telephone switching network intended for the mobile unit. The mobile unit antenna gain is stored in a memory in the mobile unit at the time the mobile unit is installed in the vehicle.
3 0 In a simplified apgroach, the cell-site may merely compute a simple parameter based upon the above cell-site information from which a mobile unit transmitter power level may 'ae derived. This parameter is transmitted to the mobile unit where , it is used to determine the transmitter power level In determining the tr~nsmi;ter power level at the mobile 3 5 unit a basic rule may be applied, such as the sum of the measured total received signal power and the transmit power equal a constant. This 2~.~~r~~i~ to constant however is subject to change depending upon changes in the cell-site transmission power level as discussed later herein.
As mentioned previously, mobile unit transmitter power is also ' controlled by a signal from one or more cell-sites. Each cell-site receiver measures the strength of the signal, as received at the cell-site, from each mobile unit to which the cell-site ~is in communication with. The . measured signal strength is compared to a desired signal strength level for that particular mobile unit. A power adjustment command is generated and sent to the mobile unit in the outbound link data, or voice channel, addressed to that mobile unit. In response to the cell-site power adjustment command, the mobile unit increases or decreases the mobile unit transmitter power by a predetermined amount, nominally less than 1 dB. In the cell diversity situation, power adjustment commands are provided from both cell sites. The mobile unit acts upon these multiple 1 S cell-site provided power control commands, so as to avoid mobile unit transmitter power levels that may adversely interfere with other mobile unit communications with the cell-sites, and yet provide sufficient power to support communications between the mobile unit and at least one cell-site.
2 0 The power adjustment command is transmitted by the cell-site transmitter at a relatively high rate, typically oa the order of about one command every millisecond. The rate of transmission of the power adjustment connmand must be high enough to permit Rayleigh fading on the inbound link ' path to be tracked. It is further desirable for the 2 5 outbound:alink path Rayleigh fading impressed on the inbound link path signal to be tracked. One command per 1.25 millisecond is adequate to track the fading processes for vehicle speeds in the range of 25-50 miles per hour for 850 MHz band mobile communications. It is important that the latency in determining the power adjustment command and the 3 0 transmission thereof be minimized so that channel conditions will not change significantly before the mobile unit receives and responds to the signal.
In summary, to account for the independence of the two Rayleigh fading paths (inbound and outbound), the mobile unit transmitter power 3 5 is controlled by the power adjustment command from the cell-site. Each cell-site receiver measures the received signal strength from each mobile 2I207~;8 unit. The measured signal strength is compared to the desired signal strength for that mobile unit and a power adjustment command is generated. The power adjustment command is sent to the mobile unit in the outbound data or voice channel addressed to that mobile unit. This power adjustment command is combined with the mobile unit one way estimate to obtain the final value of the mobile unit transmitter power.
The power adjustment command signal is transmitted, in an exemplary embodiment, by overwriting one or more user data bits every millisecond. The modulation system employed in CDMA systems is capable of providing correction coding for user data bits. The overwrite by the power adjustment command is treated as a channel bit error or erasure and corrected by the error correction as decoded in the mobile unit receiver. Error correction coding on the power adjustment command bits in many cases may not be desirable because of the resulting increased latency in reception and response to the power adjustment command. It is also envisioned that time division multiplexing for transmission of the power adjustment command bits may be used without overwriting user data channel symbols.
The cell-site controller or processor can be used to determine the 2 0 desired signal strength, as received at the cell-site, for signals transmitted by each mobile unit. The desired signal strength level values are provided to each of the cell-site receivers. The desired signal strength value is used for comparing with a measured signal strength value for generating the power adjustment command.
2 5 A system controller is utilized to oonnmand each cell-site processor as ~o the value of desired signal strength to use. The nominal power level adjusted up or down to accommodate variations in the average ~~tians of the cell. For example, a cell-site positioned in an unusually noisy location or geographic region might be allowed to use a higher than 3 0 naratal inbound power level. However, such a higher power level for in cell operation will result in higher levels of interference to immediate neighbors of this cell. This interference can be compensated for by allowing the neighbor cells a small increase in inbound link power. Such ' an increase in inbound power in neighboring cells would be smaller than 3 5 that of the increase given to the mobile users communicating in the high noise environment cell. It is further understood that the cell-site processor may monitor the average bit-error-rate. This data may be used by the system controller to command the cell-site processor to set an appropriate inbound link power level to assure acceptable quality communications.
It is also desirable to provide a means for controlling the relative power used in each data signal transmitted by the cell-site in response to control information transmitted by each mobile unit. The primary reason for providing such control is to accommodate the fact that in certain . locations, the outbound channel link from the cell-site to the mobile unit may be unusually disadvantaged. Unless the power being transmitted to this mobile is increased, the quality may become unacceptable. An example of such a location is a point where the path loss to one or two neighboring cells is nearly the same as the path loss to the cell-site communicating with the mobile unit. In such a location, the total 1 S interference would be increased by three times over the interference seen by the mobile unit at a point relatively close to its cell-site. In addition, the interference coming from these neighboring cell-sites will not fade in unison with the desired signal as would be the case for interference coming from the desired cell site. This situation may required 3 - 4 dB
2 0 additional signal power to achieve adequate performance.
In another situation, the mpbile unit may be located where several strong multipath signals arrive, resulting in larger than normal interference. In such a situation, increasing the power of the desired signal relative to the interference may allow acceptable performance. At 2 5 other ~ tiiries, the mobile unit may be located where the signal-to-interference ratio is unusually good. In such a case, the cell-site could transmit the desired signal using a lower than normal transmitter ,power, reducing interference to-other signals being transmitted by the system.
To achieve the above objectives, the preferred embodiment 3 0 includes a signal-to-interference measurement capability within the mobile unit receiver. This measurement is performed by comparing the power of the desired signal to the total interference and noise power. If the measured ratio is less than a predetermined value, the mobile .
transmits a request to the cell-site for additional power in cell-site 3 5 transmissions. If the ratio exceeds the predetermined value the mobile unit transmits a request for a reduction in power. ' .

The cell-site receives the power adjustment requests from each mobile and responds by adjusting the power allocated to the corresponding cell-site transmitted signal by a predetermined amount. The adjustment would usually be small, typically on the order of 0.5-1 dB, or around 12% more or less. Correspondingly the other cell-site transmitted signals are reduced by a factor of the increase divided by n, where n is the number of other channel units communicating to a mobile telephone.
Typically the decrease in power may be on the order of 0.05 dB. The rate of change of power may be somewhat slower than that used for the inbound link from the mobile unit to cell-site, perhaps once per second. The dynamic range of the adjustment would also be limited to 4 dB less than nominal to about 6 dB greater than nominal. It should be understood the power increase and decrease levels are for purposes of example and that other levels may be readily selected depending on system parameters.
The cell-site must also consider the power demands being made on it by all the mobiles in deciding whether to comply with the requests of any particular mobile. For example, if the cell-site is loaded to capacity, requests for additional power might be granted but only by 6% or less, instead of the normal 12%. In this regime, a request for a reduction in power would still be granted at the normal 12% change.
One broad aspect of the invention provides in a remote station transceiver having a receiver for receiving a base station transmitted spread spectrum communication signal, and a transmitter for transmitting to said base station a remote station generated spread spectrum communication signal, a power control system for controlling transmission signal power of said remote station spread 13a spectrum communication signal, comprising: a first amplifier circuit coupled to said receiver for amplifying said received base station transmitted spread spectrum communication signal in response to a first control signal to provide a normalized signal; an automatic gain control circuit coupled to said first amplifier circuit, said automatic gain control circuit receiving and performing an analog measurement of signal power of said normalized signal and generating a first power signal; a conversion circuit l0 coupled to said first amplifier circuit, said conversion circuit performing a digital measurement of signal power of said normalized signal, scaling and level shifting a first value corresponding to a result of said digital measurement of signal power of said normalized signal and generating said second power signal; a comparison circuit coupled to said automatic gain control circuit and said conversion circuit, said comparison circuit differentially integrating said first and second power signals and generating said first control signal; and a second amplifier circuit coupled to said comparison circuit and said transmitter, said amplifier circuit receiving said first control signal, and receiving and amplifying said remote station spread spectrum communication signal at a gain determined by said first control signal.
One broad aspect of the invention provides in a remote station transceiver having a receiver for receiving a base station transmitted spread spectrum communication signal, and a transmitter for transmitting to said base station a remote station generated spread spectrum communication signal, a method for controlling transmission signal power of said remote station spread spectrum communication signal comprising the steps of: amplifying the signal power of said received base station transmitted 13b spread spectrum communication signal in response to a first control signal to provide a normalized signal; performing an analog measurement of signal power of said normalized signal to generate a first power signal; performing a digital measurement of signal power of said normalized signal;
scaling and level shifting a first value corresponding to a result of said digital measurement of signal power of said normalized signal to generate a second power signal;
differentially integrating said first and second power signals to generate said first control signal; and amplifying said remote station spread spectrum communication signal at a gain determined by said first control signal.
BRIEF DESCRIPTION OF THE DRAWINGS
The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters correspond throughout and wherein:
Figure 1 is a schematic overview of an exemplary mobile cellular telephone system;
Figures 2A-2C illustrate, in a series of graphs, mobile unit received signal power, mobile unit transmit power and cell-site received signal power as a function of distance;
Figure 3 is a block diagram of a cell-site with particular reference to power control features;
Figure 4 is a block diagram of the mobile unit with particular WO 93/07702 PGT/US92/Og613 ~~N~~~~ 14 reference to the power control features;
Figure 5 is a block diagram illustrating in further detail the power control features of the mobile unit of Figure 4;
Figure 6 is a block diagram illustrating in further detail the power control features of the cell-site of Figure 3; and Figure 7 is a block diagram of a cell-site/system controller configuration for cell-site transmitter power control.
DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS
An exemplary terrestrial cellular mobile telephone system in which ~~ the present invention is embodied is illustrated in Figure 1. The system illustrated in Figure 1 utilizes CDMA modulation techniques in communications between the system mobile user, and the cell-sites.
Cellular systems in large cities may have hundreds of cell-site stations serving hundreds of thousands of mobile telephones. The use of CDMA
techniques readily facilitates increases in user capacity in systems of this size as compared to conventional FM modulation ceDular systems.
2 0 In Figure 1, system controller and switch 10, typically includes appropriate interface and processing hardwaire for providing system control information to the cell-sites. Controller 10 controls the routing of telephone calls from the public switched telephone network (PSTN) to the appropriate cell-site for transmission to the appropriate mobile unit.
2 5 Controller~.l0 also controls the routing of calls from the mobile units via at least one cell-site to the I'S"TN. Controller 10 may direct calls between mobile users via the appropriate cell site stations since such mobile units do not typically communicate directly with one another.
Controller 10 may be coupled to the cell-sites by various means such 3 0 as dedicated telephone lines, optical fiber links or by radio frequency communications. In Figure 1, two exemplary cell-sites, 12 and 14, along with two exemplary mobile units 16 and 18 which include cellular telephones are illustrated. Arrows 20a-20b and 22a-22b respectively define the possible communication links between cell-site 12 and mobile units 16 ' 3 5 and 18. Similarly, arrows 24a-24b and arrows 26a-26b respectively define the possible communication links between cell-site 14 and mobile units 18 IS
and 16. It should be understood that each communication Link may include multipath propagations of signals communicated between cell-sites and mobile units. Furthermore cell-sites I2 and 14 normally transmit using equal power, however cell-site transmission power may also be controlled to be set at various power levels.
Cell-sites I2 and 14 in the typical case, are terrestrial base stations which define cell service areas. However it should be understood that earth orbit relay satellites, such as satellites may be used to provide more complete cellular coverage, particularly for remote areas. In 1 0 the satellite case, signals are relayed between the mobile users and the terrestrial base stations using satellites . As in the terrestrial only case, the satellite case also provides the ability for communication between a mobile unit and one or more base stations via multiple transponders on the same satellite or through different satellites.
I S Mobile unit 16 measures the total received power in signals transmitted by cell-sites 12 and 14 upon paths 20a and 26a. Similarly, mobile unit 18 measures the total received power in signals as transmitted by cell-sites 12 and 14 upon paths 22a and 24a. In each of mobile units 16 and 18, signal power is measured in the receiver where the signal is a 2 0 wideband signal. Accordingly, power measurement is made prior to correlation of the received signal with a pseudonoise (PN) spectrum spreading signal.
When mobile unit 16 is closer to cell-site I2, the received signal power will be dominated by the signal traveling path 20a. When mobile 2 5 unit 16 is nearer to cell-site 14, the received power will be dominated by the signal traveling on path 26a. Similarly, when mobile unit 18 is closer to cell-site 14, the received power will be dominated by the signal on path 24a. When mobile unit 18 is closer to cell-site 12, the received power will be dominated by the signal traveling on path 22a.
3 0 Each of mobile units 16 and 18 uses the resultant measurement, together with knowledge of the cell-site transmitter power and the mobile urut antenna gain to estimate the path loss to the closest cell-site. The estimated path loss, together with knowledge of the mobile antenna gain and the cell-site G/T is used to determine the nominal transmitter power 3 5 required to obtain the desired carrier-to-noise ratio in the cell-site receiver.
The knowledge by the mobile units of the cell-site parameters may be ~~.~.~ i ~~ .~ i6 either fixed in memory or transmitted in cell-site information broadcast signals, setup channel, to indicate other than nominal conditions for a particular cell-site.
In the preferred embodiment a technique is employed which avoids S the necessity of actually determining path loss so that a correction can be made to the mobile unit transmitter power. As mentioned previously, the cell-site need only compute and transmit a "constant" parameter to the mobile unit. The value of this parameter as used by the mobile unit is equal to the sum of the measured combined wideband received signal power level and the desired transmission power level. Thus from the received parameter and the measured signal power, transmit power may be readily determined. The transmitted "constant" parameter is set at the cell-site based upon known cell-site parameters so as to provide from the mobile unit a transmit power level sufficient for the signal to be demodulated at the cell-site. As mentioned previously the "constant"
may be changed as cell-site transmitter power changes.
As a result of the determination of the mobile unit nominal transmit power, in the absence of Rayleigh fading and assuming perfect measurements, the mobile unit transmitted signals will arrive at the 2 0 nearest cell-site precisely at the desired carrier-to-noise ratio. Thus the desired performance will be obtained with the minimum amount of mobile unit transmitter power. The minimization of the mobile unit transmitted power is impor~nt in a CD~MA system because each mobile unit causes interference to every other mobile unit in the system. In 2 5 minimizing the mobile unit transmitter power, system interference will be held to a minimum, thus allowing additional mobile users to share the frequency band. Accordingly, system capacity and spectral efficiency is maximized.
Figures 2A - 2C graphically illustrate the effects of path loss and 3 0 Rayleigh fading on signal power as a function of distance for a moving vehicle. In these graphs it should be understood that the rate of Rayleigh fading as illustrated therein is exaggerated from the actual terrestrial cellular telephone environment. The xate of a fade in the actual environment is at rate such that open loop transmitter power control 3 5 circuitry of the present invention is sufficiently fast enough to provide communication signals at a power level necessary to overcome the fade.

WO 93/07702 PGTlUS92/08613 z~~~cs Since the open loop transmitter power eontrol circuitry is able to track channel degradation and improvements, for which transmission power is respectively increased and decreased, a limit on the rate of increase in transmission power is believed to be unnecessary. However an optional S non-linear filter may be employed, if necessary, at the mobile unit to limit the rate of increase of transmitter power as compared to the rate decrease of transmitter power.
Furthermore the use of a closed loop power control scheme can correct for various erroneous open loop controlled power increases/decreases resulting from other than Rayleigh fading. As mentioned previously, a measurement of the outbound signal power is used to determine the inbound signal power transmission level. Thus, errors in inbound signal power level may occur since both the inbound and outbound channels may fade differently. The closed loop power control scheme is sufficiently fast enough to correct for these errors in the terrestrial channel environment without the need for slowing down the increase in transmission power by a non-linear filter which limits the rate of an open loop power increase.
Absent a sufficiently fast closed loop feedback system it is desirable 2 0 to use some technique, such as a non-linear filter, to slow down rapid open loop increases in transmitter power. In using a non-linear filter the communication quality with that particular mobile user may suffer somewhat. However on a system level it is better to tolerate a degradation in the communications of one mobile unit suffer rather than have all 2 5' other mobile units in the system affected a significant increase in transmitter power by the one mobile unit.
Figure 2A illustrates the effect of both Rayleigh fading as a function of distance on the strength of the cell-site transmitted signal as received at a mobile unit. The average path loss, indicated by curve 30, is determined 3 0 primarily by the fourth power of the distance between the cell-site and the mobile unit, and by the shape of the terrain between them. As distance increases between the mobile unit and the cell-site, signal power decreases as received at the mobile unit far a constant power transmitted cell-site signal. The average path loss is the same for both directions of the link, 3 5 and typically exhibits a log-normal distribution about the average path loss.

WO 93/0??02 PCT/US92/08613 21~J'~~8 ns In addition to the slowly varying log normal average path loss, the rapid fading up and down around the average path loss is caused by the existence of multiple path signal propagation. The signals arrive from ' these multiple paths in random phase and amplitude, resulting in the characteristic Rayleigh fading. Curve 32, as illustrated in Figure 2A, represents the variation in signal path loss as a result of Rayleigh fading.
The Rayleigh fading is typically independent for the two directions of the cell-site/mobile unit communication link, i.e. outbound and inbound channels. For example, when the outbound channel is fading, the inbound channel is not necessarily fading at the same time.
Figure 2B illustrates the mobile unit transmitter power adjusted to correspond to the link path signal strength of Figure 2A. In Figure 2B, curve 34 represents the desired average transmit power corresponding to the average path loss of curve 30 of Figure 2A: Similarly, curve 36 1 S corresponds to the mobile unit transmitter power responding to the Rayleigh fading as represented by curve 32 of Figure 2A. As the Rayleigh faded signal, curve 32 of Figure 2A, decreases in signal strength, rapid increases in transmitter power result. These rapid upward excursions of transmitter power can result in deleterious effects in overall system 2 0 performance. The use of closed loop power adjustment feedback from the cell-site to adjust mobile unit transmitter power can be used to limit the increase in transmitter power.
Figure 2C is a graph illustrating the cell-site received signal power strength with respect to transmissions of the mobile unit as it travels from 2 5 the cell-site. Curve 40 indicates the desired average received signal power at the cell-site for a signal transmitted from a mobile unit. It is desirable that the average received signal power be at a constant level, yet a minimum necessary to assure a quality communication link with the mobile unit. Corrections are made at the mobile unit to correct for 3 0 Rayleigh fading in the cell-site transmitted signal.
The mobile unit transmitted signal experiences Rayleigh fading before arnving at the cell-site receiver. The signal received at the cell-site is therefore a signal of constant average received power level but still with the Rayleigh . fading of the inbound channel impressed thereupon.
3 5 Curve 42 represents the Rayleigh fading that occurs on the inbound signal absent power correction from the mobile unit open loop power control system based upon outbound signal fading. In the terrestrial channel a high speed open loop power control power control process is utilized to compensate for Rayleigh fading on the inbound channel. In the satellite repeater situation the speed at which the open loop power control operates is slowed down.
Additionally, there is the possibility that the mobile unit may come to rest at a place where the outbound link is not faded but yet the inbound link is severely faded Such a condition would disrupt communications unless an additional mechanism is employed to compensate for the 1 0 inbound channel Rayleigh fading. The closed loop power adjustment command process employed at the cell-site is such a mechanism for adjusting the mobile unit transmitter power, so as to compensate for the Rayleigh fading on the inbound charnel. In Figure 2C, curve 44 illustrates the mobile unit transmitted signal power as received at the cell-site when I 5 compensating for average path loss and Rayleigh fading on both the inbound and outbound channels. As can be seen in Figure 2C curve 44 follows close to curve 40 except for instances of severe fading where the fading process is minimized by the dosed loop control.
In Figure 3, an exemplary implementation of a cell-site transceiver 2 0 system, which incorporates power control features, is illustrated. Further details on the specific modulation scheme and the implementation thereof are disclosed in coo_ ending U.S. Patent Application No . 5 , 10 3 , 4 l s s a a d Ap r l 1 7 , 1 ~ 9 2 , tided "SYSTEM AND METHO D FOR
GENERATING SIGNAL WAVEFORMS IN A 'DMA CELLULAR
2 5 TELEPHONE SYSTEM", assigned to the assignee of the present invention . In Figure 3, an antenna sy~ S2 is provided for receiving multiple mobile unit transmitted signals which is provided for receiving multiple mobile unit transmitted signals which are then provided to analog receiver 54 for amplification, frequency 3 0 downconversion and IF processing of the received RF signal. Analog receiver 54 includes a frequency downconverter, bandpass filter, automatic gain control (AGC) circuitry and an analog to digital converter, as is common to analog receivers for use in digital transmission systems. The AGC circuitry normalizes the received wideband signal which includes all 3 5 user signals prior to analog to digital conversion. The signals output from receiver 54 are provided to a plurality of receiver modules or 21~,4'~~8 20 channel units for, extraction of user directed information signals, generation of power adjustment commands, and modulation of user input information signals for transmission. One such module used in communications with a particular mobile unit, such as mobile unit N, is module 50N. Thus the output of receiver 54 is provided to a plurality of these modules including module 50N. ~ In module 50N the desired mobile unit N signal is extracted from the normalized received wideband signal.
Module 50N comprises digital data receiver 56, user digital baseband circuit 58, received power measurement circuitry 60 and transmit modulator 62. Digital data receiver 56 receives the wideband spread spectrum signals for correlating and despreadirig the mobile unit N
transmitted signal to a narrowband signal for transfer to an intended recipient communicating with mobile unit N. Digital data receiver 56 provides the desired user narrowband digital signals to user digital baseband circuitry 58. Digital data receiver 56 also provides the desired user narrowband signal to received power measurement circuitry 60.
Received power measurement circuitry 60 measures the power level in the received signal from mobile unit N. Since the received wideband signal is normalized in analog receiver 54, the measurement 2 0 made by received power measurement circuitry 60 is not an absolute power measurement. The measurement made by received power measurement circuitry 60 is in reality a value which is representative of a signal to noise ratio of the desired signal to that of the total noise.
Received power measurement circuitry 60 in response to the measured 2 5 level of vpo'wer generates a power adjustment command which is input to transmit modulator 62 for transmission to mobile unit N. As previously discussed, the data bits in the power adjustment command are used by mobile unit N in adjusting mobile unit transmitter power.
When the received power measurement is greater than the preset 3 0 level provided by a cell-site processor (not shown), an appropriate power adjustment command is generated. Should the received power , measurement be less than the preset level, the power adjustment command data bits are generated and indicate that an increase in mobile unit transmitter power is necessary. Similarly, if the received 3 5 measurement is greater than the preset level, the power adjustment command is generated such that the mobile unit transmitter power is reduced. The power adjustment command is utilized to maintain a nominal received power level at the cell-site.
The signal output from digital data receiver 56 is provided to user digital baseband circuitry 58 where it is interfaced for coupling to the intended recipient via the system controller and switch. Similarly, baseband circuitry 58 receives user information signals intended for mobile unit N and provides them to transmit modulator 62.
Transmit modulator 62 spread spectrum modulates the user addressable information signals for transmission to mobile unit N.
Transmit modulator 62 also receives the power adjustment command data bits from received power measurement circuitry 60. The power adjustment command data bits are also spread spectrum modulated by transmit modulator 62 for transmission to mobile unit N. Transmit modulator 62 provides the spread spectrum modulated signal via transmit 1 5 power control circuitry 63 to summer 64 where combined with spread spectrum signals from other module transmit modulators also located at the cell-site.
The combined spread spectrum signals are input to summer 66 where they are combined with a pilot signal provided by pilot signal 2 0 generator 68. These combined signals are then provided to circuitry (not shown) for frequency upconversion from the IF frequency band to the RF
frequency band and amplified. The RF signals are then provided to antenna 52 for transmission. Although not illustrated, transmit power control circuitry may be disposed between summer 66 and antenna 52.
2 5 This circuitry. under control of the cell-site processor, is responsive to power adjustment command signals transmitted by the mobile unit which are demodulated at the cell-site receiver and provided to the cell-site control processor for coupling to the circuitry.
In Figure 4, the mobile unit, such as mobile unit N, includes an 3 0 antenna system 70 for collecting cell site transmitted signals and radiating mobile unit generated CDMA signals. Typically antenna system 70 is comprised of a single antenna coupled by a duplexer to analog receiver 72 and transmit power control circuitry 76. In the alternative two separate antennas, one for transmission and another for reception. may be used . Mobile 3 5 unit N receives the pilot signal, setup channel signals and the mobile unit N
addressed signals using anteru~a system 70, analog receiver 72 and digital data receiver system 74. Receiver 72 amplifies and frequency downconverts the received RF CDMA signals to IF, and filters the IF
signals. The IF signals are output to digital data receiver 74 for digital processing. Receiver 72 also includes circuitry for performing an analog measurement of the combined power of the received signals. This power measurement is used to generate a-feedback signal that is provided to transmit power control circuitry 76 for controlling transmit power.
Digital data receiver system 74 is comprised of multiple digital data receivers. One digital data receiver, receiver 74a is used to search for pilot 1 0 signals that are transmitted by each cell-site. These pilot signals may be multipath signals of a same cell-site, pilot signals transmitted by different cell-sites, or a combination of both. The different cell-site transmitted pilot signals are each of a same spreading code but of at a different code phase offset for identification of the particular cell-site. Receiver 74a provides to 1 5 control processor 78 signals indicative of the strongest pilot signals, whether they be multipath signals of a single cell-site or from different cell-sites. Control processor 78 uses the information provided from receiver 74a in establishing and maintaining communication with the cell-site or cell-.sites 2 0 Digital data receiver system 74 is further comprised of digital data receivers 74b and 74c. Although only two receivers are illustrated, additional receivers may be provided. Receivers 74b and 74c are used for . despreading and correlating the received signals addressed to mobile unit N from one cell-site or from multiple cell-sites for cell diversity mode 2 S communications. Receivers 74b and 74c are assigned to process different multipath signals from the same cell-site, or signals from different cell-sites when in a cell diversity mode. Under the control of control processor 78, receivers 74b and 74c process the assigned signal intended for the mobile user. Typically receivers 74b and 74c are assigned to process the 3 0 spread spectrum digital user data signal wh~~ ~~p°~ to the strongest pilot signals identified by receiver 74a.
Receivers 74b and 74c provide demodulated user data such as digitized encoded speech to diversity combiner and decoder circuitry 75.
Circuitry 75 coherently combines the different signals from receivers 74b 5 ~d ~ 4 c , 'whether they be multipath signals or cell diversity signals so as to provide a single user data signal. Circuitry 75 also performs decoding and 74769-~.6 error correction on the user data. The signal output from c:rcuitrv 7 5 i s provided to digital baseband circuitry 82 for interface with the user Baseband circuitry 82 indudes interface hardware for coupling receiver system 74, via circuitry 75, and transmit modulator 82 to the user handset (not shown?. Control information, such as the cell-site transmitted power level setting parameter, is provided from circuitry 75 to control processor 78.
Receivers 74b and 74c also separate the digital user data from the power adjustment commands generated by the cell-sites) and transmitted I 0 in the user data signals. The extracted power adjustment command data bits are sent to control processor 78. Processor 78 analyzes the power adjustment commands to so as to provide control over the mobile unit transmitter power.
In the single cell situation when either one or more (multipath) I 5 signals are the signals assigned to be processed by receivers 74b or/and 74c, the power adjustment commands are recognized as originating from a single cell-site. In this case, processor 78 is responsive to the power adjustment command data bits and generates a transmit power control command that is provided to transmit power control circuitry 80. When 2 0 the power adjustment commands indicate that additional mobile unit transmitter power is requiresi, processor 78 provides a signal to transmit power control drcuitry 8 o to increase transmitter power. Similarly, when the power adjustment commands indicate that less mobile unit transmitter power is required, processor 78 provides a signal to transmit 2 5 power control circuitry 8 o to decrease transmitter power. However, in the cell ,diversity situation additional factors must be taken into consideration by processor 78.
In the cell diversity situation, the power adjustment commands are arriving from two different cell-sites. Mobile unit transmitter power as 3 0 measured at these different sites may be different, and therefore care must be taken in controlling the mobile unit transmitter power to avoid transmitting at a level that would adversely affect communications between the cell-sites and other users. Since the cell-site power adjustment command generation process is independent from each other 3 5 cell-site, the mobile unit must respond to the received commands in a manner that does not affect other users.

In the cell diversity situation should both cell-sites provide power adjustment command's to one mobile unit requesting additional power, control processor 78 operates in a logical AND function and generates a power control signal to transmit power control circsitry s o indicative of an increase in transmitter power. In this example a request for a power increase request corresponds to a logical "1" while a power de~tease request corresponds to a logical "0". Transmit power control circuitry 8 o is responsive to this type of power control signal so as to increase the transmitter power. This situation may occur when the communication 1 0 path to both cell-sites is degraded for one or more reasons.
In the case when one cell-site requests an increase in transmitter power but the other one requests a decrease, processor 78 again operates in the above mentioned logical AND function to generate a power control signal to transmit power control drcuitry s o indicative of an decrease in 1 5 transmitter power. Transmit power control circuitry s o is responsive to this type of power control signal so as to decease the transmitter power.
This situation may occur when the communication path to one cell-site is degraded while the communication path to the other cell-site becomes improved.
2 0 In suataiary, mobile unit transmitter power is increased only when all cell-sites in which the mobile unit is in communication with request an increase in power, and is decreased when any one or more of these cell-sites request a decrease in power. In this scheme, a mobile unit will not transmit at a power level that would unnecessarily increase the level 2 5 of system interference for other users, but yet maintain a level that would facilitate communication with at least one cell-site.
Further discussion on the function of receiver system 74 in communications with multiple cell-sites is provided in previously mentioned U.S. Patent No. 5,109,390.
3 0 The function is also further exemplified in previously mentioned U.S. Patent No. 5,101,501.

2~
Processor 78 provides the transmit power control commands to transmit power control circuitry 80 for use in setting transmitter power level. Details on the interaction of receiver 72, transmit power control circuitry 76 and 80, and processor 78 are described in further detail with reference to Figure 5.
Data to be transmitted is provided through baseband arcuitry 82 where it is encoded and provided to transmit modulator 84. The data is 1 0 spread spectrum modulated by transmit modulator 84 according to an assigned spreading code. The spread spectrum signals are output from transmit modulator 84 to transmit power control circuitry 80. The signal power is adjusted in accordance with the transmit power control command provided by control processor 78. This power adjusted signal is 1 5 provided from transmit power control circuitry 80 to transmit power control circuitry 76 where the signal is adjusted in accordance with the analog measurement control signal. Although illustrated as two separate units for controlling the transmit power, the power level could be adjusted by a single variable gain amplifier with two input control signals 0 combined before being applied to the variable gain amplifier. However in the illustrated exemplary embodiment the two control functions are shown as separate elements.
In the operation of the power control, system illustrated in Figure 4, receiver 72 measures the combined wideband signal power for all 2 5 signals received from all cell-sites. These power level measurement results are used in controlling the power level as set by transmit power control circuitry 76.
Figure 5 illustrates in further detail the power control aspect of mobile unit N discussed with reference to Figure 4. In Figure 5, received 3 0 ~ ~8~ ~m ~ ~'tenna are provided to frequency downconverter 90 where the received RF signals are converted to an ff frequenry. The IF
frequency signals are coupled to bandpass filter 92 where out of band frequency components are removed from the signals.
The filtered signals are output from filter 92 to variable gain IF
3 5 ~p~~' ~ ~"~~e ~ signals are amplified. The amplified signals are output from amplifier 94 to an analog to digital (A/D) converter 95 for digital signal processing operations on the signals. The output of amplifier 94 is also coupled to conversion subsystem 96 and automatic gain contrcl (AGC) detector circuit 98.
AGC detector circuit 9 s provides an output signal indicative of the signal strength of the received signal. This signal strength signal is provided as one input of differential integrator 100. The other input of differential integrator 100 is provided with an A/D input level control signal from conversion subsystem 98.
In a preferred embodiment, conversion subsystem 98 is comprised of frequency downconversion circuitry, analog to digital conversion 1 0 circuitry and level setting circuitry. The frequency downconversion circuitry receives the received signal output from amplifier 94 and mixes in a mixer the received IF signal with a reference signal so as to produce corresponding signal at lower IF frequency. The frequency downconverted signal is typically filtered and then using a power sputter splits the signal 1 5 into two paths (I and Q). The signal on each path is mixed in a corresponding mixer with an in-phase and quadrature (I/Q) reference signal, the Q reference signal being phase shifted by 90° with respect to the I reference signal. The resulting signals are filtered and provided as I and Q baseband signals to the analog to digital conversion circuitry.
2 0 In the analog to digital conversion circuitry the I and Q baseband signals are input to a respective analog to digital converter. The resultant digitized I and Q baseband signals are provided to the digital receiver for digital demodulation, including despreading of the spread spectrum data, so as to extract information contained in the spread spectrum data. The 2 5 digitized I and Q baseband signals are also provided to the level setting circuitry.
The level setting circuitry receives in mean square logic the digitized I and Q baseband signals where the mean square of the I and Q
values is computed. Any scheme which reflects a monotonic estimate of 3 0 baseband power is equivalent The means square output value is then provided to scaling and level shifting logic. The scaling and level shifting logic scales the value with respect to an internal value so as to provide a resultant D/A input value. The D/A input value is of a value which ensure that the received signal best matches the conversion range of the 3 5 A/D converters in the analog to digital conversion circuitry. For example the D/A input value may correspond to a value of which provides a signal to the A/D converters at one-third the maximum range of the A/D
converters. The D/A input value is provided to a digital to analog converter where converted to an analog signal that is provided as the second input to differential integrator 100 as an open loop power level set signal.
The open loop power level set signal and the signal strength signal are differentially integrated by integrator 100 to generate a resultant gain control signal that is provided a respective gain control input of both amplifier 94 and variable gain IF amplifier 102.
1 0 The gain control signal as provided to amplifier 94 is used to normalize the received signal power to a specific choice of an A/D input level. As such the gain control signal is used to control the gain of the amplifier 94 so as to maintain a constant average power level as output from amplifier 94 to the A/D converters in conversion subsystem 9 6 . The 1 5 use of the same gain control signal and amplifier configuration for amplifiers 94 and 102 allows the transmitter power to track the received signal power.
AGC detector circuit 98, conversion subsystem 96 and integrator 100 thus estimate the received mobile unit signal power to determine the 2 0 open loop power correction necessary for the mobile unit transmitter.
This correction is used to maintain a desired transmitter power level in conditions of fading on the outbound channel that are common to the inbound channel.
An optional non-linear filter 106 may be disposed between the 2 5 output of integrator 100 and the gain control input of amplifier 102.
Filter 106 may be used to lianit the rate of increase of the gain control signal as applied to amplifier 102 , thus also limiting the rate of increase_in amplifier I02 gain. Filter 106 may be configured as a simple resistor-diode-capacitor circuit. For example, the input to the circuit is a common node shared by 3 ~ 0 'two resistors. The other end of each resistor is coupled to a respective diode. The diodes are reversed in their connection to the resistors and the other end of each diode coupled together at a common node as an output of the filter. A capadtor is coupled between the diode common node and ground. The filter circuit is may be designed to limit the rate of power 3 5 increase to less than 1 dB per millisecond. The rate of power deQease for example could be set to be about ten times faster than the rate of power increase, i.e. 10 dB per millisecond. The output of filter I06 is provided as a modified gain control signal to the gain control input of amplifier 102.
Typically the rate of inQease is set to be no faster than the rate at which transmit power control circuitry 80 can turn the power down in response to a series of downward commands from the cell-site as processed by receiver 74 and processor 78.
In a preferred embodiment, amplifiers 94 and 102 are each configured as series coupled dual gate FET transistors with a surface acoustic wave bandpass disposed therebetween. In order to correct for 1 0 inherent nonlinearities of the transistors so as to provide linear gain operation over an extended dynamic range, a gain compensation circuit is used to modify the gain control signal as input to the transistors. Further details on the specific implementation of this circuitry are provided in U.S. Patent No. 5,099,204 issued March 24, 1992, entitled "LINEAR GAIN CONTROL AMPLIFIER", also assigned to the assignee hereof. Further details on an implementation of the feedback loop comprised of amplifier 94, AGC detector circuit 98 and comparator 100 which provide the gain control are provided in U.S. Patent No. 5,107,225 issued April 21, 2 0 1992, entitled "HIGH DYNAMIC RANGE CLOSED LOOP AUTOMATIC
GAIN CONTROL CIRCUIT", also assigned to the assignee hereof.
Transmit modulator circuit 84 of Figure 4, provides a low power, IF
frequency spread spectrum signal to an input of variable gain IF
amplifier 104. Amplifier 104 is gain controlled by a power level control 2 5 sig'~ from processor 78 (Figure 4). This power level control signal is derived from the closed loop power adjustment command signal transmitted by the cell-site and processed by the mobile uirit as discussed with reference to 1~igure 4, in conjunction with the received power level setting parameter.
3 0 T~ Po~'~'~ adjustment command signal consists of a sequence of power-up and power-down commands that are accumulated in the mobile unit processor. The mobile unit control processor starts with the gain control level set to a nominal value, as determined by the power level setting parameter. Each power-up conmnand increases the value of the gain control command corresponding to a resultant approximate 1 dB
increase in amplifier gain. Each power-down command decreases the value of the gain control command, corresponding to a resultant approximate 1 dB decrease in amplifier gain. The gain control command is converted to analog form by a digital to analog (D./A) converter (not shown) before applied to amplifier 104 as the power level control signal.
The mobile unit reference power level may be stored in the memory of the control processor. In the alternative, the mobile unit reference power level may be contained within a signal sent to the mobile 1 0 unit. This signal command data is separated by the digital data receiver and interpreted by the control processor in setting the level. This signal as provided from the control processor is converted by a digital to analog (D/A) converter (not shown) before input to ampl l f ier 104 .
The output of amplifier 104 is provided as an input to amplifier 102.
1 5 Amplifier 102 as previously mentioned is also a variable gain IF amplifier with the gain determined according to the gain control signal output from integrator 100. The signal for transmission is thus amplified in accordance with the gain set by the gain control signal. The amplified signal output from amplifier 102 is further amplified and frequency translated to the 2 0 RF frequency for transmission. The RF signal is then fed to the antenna for transmission.
Figure 6 illustrates in further detail the power control scheme of the cell-site as illustrated in Figure 3. In Figure 6, a mobile unit transmitted signal is received at the cell-site. The received signal is processed by the 2 5 cell-site analog receiver at the cell-site corresponding to mobile unit N.
In the digital data receiver, receiver 56 of Figure 3, the received analog signal is converted from analog to digital form by A/D
converter 110. The digital signal output from A/D converter is provided to pseudorandom noise (PN) correlator I12 where the signal undergoes a 3 0 correlation process with a PN signal provided from PN generator 114.
The output of PN correlator 112 is provided to a fast Hadamard transform digital filter 116 where the signal is filtered. The output of filter 116 is provided to a user data dernder circuit I18 which provides user data to the user digital baseband circuitry. Decoder 118 provides the largest transform 3 5 filter symbols to power averager circuit 120. Power averager tircuit 120 averages the largest transform outputs over a one millisecond interval using well known digital techniques.
A signal indicative of each average power level is output from power averager 120 to comparator 122. Comparator 122 also receives a power level set signal indicative of the desired received power level. This desired received power level is set by the control processor for the cell-site.
Comparator 122 compares the two ingut signals and provides an output signal indicative of the deviation of the average power level from the desired power level. This signal is provided output to power up/down command generator 124. Generator 124 in response to the comparison generates either a power-up or a power-down command. Power command generator 124 provides the power control commands to the cell-site transmit modulator for transmission and control of the transmitter power of mobile unit N.
If the received power at the cell-site is higher than that desired of mobile unit N, then a power-down command is generated and transmitted to mobile unit N. However, if the received power level at the cell-site is too low, then a power-up command is generated and transmitted. The up/down commands are transmitted at a high rate, nominally 800 commands per second in the exemplary embodiment. At 2 0 one bit per command, the overhead of the power command is insignificant compared to the bit rate of a high quality digital voice signal.
The power adjustment comaland feedback compensates for changes in the inbound channel that are independent of the outbound channel.
These independent inbound channel changes are not measured in the 2 5 outbound channel signal. Therefore the path loss estimate based upon the: outbound channel and the corresponding transmitter power adjustment do not reflect the changes in the inbound charnel. Thus, the power adjustment command feedback is used to compensate for changes in the mobile unit transmitter power based on the inbound 3 0 channel path losses that do not exist in the outbound channel.
In using a closed loop control process it is highly desirable for the command to arrive at the mobile unit before conditions change significantly. The present invention provides a novel and unique power control circuitry at the cell-site for minimizing delay and latency of 3 5 measurement and transmission. The power control circuitry at the mobile unit, analog control and digital command response, provides a WO 93/07702 PCf/US92/08613 21~7fi~
vastly improved power control process in the cellular mobile telephone system.
As mentioned previously, it is also desirable to control the cell-site transmission power in response to requests from the mobile unit.
Figure 7 illustrates the typical cell-site configuration in which multiple modules 50A - 50Z are included. Modules 50A - 50Z are each identical in construction with that of module 50N of Figure 3. In Figure 7, mobile unit N is considered to be in communication with module 50N for purposes of illustration.
Each of modules 50A - 50Z are coupled to system controller 10 as was discussed with reference to Figure 1. Through the link to system controller 10, each module 50A - 50Z demodulates and relays the mobile unit power requests to system controller 10. System controller 10 in response to a mobile unit request for an increase , in module transmitter power may reduce all transmitter power for some or all other module transmitters by a small increment. System controller 10 would transmit a power control command to a cell-site, typically to the cell-site control processor. The cell-site control processor in response thereto reduces transmitter power of the cell-site other modules. The reduction in power 2 0 of the other modules makes available an increase in power to the module servicing the requesting mobile user by n times the increment, where n is the nwnber of modules reducing transmitter power. Using this technique there is no change in the total transmission power of the cell-site modules, i.e. no change in fhe sum of the individual module transmitter power.
2 5 Referring back to Figure 3, module 50N transmits at a nominal power level as discussed above. The power level is set by a command from he cell-site control processor, with this command modified at the cell-site control processor by a command from the system controller. The command input to transmit power control ~ drcuitry 63 is used typically to 3 0 decrease transmitter power. Transmit power control circuitry 63 may be configured as a variable gain amplifier as was discussed with reference to Figure 5.
Referring to Figure 4, at the mobile unit the quality of the received data signal is measured in the form of data frame errors. From this 3 5 measurement the level of adequacy of the signal power is determined, where excessive frame errors are an indication insufficient signal power.

Frame error information may be generated from the known error correction circuitry such as through the normalization rate of a Viterbi decoder or Cyclic Redundancy Check/Code (CRC), or a combination thereof. Various other techniques that are well known in the art may be used for indirectly or directly measuring signal power. Other techniques inclhde re-encoding the data and comparing with the originally transmitted data for an indication of errors. It should further be understood that the power of the data signal itself may be measured and used as an indication of link quality.
1 0 The frame error information is provided to processor 78. Processor 78 in response to a frame error rate exceeding a predetermined threshold level over a certain number of frames, such as 5 frames, generates a power increase request message that is output to transmit modulator 84.
Transmit modulator 84 modulates the power request message for 1 5 transmission to the cell-site.
It should be understood that the system controller through the cell-site modules may solicit a power level measurement at the mobile units. Fach mobile unit communicates its power level measurement to the system controller. In response thereto the system controller may 2 0 adjust transmission power for the various cell-site modules for system optimization.
The previous description of the preferred embodiments are provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily 2 5 apparent to those skilled in the art, and the generic principals defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principals and novel features disclosed herein.

Claims (16)

CLAIMS:
1. A first station transceiver having a receiver for receiving and demodulating a second station transmitted spread spectrum communication signal, and a transmitter for transmitting a first station spread spectrum communication signal to said second station, said transceiver having a power control system for controlling transmission signal power of said first station spread spectrum communication signal about a predetermined power level as received at said second station, wherein said second station measures signal power of said first station spread spectrum communication signal as received at said second station, generates power adjustment commands according to variations in said measured signal power with respect to said predetermined power level and transmits said power adjustment commands in said second station spread spectrum communication signal, said power control system comprising:
control processor means coupled to said receiver for receiving said power adjustment commands and generating a corresponding closed loop power level control signal;
first amplifier means coupled to said receiver for amplifying said received second station spread spectrum communication signal in response to an open loop power level control signal;
automatic gain control means coupled to said first amplifier means for measuring signal power of said amplified second station spread spectrum communication signal, and providing a corresponding power measurement signal;
conversion means coupled to said first amplifier means for determining signal power of said amplified second station spread spectrum communication signal, for scaling and level shifting a first value corresponding to said determined signal power to produce a second value and for generating an open loop power level set signal from said second value;
comparator means for comparing said power measurement signal and said open loop power level set signal, and providing a corresponding open loop power level control signal; and second amplifier means for receiving said open loop power level control signal and said closed loop power level control signal, receiving and amplifying said first station spread spectrum communication signal at a gain determined by said open loop and closed loop power level control signals, and providing said amplified first station spread spectrum communication signal to said transmitter for transmission to said second station.
2. The transceiver of claim 1 wherein said receiver has an analog receiver portion and a digital receiver portion, said first amplifier means coupled to said analog receiver portion with said automatic gain control means for measuring wideband signal power of said amplified second station spread communication spectrum signal.
3. The transceiver of claim 2 wherein said digital receiver portion despreads said amplified second station spread spectrum communication signal and extracts therefrom said power adjustment commands and, wherein each power adjustment command affects a change in said closed loop power level control signal with said second amplifier means responsive to each change in said closed loop power level control signal so as to provide a corresponding change in said gain of said second amplifier means.
4. The transceiver of claim 3 wherein each change in said gain of said second amplifier means corresponds to a predetermined dB change in signal power of said first station spread spectrum communication signal.
5. The transceiver of claim 1 wherein an increase in signal power of said second station spread spectrum communication corresponds to a decrease in gain of said second amplifier means, and a decrease in signal power of said second station spread spectrum communication signal power corresponds to an increase in gain of said second amplifier means.
6. The transceiver of claim 1 wherein said second amplifier means comprises:
first variable gain amplification means for receiving said closed loop power level control signal and amplifying said first station spread spectrum communication signal at a first gain level determined by said closed loop power level control signal; and second variable gain amplification means for receiving said open loop power level control signal and amplifying said first gain level amplified first station spread spectrum communication signal at a second gain level determined by said open loop power level control signal.
7. The transceiver of claim 6 wherein said first amplifier means provides said second station spread spectrum communication signal as a normalized second station spread spectrum communication signal to said automatic gain control means and said conversion means.
8. In a remote station transceiver having a receiver for receiving a base station transmitted spread spectrum communication signal, and a transmitter for transmitting to said base station a remote station generated spread spectrum communication signal, a power control system for controlling transmission signal power of said remote station spread spectrum communication signal, comprising:
a first amplifier circuit coupled to said receiver for amplifying said received base station transmitted spread spectrum communication signal in response to a first control signal to provide a normalized signal;
an automatic gain control circuit coupled to said first amplifier circuit, said automatic gain control circuit receiving and performing an analog measurement of signal power of said normalized signal and generating a first power signal;
a conversion circuit coupled to said first amplifier circuit, said conversion circuit performing a digital measurement of signal power of said normalized signal, scaling and level shifting a first value corresponding to a result of said digital measurement of signal power of said normalized signal and generating said second power signal;
a comparison circuit coupled to said automatic gain control circuit and said conversion circuit, said comparison circuit differentially integrating said first and second power signals and generating said first control signal; and a second amplifier circuit coupled to said comparison circuit and said transmitter, said amplifier circuit receiving said first control signal, and receiving and amplifying said remote station spread spectrum communication signal at a gain determined by said first control signal.
9. The power control system of claim 8 wherein said second amplifier circuit further receives an input of a second control signal and amplifies said remote station spread spectrum communication signal at an additional gain determined by said second control signal.
10. The power control system of claim 9 wherein said second amplifier circuit comprises first and second variable gain amplifiers each having a signal input, a signal output and a control input, said second variable gain amplifier receiving at said second variable gain amplifier signal input said remote station spread spectrum communication signal and said second variable gain amplifier signal output coupled to said first variable gain amplifier signal input, said first and second variable gain amplifier control inputs for respectively receiving said first and second control signals.
11. The power control system of claim 10 wherein said first amplifier means comprises a third variable gain amplifier having a signal input, a signal output and a control input, said third variable gain amplifier signal input coupled to said receiver and said third variable gain amplifier signal output coupled to said automatic gain control circuit and said conversion circuit, said third variable gain amplifier control input coupled to said comparison circuit, said third variable gain amplifier receiving said base station spread spectrum communication signal and said first control signal, and amplifying said base station spread spectrum communication signal at said gain determined by said first control signal to provide said normalized signal to said automatic gain control circuit and said conversion circuit.
12. The power control system of claim 9 wherein said power control circuit controls transmission signal power of said remote station spread spectrum communication signal about a predetermined power level as received at said base station with said base station measuring signal power of said remote station spread spectrum communication signal as received at said base station, generating power adjustment commands according to variations in said base station measured signal power of said remote station spread spectrum communication signal with respect to said predetermined power level and transmitting said power adjustment commands in said base station spread spectrum communication signal, said receiver demodulating said base station spread spectrum communication signal and said transceiver further having a control processor coupled to said receiver for receiving from said demodulated base station spread spectrum communication signal said power adjustment commands, said control processor accumulating values corresponding to said power adjustment commands with respect to a predetermined value, and generating said second control signal.
13. In a remote station transceiver having a receiver for receiving a base station transmitted spread spectrum communication signal, and a transmitter for transmitting to said base station a remote station generated spread spectrum communication signal, a method for controlling transmission signal power of said remote station spread spectrum communication signal comprising the steps of:
amplifying the signal power of said received base station transmitted spread spectrum communication signal in response to a first control signal to provide a normalized signal;
performing an analog measurement of signal power of said normalized signal to generate a first power signal;
performing a digital measurement of signal power of said normalized signal;
scaling and level shifting a first value corresponding to a result of said digital measurement of signal power of said normalized signal to generate a second power signal;
differentially integrating said first and second power signals to generate said first control signal; and amplifying said remote station spread spectrum communication signal at a gain determined by said first control signal.
14. The method of claim 13 further comprising the step of amplifying said remote station spread spectrum communication signal at an additional gain determined by a second control signal.
15. The method of claim 14 wherein said base station measures signal power of said remote station spread spectrum communication signal as received at said base station, generates power adjustment commands according to variations in base station measured signal power of said remote station spread spectrum communication signal with respect to a predetermined power level and transmits said power adjustment commands in said base station spread spectrum 39a communication signal, and said receiver demodulates said base station spread spectrum communication signal and said transceiver further having a control processor coupled to said receiver for receiving from said demodulated base station spread spectrum communication signal, said method further comprising the steps of:
extracting said power adjustment commands from said demodulated base station spread spectrum communication signal; and generating said second control signal.
16. The method of claim 15 further comprising the step of accumulating values corresponding to said power adjustment commands with respect to a predetermined value from which said second control signal is generated.
CA002120768A 1991-10-08 1992-10-08 Transmitter power control system Expired - Lifetime CA2120768C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US773,067 1991-10-08
US07/773,067 US5267262A (en) 1989-11-07 1991-10-08 Transmitter power control system
PCT/US1992/008613 WO1993007702A1 (en) 1991-10-08 1992-10-08 Transmitter power control system

Publications (2)

Publication Number Publication Date
CA2120768A1 CA2120768A1 (en) 1993-04-15
CA2120768C true CA2120768C (en) 2003-01-28

Family

ID=25097112

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002120768A Expired - Lifetime CA2120768C (en) 1991-10-08 1992-10-08 Transmitter power control system

Country Status (23)

Country Link
US (1) US5267262A (en)
EP (1) EP0607359B1 (en)
JP (1) JP2935896B2 (en)
KR (1) KR0179403B1 (en)
AT (1) ATE200371T1 (en)
AU (1) AU654891B2 (en)
BG (1) BG61417B1 (en)
BR (1) BR9206606A (en)
CA (1) CA2120768C (en)
DE (1) DE69231769T2 (en)
DK (1) DK0607359T3 (en)
ES (1) ES2156863T3 (en)
FI (1) FI115018B (en)
GR (1) GR3035934T3 (en)
HK (1) HK1014814A1 (en)
HU (1) HU216926B (en)
IL (1) IL103368A (en)
MX (1) MX9205759A (en)
NO (1) NO941264L (en)
RO (1) RO119762B1 (en)
TW (1) TW223206B (en)
WO (1) WO1993007702A1 (en)
ZA (1) ZA927539B (en)

Families Citing this family (352)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0107746D0 (en) 2001-03-28 2001-05-16 Nokia Networks Oy Transmissions in a communication system
SE460449B (en) * 1988-02-29 1989-10-09 Ericsson Telefon Ab L M CELL DIVIDED DIGITAL MOBILE RADIO SYSTEM AND PROCEDURE TO TRANSFER INFORMATION IN A DIGITAL CELL DIVIDED MOBILE RADIO SYSTEM
SE8802229D0 (en) 1988-06-14 1988-06-14 Ericsson Telefon Ab L M MOBILE RADIO STATION PROCEDURE
US5446756A (en) * 1990-03-19 1995-08-29 Celsat America, Inc. Integrated cellular communications system
US6693951B1 (en) * 1990-06-25 2004-02-17 Qualcomm Incorporated System and method for generating signal waveforms in a CDMA cellular telephone system
US5535238A (en) 1990-11-16 1996-07-09 Interdigital Technology Corporation Spread spectrum adaptive power control communications system and method
US6873643B2 (en) * 1990-11-16 2005-03-29 Interdigital Technology Corporation Spread spectrum adaptive power control communications system and method
US5285469A (en) 1991-06-03 1994-02-08 Omnipoint Data Corporation Spread spectrum wireless telephone system
US5267261A (en) * 1992-03-05 1993-11-30 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
JPH05268138A (en) * 1992-03-19 1993-10-15 Nec Corp Portable telephone
US5313457A (en) * 1992-04-14 1994-05-17 Trimble Navigation Limited Code position modulation system and method for multiple user satellite communications
US5333175A (en) * 1993-01-28 1994-07-26 Bell Communications Research, Inc. Method and apparatus for dynamic power control in TDMA portable radio systems
US7142582B2 (en) 1993-02-17 2006-11-28 Interdigital Technology Corporation Receiving and selectively transmitting frequency hopped data signals using a plurality of antennas
US5459759A (en) 1993-02-17 1995-10-17 Interdigital Technology Corporation Frequency hopping code division multiple access system and method
DE59408295D1 (en) * 1993-03-19 1999-07-01 Siemens Ag Method for regulating the transmission power of a mobile station in a cellular mobile radio network
US5574982A (en) * 1993-05-14 1996-11-12 Telefonaktiebolaget Lm Ericsson Method and apparatus for regulating a power level of a transmitted radio signal
EP0631382B1 (en) * 1993-06-25 2001-05-09 Siemens Aktiengesellschaft Method for optimising the automatic adjustment of an amplifier in an rf-receiver
FI933209A (en) * 1993-07-14 1995-01-15 Nokia Telecommunications Oy Procedure further regulates the transmission power of a cellular radio system and a subscriber terminal
US5412686A (en) * 1993-09-17 1995-05-02 Motorola Inc. Method and apparatus for power estimation in a communication system
JP3192839B2 (en) * 1993-09-20 2001-07-30 富士通株式会社 How to determine initial transmit power
US6157668A (en) * 1993-10-28 2000-12-05 Qualcomm Inc. Method and apparatus for reducing the average transmit power of a base station
ZA948134B (en) * 1993-10-28 1995-06-13 Quaqlcomm Inc Method and apparatus for performing handoff between sectors of a common base station
US6088590A (en) 1993-11-01 2000-07-11 Omnipoint Corporation Method and system for mobile controlled handoff and link maintenance in spread spectrum communication
US6005856A (en) 1993-11-01 1999-12-21 Omnipoint Corporation Communication protocol for spread spectrum wireless communication system
US6094575A (en) 1993-11-01 2000-07-25 Omnipoint Corporation Communication system and method
US5383219A (en) * 1993-11-22 1995-01-17 Qualcomm Incorporated Fast forward link power control in a code division multiple access system
FI94579C (en) * 1994-01-12 1995-09-25 Nokia Mobile Phones Ltd Data Transfer method
US5559789A (en) 1994-01-31 1996-09-24 Matsushita Electric Industrial Co., Ltd. CDMA/TDD Radio Communication System
FI97929C (en) * 1994-02-25 1997-03-10 Nokia Telecommunications Oy Procedure for transmitting calls with different priorities in cellular radio networks
US5452473A (en) * 1994-02-28 1995-09-19 Qualcomm Incorporated Reverse link, transmit power correction and limitation in a radiotelephone system
JPH07297776A (en) * 1994-04-22 1995-11-10 Oki Electric Ind Co Ltd Communication system
US5671218A (en) * 1994-04-28 1997-09-23 Lucent Technologies Inc. Controlling power and access of wireless devices to base stations which use code division multiple access
JP2974274B2 (en) * 1994-05-12 1999-11-10 エヌ・ティ・ティ移動通信網株式会社 Transmission power control method and transmission power control device
JP2877248B2 (en) * 1994-05-20 1999-03-31 エヌ・ティ・ティ移動通信網株式会社 Transmission power control method and apparatus in CDMA system
US5809430A (en) * 1994-06-03 1998-09-15 Motorola, Inc. Method and apparatus for base selection in a communication system
BR9506001A (en) * 1994-06-03 1997-08-19 Motorola Inc Process and apparatus for adjusting the power level of the subscriber in a cellular communication system
US5551057A (en) 1994-06-08 1996-08-27 Lucent Technologies Inc. Cellular mobile radio system power control
US5603096A (en) * 1994-07-11 1997-02-11 Qualcomm Incorporated Reverse link, closed loop power control in a code division multiple access system
US5697053A (en) * 1994-07-28 1997-12-09 Lucent Technologies Inc. Method of power control and cell site selection
US5629956A (en) 1994-09-09 1997-05-13 Omnipoint Corporation Method and apparatus for reception and noncoherent serial correlation of a continuous phase modulated signal
US5881100A (en) 1994-09-09 1999-03-09 Omnipoint Corporation Method and apparatus for coherent correlation of a spread spectrum signal
US5659574A (en) 1994-09-09 1997-08-19 Omnipoint Corporation Multi-bit correlation of continuous phase modulated signals
US5757847A (en) 1994-09-09 1998-05-26 Omnipoint Corporation Method and apparatus for decoding a phase encoded signal
US5754585A (en) 1994-09-09 1998-05-19 Omnipoint Corporation Method and apparatus for serial noncoherent correlation of a spread spectrum signal
US5953370A (en) 1994-09-09 1999-09-14 Omnipoint Corporation Apparatus for receiving and correlating a spread spectrum signal
US5754584A (en) 1994-09-09 1998-05-19 Omnipoint Corporation Non-coherent spread-spectrum continuous-phase modulation communication system
US5856998A (en) 1994-09-09 1999-01-05 Omnipoint Corporation Method and apparatus for correlating a continuous phase modulated spread spectrum signal
US5548616A (en) * 1994-09-09 1996-08-20 Nokia Mobile Phones Ltd. Spread spectrum radiotelephone having adaptive transmitter gain control
US5680414A (en) 1994-09-09 1997-10-21 Omnipoint Corporation Synchronization apparatus and method for spread spectrum receiver
US5692007A (en) 1994-09-09 1997-11-25 Omnipoint Corporation Method and apparatus for differential phase encoding and decoding in spread-spectrum communication systems with continuous-phase modulation
US5627856A (en) 1994-09-09 1997-05-06 Omnipoint Corporation Method and apparatus for receiving and despreading a continuous phase-modulated spread spectrum signal using self-synchronizing correlators
US5963586A (en) 1994-09-09 1999-10-05 Omnipoint Corporation Method and apparatus for parallel noncoherent correlation of a spread spectrum signal
US5610940A (en) 1994-09-09 1997-03-11 Omnipoint Corporation Method and apparatus for noncoherent reception and correlation of a continous phase modulated signal
US5648982A (en) 1994-09-09 1997-07-15 Omnipoint Corporation Spread spectrum transmitter
US5832028A (en) 1994-09-09 1998-11-03 Omnipoint Corporation Method and apparatus for coherent serial correlation of a spread spectrum signal
FI97926C (en) * 1994-09-22 1997-03-10 Nokia Telecommunications Oy Procedure for adjusting transmitter power and cellular radio systems
US5566201A (en) * 1994-09-27 1996-10-15 Nokia Mobile Phones Ltd. Digital AGC for a CDMA radiotelephone
US5742583A (en) * 1994-11-03 1998-04-21 Omnipoint Corporation Antenna diversity techniques
US5642378A (en) * 1994-11-17 1997-06-24 Denheyer; Brian John Dual mode analog and digital cellular phone
US5577022A (en) * 1994-11-22 1996-11-19 Qualcomm Incorporated Pilot signal searching technique for a cellular communications system
US5727033A (en) * 1994-11-30 1998-03-10 Lucent Technologies Inc. Symbol error based power control for mobile telecommunication system
GB2296627B (en) * 1994-12-23 1999-04-14 Nokia Mobile Phones Ltd Apparatus and method for data transmission
GB2296625B (en) * 1994-12-23 1999-04-14 Nokia Mobile Phones Ltd Apparatus and method for data transmission
US6035197A (en) 1994-12-29 2000-03-07 Cellco Partnership Method and system for providing a handoff from a CDMA cellular telephone system
US5574747A (en) * 1995-01-04 1996-11-12 Interdigital Technology Corporation Spread spectrum adaptive power control system and method
US5594718A (en) * 1995-03-30 1997-01-14 Qualcomm Incorporated Method and apparatus for providing mobile unit assisted hard handoff from a CDMA communication system to an alternative access communication system
US6977967B1 (en) 1995-03-31 2005-12-20 Qualcomm Incorporated Method and apparatus for performing fast power control in a mobile communication system
TW347616B (en) * 1995-03-31 1998-12-11 Qualcomm Inc Method and apparatus for performing fast power control in a mobile communication system a method and apparatus for controlling transmission power in a mobile communication system is disclosed.
US6137840A (en) * 1995-03-31 2000-10-24 Qualcomm Incorporated Method and apparatus for performing fast power control in a mobile communication system
KR0155818B1 (en) * 1995-04-29 1998-11-16 김광호 Power distribution method and apparatus in multi-carrier transmitting system
US5689815A (en) * 1995-05-04 1997-11-18 Oki Telecom, Inc. Saturation prevention system for radio telephone with open and closed loop power control systems
US5745496A (en) * 1995-06-02 1998-04-28 Dsc Communications Corporation Apparatus and method of establishing a downlink communication path in a wireless telecommunications system
GB2301752B (en) * 1995-06-02 2000-03-29 Dsc Communications Control message transmission in telecommunications systems
JPH11509383A (en) * 1995-06-02 1999-08-17 ディーエスシー、カミューニケイシャンズ、コーパレイシャン Apparatus and method for establishing and maintaining a communication path in a wireless communication system
GB2301735B (en) * 1995-06-02 1999-07-28 Dsc Communications Message handling in a telecommunications network
GB2301751B (en) * 1995-06-02 2000-02-09 Dsc Communications Control message transmission in telecommunications systems
US5696766A (en) * 1995-06-02 1997-12-09 Dsc Communications Corporation Apparatus and method of synchronizing a transmitter in a subscriber terminal of a wireless telecommunications system
US5809093A (en) * 1995-06-02 1998-09-15 Dsc Communications Corporation Apparatus and method of frame aligning information in a wireless telecommunications system
US5742595A (en) * 1995-06-02 1998-04-21 Dsc Communications Corporation Processing CDMA signals
GB2301717B (en) * 1995-06-02 1999-08-11 Dsc Communications Network controller for monitoring the status of a network
US6175560B1 (en) 1995-06-02 2001-01-16 Airspan Networks, Inc. Apparatus and method of establishing and maintaining communication paths in a wireless telecommunications system
US5915216A (en) * 1995-06-02 1999-06-22 Dsc Communications Corporation Apparatus and method of transmitting and receiving information in a wireless telecommunications system
GB2301741A (en) * 1995-06-02 1996-12-11 Dsc Communications Establishing a Downlink Communication Path in a Wireless Communications System
GB2337861B (en) * 1995-06-02 2000-02-23 Dsc Communications Integrated directional antenna
US5802046A (en) * 1995-06-05 1998-09-01 Omnipoint Corporation Efficient time division duplex communication system with interleaved format and timing adjustment control
US5689502A (en) * 1995-06-05 1997-11-18 Omnipoint Corporation Efficient frequency division duplex communication system with interleaved format and timing adjustment control
US5959980A (en) * 1995-06-05 1999-09-28 Omnipoint Corporation Timing adjustment control for efficient time division duplex communication
US5745484A (en) * 1995-06-05 1998-04-28 Omnipoint Corporation Efficient communication system using time division multiplexing and timing adjustment control
US5710982A (en) * 1995-06-29 1998-01-20 Hughes Electronics Power control for TDMA mobile satellite communication system
ZA965340B (en) * 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
US7020111B2 (en) 1996-06-27 2006-03-28 Interdigital Technology Corporation System for using rapid acquisition spreading codes for spread-spectrum communications
US6049535A (en) * 1996-06-27 2000-04-11 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US6801516B1 (en) 1995-06-30 2004-10-05 Interdigital Technology Corporation Spread-spectrum system for assigning information signals having different data rates
US6885652B1 (en) 1995-06-30 2005-04-26 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US5841768A (en) 1996-06-27 1998-11-24 Interdigital Technology Corporation Method of controlling initial power ramp-up in CDMA systems by using short codes
US6788662B2 (en) 1995-06-30 2004-09-07 Interdigital Technology Corporation Method for adaptive reverse power control for spread-spectrum communications
US7123600B2 (en) 1995-06-30 2006-10-17 Interdigital Technology Corporation Initial power control for spread-spectrum communications
US5953346A (en) * 1996-06-27 1999-09-14 Interdigital Technology Corporation CDMA communication system which selectively suppresses data transmissions during establishment of a communication channel
US6940840B2 (en) 1995-06-30 2005-09-06 Interdigital Technology Corporation Apparatus for adaptive reverse power control for spread-spectrum communications
US6697350B2 (en) 1995-06-30 2004-02-24 Interdigital Technology Corporation Adaptive vector correlator for spread-spectrum communications
US6816473B2 (en) 1995-06-30 2004-11-09 Interdigital Technology Corporation Method for adaptive forward power control for spread-spectrum communications
US7072380B2 (en) 1995-06-30 2006-07-04 Interdigital Technology Corporation Apparatus for initial power control for spread-spectrum communications
US5940382A (en) 1996-06-27 1999-08-17 Interdigital Technology Corporation Virtual locating of a fixed subscriber unit to reduce re-acquisition time
US7929498B2 (en) 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
DE69637911D1 (en) * 1995-07-19 2009-06-04 Nec Corp Code diversity diversity diversity transmission system
US5809061A (en) * 1995-08-14 1998-09-15 Sigtek, Inc. CDMA communication system with pilot tone control
US5680395A (en) * 1995-08-15 1997-10-21 Qualcomm Incorporated Method and apparatus for time division duplex pilot signal generation
US6108364A (en) * 1995-08-31 2000-08-22 Qualcomm Incorporated Time division duplex repeater for use in a CDMA system
US5715526A (en) * 1995-09-08 1998-02-03 Qualcomm Incorporated Apparatus and method for controlling transmission power in a cellular communications system
US5627857A (en) * 1995-09-15 1997-05-06 Qualcomm Incorporated Linearized digital automatic gain control
DE19535360A1 (en) * 1995-09-22 1997-03-27 Siemens Ag Method for allocating radio resources to several transmission devices of a base station within a radio communication system
US5719898A (en) * 1995-09-29 1998-02-17 Golden Bridge Technology, Inc. Fuzzy-logic spread-spectrum adaptive power control
KR0167895B1 (en) * 1995-10-06 1999-02-01 김광호 Power supply control circuit for radio communication system
US5732077A (en) * 1995-11-13 1998-03-24 Lucent Technologies Inc. Resource allocation system for wireless networks
US5907813A (en) * 1995-11-30 1999-05-25 Qualcomm Incorporated Signal acquisition in a wireless communication system by transmitting repeated access probes from a terminal to a hub
US5930286A (en) * 1995-12-06 1999-07-27 Conexant Systems, Inc. Gain imbalance compensation for a quadrature receiver in a cordless direct sequence spread spectrum telephone
JP2773721B2 (en) * 1995-12-28 1998-07-09 日本電気株式会社 Transmission power control method
JP2959458B2 (en) * 1996-01-19 1999-10-06 日本電気株式会社 Transmission power control method
US6122500A (en) * 1996-01-24 2000-09-19 Ericsson, Inc. Cordless time-duplex phone with improved hearing-aid compatible mode
US5978679A (en) * 1996-02-23 1999-11-02 Qualcomm Inc. Coexisting GSM and CDMA wireless telecommunications networks
US5884187A (en) * 1996-03-13 1999-03-16 Ziv; Noam A. Method and apparatus for providing centralized power control administration for a set of base stations
US5778030A (en) * 1996-03-15 1998-07-07 Motorola, Inc. Method and apparatus for power control in a communication system
US5751763A (en) * 1996-03-15 1998-05-12 Motorola, Inc. Method and apparatus for power control in a communication system
US5745520A (en) * 1996-03-15 1998-04-28 Motorola, Inc. Method and apparatus for power control in a spread spectrum communication system using threshold step-down size adjustment
JP2738384B2 (en) * 1996-03-18 1998-04-08 日本電気株式会社 Transmission power control method
GB9606269D0 (en) * 1996-03-26 1996-05-29 Maxon Systems Inc London Limit CDMA Power control
US6205190B1 (en) 1996-04-29 2001-03-20 Qualcomm Inc. System and method for reducing interference generated by a CDMA communications device
US5917811A (en) * 1996-05-22 1999-06-29 Qualcomm Incorporated Method and apparatus for measurement directed hard handoff in a CDMA system
US5828661A (en) * 1996-05-22 1998-10-27 Qualcomm Incorporated Method and apparatus for providing a cone of silence in a cellular communication system
US5926470A (en) * 1996-05-22 1999-07-20 Qualcomm Incorporated Method and apparatus for providing diversity in hard handoff for a CDMA system
US5848063A (en) * 1996-05-23 1998-12-08 Qualcomm Incorporated Method and apparatus for hard handoff in a CDMA system
US5943014A (en) * 1996-06-06 1999-08-24 Qualcom Incorporated Using a signal with increased power for determining the position of a mobile subscriber in a CDMA cellular telephone system
US6195046B1 (en) 1996-06-06 2001-02-27 Klein S. Gilhousen Base station with slave antenna for determining the position of a mobile subscriber in a CDMA cellular telephone system
US6034635A (en) * 1996-06-06 2000-03-07 Gilhousen; Klein S. Method for using only two base stations for determining the position of a mobile subscriber in a CDMA cellular telephone system
FI103555B (en) * 1996-06-17 1999-07-15 Nokia Mobile Phones Ltd Transmission power control in wireless packet data transmission
US6047175A (en) * 1996-06-28 2000-04-04 Aironet Wireless Communications, Inc. Wireless communication method and device with auxiliary receiver for selecting different channels
US6215982B1 (en) 1996-06-28 2001-04-10 Cisco Systems, Inc. Wireless communication method and device with auxiliary receiver for selecting different channels
KR980007105A (en) * 1996-06-28 1998-03-30 김광호 Method for controlling transmission power of mobile station
US6055427A (en) * 1996-07-18 2000-04-25 Nokia Telecommunications Oy Hard handoff and a radio system
JP3818702B2 (en) 1996-08-07 2006-09-06 松下電器産業株式会社 CDMA radio transmission system, transmission power control apparatus and transmission power control measuring apparatus used in the system
US5790589A (en) * 1996-08-14 1998-08-04 Qualcomm Incorporated System and method for rapidly reacquiring a pilot channel
KR100194956B1 (en) * 1996-08-21 1999-06-15 정선종 Adaptive Power Control Method for Code Division Multiple Access Mobile Radiotelephone System
US6031826A (en) * 1996-08-27 2000-02-29 Ericsson Inc. Fast associated control channel technique for satellite communications
FI107667B (en) * 1996-09-03 2001-09-14 Nokia Networks Oy Method of setting the service level in a digital mobile communication system and digital mobile communication system
US5926747A (en) * 1996-09-05 1999-07-20 Airnet Communications Corp. Method and apparatus for dynamically optimizing the forward-link transmit power of a broadband multi-carrier radio signal
JP2885721B2 (en) * 1996-09-13 1999-04-26 日本電気アイシーマイコンシステム株式会社 Cellular mobile communication system
US5893035A (en) * 1996-09-16 1999-04-06 Qualcomm Incorporated Centralized forward link power control
CN1136741C (en) * 1996-11-27 2004-01-28 株式会社日立制作所 Transmission power control method and apparatus for mobile communication system
US5892774A (en) * 1996-12-12 1999-04-06 Qualcomm Incorporated Phase shift encoded subchannel
EP0856955A3 (en) 1997-01-29 2000-09-06 YRP Mobile Telecommunications Key Technology Research Laboratories Co., Ltd. CDMA power control system
US6151502A (en) * 1997-01-29 2000-11-21 Qualcomm Incorporated Method and apparatus for performing soft hand-off in a wireless communication system
USRE39177E1 (en) * 1997-01-29 2006-07-11 Qualcomm, Inc. Method and apparatus for performing soft hand-off in a wireless communication system
US6246716B1 (en) * 1997-01-31 2001-06-12 Adtran, Inc. Information communication system
US5933781A (en) * 1997-01-31 1999-08-03 Qualcomm Incorporated Pilot based, reversed channel power control
US5987326A (en) * 1997-02-11 1999-11-16 Qualcomm Incorporated Transmit power reduction for a high speed CDMA link in soft handoff
US6360079B2 (en) 1997-02-12 2002-03-19 Interdigital Technology Corporation Global channel power control to minimize spillover in a wireless communication environment
US5842114A (en) 1997-02-12 1998-11-24 Interdigital Technology Corporation Global channel power control to minimize spillover in a wireless communication environment
US5991284A (en) 1997-02-13 1999-11-23 Qualcomm Inc. Subchannel control loop
US6009129A (en) * 1997-02-28 1999-12-28 Nokia Mobile Phones Device and method for detection and reduction of intermodulation distortion
US6282228B1 (en) 1997-03-20 2001-08-28 Xircom, Inc. Spread spectrum codes for use in communication
JPH10271028A (en) * 1997-03-25 1998-10-09 Alps Electric Co Ltd Reception circuit for cellular telephone set
WO1998043453A1 (en) * 1997-03-26 1998-10-01 Motorola Inc. Method and apparatus for setting an inbound transmitter power level
US5946612A (en) * 1997-03-28 1999-08-31 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for performing local traffic measurements in a cellular telephone network
US6236863B1 (en) 1997-03-31 2001-05-22 Oki Telecom, Inc. Comprehensive transmitter power control system for radio telephones
FR2761838B1 (en) * 1997-04-03 1999-04-30 Alsthom Cge Alcatel METHOD FOR CONTROLLING THE TRANSMISSION POWER OF TERMINALS IN A CELLULAR NETWORK OF CDMA TYPE, BASE STATION AND BASE STATION CONTROLLER USING THE SAME
US5987322A (en) * 1997-04-03 1999-11-16 Ericsson Inc. System specified adaptive mobile station behavior within a mobile telecommunications system
AU761486B2 (en) * 1997-04-04 2003-06-05 Ericsson Inc. Power control for a mobile terminal in a satellite communication system
US6829226B1 (en) * 1997-04-04 2004-12-07 Ericsson Inc. Power control for a mobile terminal in a satellite communication system
JP3459866B2 (en) * 1997-04-22 2003-10-27 埼玉日本電気株式会社 Transmission power control method for code division multiple access system
US6396867B1 (en) 1997-04-25 2002-05-28 Qualcomm Incorporated Method and apparatus for forward link power control
US6002933A (en) * 1997-04-29 1999-12-14 Qualcomm Incorporated Inter-system soft handoff
JP2954086B2 (en) * 1997-05-16 1999-09-27 埼玉日本電気株式会社 Mobile communication system
US6999766B1 (en) 1997-05-19 2006-02-14 Qualcomm Incorporated Method and apparatus for optimization of a cellular network
US5940743A (en) * 1997-06-05 1999-08-17 Nokia Mobile Phones Limited Power control of mobile station transmissions during handoff in a cellular system
US6185431B1 (en) 1997-06-18 2001-02-06 Oki Telecom, Inc. Mobile station closed loop output power stability system for weak signal conditions
US5937001A (en) * 1997-06-20 1999-08-10 Cincinnati Electronics Corporation Range safety communication system and method utilizing pseudorandom noise sequences
US5982760A (en) * 1997-06-20 1999-11-09 Qualcomm Inc. Method and apparatus for power adaptation control in closed-loop communications
US6081536A (en) 1997-06-20 2000-06-27 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link
US6542481B2 (en) 1998-06-01 2003-04-01 Tantivy Communications, Inc. Dynamic bandwidth allocation for multiple access communication using session queues
US6426960B2 (en) 1997-06-24 2002-07-30 Qualcomm Incorporated Increased capacity data transmission in a CDMA wireless communication system
US6067458A (en) * 1997-07-01 2000-05-23 Qualcomm Incorporated Method and apparatus for pre-transmission power control using lower rate for high rate communication
US6055428A (en) * 1997-07-21 2000-04-25 Qualcomm Incorporated Method and apparatus for performing soft hand-off in a wireless communication system
US6147981A (en) * 1997-08-07 2000-11-14 Qualcomm Incorporated Method and apparatus for predictive parameter control with loop delay
US6188678B1 (en) * 1997-08-07 2001-02-13 Qualcomm Inc. Method and apparatus for adaptive closed loop power control using open loop measurements
US6070085A (en) * 1997-08-12 2000-05-30 Qualcomm Inc. Method and apparatus for controlling transmit power thresholds based on classification of wireless communication subscribers
US6097972A (en) * 1997-08-29 2000-08-01 Qualcomm Incorporated Method and apparatus for processing power control signals in CDMA mobile telephone system
US6307849B1 (en) * 1997-09-08 2001-10-23 Qualcomm Incorporated Method and system for changing forward traffic channel power allocation during soft handoff
US6215777B1 (en) 1997-09-15 2001-04-10 Qualcomm Inc. Method and apparatus for transmitting and receiving data multiplexed onto multiple code channels, frequencies and base stations
US6101179A (en) * 1997-09-19 2000-08-08 Qualcomm Incorporated Accurate open loop power control in a code division multiple access communication system
ES2219924T3 (en) 1997-10-27 2004-12-01 Siemens Aktiengesellschaft MOBILE STATION AND BASE STATION PROCEDURE FOR THE ESTABLISHMENT OF COMMUNICATION IN A RADIO COMMUNICATION SYSTEM.
US9118387B2 (en) 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US7184426B2 (en) 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
JPH11145899A (en) * 1997-11-10 1999-05-28 Matsushita Electric Ind Co Ltd Transmission/reception equipment and radio transmission system
US6259682B1 (en) * 1997-11-25 2001-07-10 Uniden America Corporation Closed loop transmitter with improved stability and accuracy over a wide range of power levels having means for maintaining constant loop gain
US6411799B1 (en) * 1997-12-04 2002-06-25 Qualcomm Incorporated Method and apparatus for providing ternary power control in a communication system
US6708041B1 (en) 1997-12-15 2004-03-16 Telefonaktiebolaget Lm (Publ) Base station transmit power control in a CDMA cellular telephone system
US7079523B2 (en) * 2000-02-07 2006-07-18 Ipr Licensing, Inc. Maintenance link using active/standby request channels
US7394791B2 (en) 1997-12-17 2008-07-01 Interdigital Technology Corporation Multi-detection of heartbeat to reduce error probability
US6222832B1 (en) 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US7936728B2 (en) 1997-12-17 2011-05-03 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US9525923B2 (en) 1997-12-17 2016-12-20 Intel Corporation Multi-detection of heartbeat to reduce error probability
US6304561B1 (en) * 1997-12-23 2001-10-16 Nortel Networks Limited Method and apparatus for regulation of the effective noise figure in a CDMA receiver
US6154659A (en) * 1997-12-24 2000-11-28 Nortel Networks Limited Fast forward link power control in a code division multiple access system
CA2264125C (en) 1998-03-03 2003-05-06 Nec Corporation Method of controlling transmission power in a cellular type mobile communication system
US6188888B1 (en) 1998-03-30 2001-02-13 Oki Telecom, Inc. Charging unit and wireless telephone having multi-number call forwarding capability
US6219342B1 (en) * 1998-03-31 2001-04-17 Lucent Technologies Inc. Non-adaptive symbol error count based algorithm for CDMA reverse link outer loop power control
US6370187B1 (en) * 1998-04-01 2002-04-09 Texas Instruments Incorporated Adaptive power dissipation for data communications system
US6233439B1 (en) * 1998-04-08 2001-05-15 Nortel Networks Limited Signal to noise estimation of forward link traffic channel for fast power control
US6373829B1 (en) 1998-04-23 2002-04-16 Motorola, Inc. Method and apparatus for group calls in a wireless CDMA communication system using outbound traffic channels for individual group members
US6181685B1 (en) 1998-04-23 2001-01-30 Motorola, Inc. Method and apparatus for group calls in a wireless CDMA communication system
US7773566B2 (en) 1998-06-01 2010-08-10 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US8134980B2 (en) 1998-06-01 2012-03-13 Ipr Licensing, Inc. Transmittal of heartbeat signal at a lower level than heartbeat request
EP0967739A1 (en) * 1998-06-24 1999-12-29 ICO Services Ltd. Measurement of cellular environment in idle mode and transmission to central at beginning of call
US5978365A (en) * 1998-07-07 1999-11-02 Orbital Sciences Corporation Communications system handoff operation combining turbo coding and soft handoff techniques
WO2000007178A1 (en) 1998-07-31 2000-02-10 Conexant Systems, Inc. Method and apparatus for noise elimination through transformation of the output of the speech decoder
US6377555B1 (en) 1998-09-22 2002-04-23 Jhong Sam Lee Method for determining forward link channel powers for a CDMA cellular or PCS system
US6603745B1 (en) * 1998-10-28 2003-08-05 Qualcomm Incorporated Method and apparatus for reverse link overload detection
US6370203B1 (en) * 1998-11-04 2002-04-09 Ericsson Inc. Power control for wireless communications system
JP3150115B2 (en) * 1998-11-12 2001-03-26 埼玉日本電気株式会社 Uplink interference correction method and system for CDMA open loop control
US6512925B1 (en) * 1998-12-03 2003-01-28 Qualcomm, Incorporated Method and apparatus for controlling transmission power while in soft handoff
US6442398B1 (en) 1998-12-03 2002-08-27 Qualcomm Incorporated Method and apparatus for reverse link loading estimation
US6914889B1 (en) * 1998-12-08 2005-07-05 Lucent Technologies Inc. Variable rate forward power control for multichannel applications
US6615052B1 (en) * 1998-12-08 2003-09-02 Honeywell International Inc. Radio frequency power control algorithm
US6405018B1 (en) * 1999-01-11 2002-06-11 Metawave Communications Corporation Indoor distributed microcell
US6370109B1 (en) * 1999-03-10 2002-04-09 Qualcomm Incorporated CDMA signal power control using quadrature signal calculations
US6628956B2 (en) 1999-03-15 2003-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power control in a radio communications systems
US6600929B1 (en) 1999-04-02 2003-07-29 Qualcomm, Incorporated Power output control of a car kit by a coupled wireless device
US6337975B1 (en) 1999-04-02 2002-01-08 Qualcomm Inc. System and method for power measurement in outdoor antenna units
US6473603B1 (en) 1999-04-02 2002-10-29 Qualcomm, Inc. System and method for temperature compensation of external antenna units
US6249683B1 (en) 1999-04-08 2001-06-19 Qualcomm Incorporated Forward link power control of multiple data streams transmitted to a mobile station using a common power control channel
US6334047B1 (en) 1999-04-09 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power control in a mobile radio communications system
US6445930B1 (en) 1999-04-21 2002-09-03 Joseph Peter Bartelme Power control system and method for use with wireless communications system
US6690938B1 (en) 1999-05-06 2004-02-10 Qualcomm Incorporated System and method for reducing dropped calls in a wireless communications network
US6727816B1 (en) * 1999-05-13 2004-04-27 Honeywell International Inc. Wireless system with variable learned-in transmit power
GB9912846D0 (en) 1999-06-02 1999-08-04 Nokia Telecommunications Oy A method of controlling power
US6539213B1 (en) 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
US7649925B2 (en) * 1999-06-14 2010-01-19 Time Domain Corporation Time transfer utilizing ultra wideband signals
EP1063787A1 (en) * 1999-06-18 2000-12-27 Alcatel Operating a cellular telecommunication system
JP3343908B2 (en) * 1999-06-22 2002-11-11 日本電気株式会社 Broadcast communication method and system, base station apparatus and mobile station
US6480472B1 (en) 1999-07-21 2002-11-12 Qualcomm Incorporated Mobile station supervision of the forward dedicated control channel when in the discontinuous transmission mode
US8064409B1 (en) 1999-08-25 2011-11-22 Qualcomm Incorporated Method and apparatus using a multi-carrier forward link in a wireless communication system
JP3782616B2 (en) * 1999-08-31 2006-06-07 株式会社エヌ・ティ・ティ・ドコモ Booster, monitoring device, booster system, control method and monitoring method
US6728520B2 (en) 1999-08-31 2004-04-27 Qualcomm Incorporated System and method for constant loop gain in a closed loop circuit
US6628958B1 (en) * 1999-09-15 2003-09-30 Lucent Technologies Inc. Method for adjusting the transmit power level during soft handoff in wireless communication systems
US6621804B1 (en) 1999-10-07 2003-09-16 Qualcomm Incorporated Method and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US6751448B1 (en) * 1999-10-13 2004-06-15 Intel Corporation Control of transmission power in a communication system
US6553212B1 (en) * 1999-11-01 2003-04-22 Nokia Networks Oy Method and apparatus for improving loop stability and speed of a power control loop
JP3663092B2 (en) * 1999-11-19 2005-06-22 三洋電機株式会社 Wireless base station
US6278742B1 (en) * 1999-11-19 2001-08-21 Siemens Information And Communication Mobile Llc. Method and system for power-conserving interference avoidance in communication between a mobile unit and a base unit in a wireless telecommunication system
JP3535427B2 (en) * 1999-11-25 2004-06-07 松下電器産業株式会社 Wireless communication device
JP3991543B2 (en) 2000-01-11 2007-10-17 株式会社日立製作所 Imaging device
AU3673001A (en) 2000-02-07 2001-08-14 Tantivy Communications, Inc. Minimal maintenance link to support synchronization
KR100899211B1 (en) 2000-02-23 2009-05-27 아이피알 라이센싱, 인코포레이티드 Reverse link initial power setting
US6823193B1 (en) 2000-02-28 2004-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Downlink transmit power synchronization during diversity communication with a mobile station
KR100365598B1 (en) * 2000-03-10 2002-12-26 삼성전자 주식회사 Power control apparatus and method in a wireless communication system using scheduled packet data service channel service channel
US6577875B1 (en) * 2000-04-18 2003-06-10 Telefonaktiebolaget Lm Ericsson (Publ) Cellular communications system/method with uplink interference ceiling
FR2808158B1 (en) * 2000-04-19 2002-06-07 Mitsubishi Electric Inf Tech METHOD FOR CONTROLLING POWER IN A TELECOMMUNICATION SYSTEM
US6980527B1 (en) 2000-04-25 2005-12-27 Cwill Telecommunications, Inc. Smart antenna CDMA wireless communication system
US6671515B1 (en) 2000-06-06 2003-12-30 Motorola, Inc. Method and apparatus for selecting communication cells in a wireless communication system
CA2315123C (en) * 2000-08-04 2011-07-05 Mine Radio Systems Inc. Local area network computer system utilizing radiating transmission line
US6853675B1 (en) 2000-08-10 2005-02-08 Umbrella Capital, Llc Methods and systems for optimizing signal transmission power levels in a spread spectrum communication system
US6959033B1 (en) 2000-08-25 2005-10-25 Texas Instruments Incorporated System and method for assigning combiner channels in spread spectrum communications
CA2319287A1 (en) 2000-09-14 2002-03-14 Ramesh Mantha System and method for allocating power
US6771691B1 (en) 2000-09-15 2004-08-03 Texas Instruments Incorporated System and method for extracting soft symbols in direct sequence spread spectrum communications
US7031374B1 (en) 2000-10-06 2006-04-18 Texas Instruments Incorporated System and method for selecting sample streams in direct sequence spread spectrum communications
US6873613B1 (en) * 2000-10-16 2005-03-29 Ericsson Inc. Methods for wirelessly communicating time division multiple access (TDMA) data using adaptive multiplexing and coding
US6643519B1 (en) * 2000-10-24 2003-11-04 At&T Corp. Transmitter power control method and apparatus
US7068683B1 (en) 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
US6973098B1 (en) 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
EP1354433A1 (en) * 2000-12-22 2003-10-22 Wiscom Technologies, Inc. Adaptive pilot/traffic channel power control for 3gpp wcdma
US6862273B2 (en) * 2001-01-10 2005-03-01 Motorola, Inc. Method and apparatus for providing dispatch scan in a CDMA communication system
US7551663B1 (en) 2001-02-01 2009-06-23 Ipr Licensing, Inc. Use of correlation combination to achieve channel detection
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
US6970716B2 (en) 2001-02-22 2005-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Power control for downlink shared channel in radio access telecommunications network
US6928063B2 (en) * 2001-03-16 2005-08-09 Motorola, Inc. Method and apparatus for providing a dispatch patch service in a CDMA communication system
US8199696B2 (en) 2001-03-29 2012-06-12 Qualcomm Incorporated Method and apparatus for power control in a wireless communication system
EP1248384B1 (en) * 2001-04-02 2007-08-22 STMicroelectronics N.V. Transmit power control method
US6987799B2 (en) * 2001-05-03 2006-01-17 Texas Instruments Incorporated System and method for demodulating associated information channels in direct sequence spread spectrum communications
ES2614202T3 (en) 2001-06-13 2017-05-30 Intel Corporation Method and apparatus for transmitting a heartbeat signal at a lower level than the request for heartbeat
KR100915275B1 (en) * 2001-11-05 2009-09-03 가부시키가이샤 히타치세이사쿠쇼 Wireless communication system and communication control method therefor and wireless communication station
US7082107B1 (en) 2001-11-26 2006-07-25 Intel Corporation Power control in wireless communications based on estimations of packet error rate
JP4005796B2 (en) * 2001-11-30 2007-11-14 富士通株式会社 Power control circuit and wireless transmission device
US6925309B2 (en) 2001-12-20 2005-08-02 Motorola, Inc. Method and apparatus for quickly establishing a CDMA dispatch call
US6788941B2 (en) 2001-12-20 2004-09-07 Motorola, Inc. Method and apparatus for mobile-initiated, CDMA-dispatch soft handoff
US7099290B2 (en) * 2001-12-20 2006-08-29 Motorola, Inc. Method and apparatus for CDMA-dispatch soft handoff
US6801783B2 (en) 2001-12-20 2004-10-05 Motorola, Inc. Base site and method for quickly establishing a CDMA dispatch call
US6961572B2 (en) 2001-12-20 2005-11-01 Motorola, Inc. Method and apparatus for base-initiated, CDMA-dispatch soft handoff
US6963755B2 (en) * 2002-01-09 2005-11-08 Qualcomm, Incorporated Method and apparatus for coherently combining power control commands to initialize communication
US7672274B2 (en) 2002-01-11 2010-03-02 Broadcom Corporation Mobility support via routing
US7515557B1 (en) * 2002-01-11 2009-04-07 Broadcom Corporation Reconfiguration of a communication system
US7149196B1 (en) * 2002-01-11 2006-12-12 Broadcom Corporation Location tracking in a wireless communication system using power levels of packets received by repeaters
US20030158609A1 (en) * 2002-02-19 2003-08-21 Koninklijke Philips Electronics N.V. Power saving management for portable devices
US6970714B2 (en) * 2002-04-30 2005-11-29 Lucent Technologies Inc. Adaptive power level setting in an ad-hoc wireless network
US7113498B2 (en) * 2002-06-05 2006-09-26 Broadcom Corporation Virtual switch
JP4192528B2 (en) * 2002-08-23 2008-12-10 株式会社日立製作所 Wireless communication system and transmission power control method thereof
US7221915B2 (en) * 2003-06-25 2007-05-22 M/A-Com, Inc. Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
US7751496B2 (en) * 2003-06-25 2010-07-06 Pine Valley Investments, Inc. Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
US7254195B2 (en) * 2003-08-25 2007-08-07 M/A-Com, Inc. Apparatus, methods and articles of manufacture for dynamic differential delay correction
US7151913B2 (en) * 2003-06-30 2006-12-19 M/A-Com, Inc. Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
US20040092233A1 (en) * 2002-11-08 2004-05-13 Rudrapatna Ashok N. Variable rate closed loop power control for wireless communication systems
US7339994B2 (en) * 2002-11-25 2008-03-04 Texas Instruments Incorporated Method and apparatus for fast convergent power control in a spread spectrum communication system
US20040203462A1 (en) * 2002-11-25 2004-10-14 Wei Lin Method and apparatus for setting the threshold of a power control target in a spread spectrum communication system
US7330504B2 (en) * 2002-11-25 2008-02-12 Texas Instruments Incorporated Method and apparatus for low power-rise power control using sliding-window-weighted QoS measurements
US8428181B2 (en) 2002-12-02 2013-04-23 Research In Motion Limited Method and apparatus for optimizing transmitter power efficiency
US6859098B2 (en) 2003-01-17 2005-02-22 M/A-Com, Inc. Apparatus, methods and articles of manufacture for control in an electromagnetic processor
JP2004266585A (en) * 2003-03-03 2004-09-24 Hitachi Ltd Wireless communication system, its transmission electric power and data rate control method
US7340662B1 (en) * 2003-04-30 2008-03-04 Mcelwee James Francis GBit/s transceiver with built-in self test features
US7286795B2 (en) * 2003-07-23 2007-10-23 Mds America, Inc. System and method for effective reception and transmission of satellite signals
CN1322767C (en) * 2003-07-29 2007-06-20 大唐移动通信设备有限公司 Power control method for mobile communication system
US7480511B2 (en) * 2003-09-19 2009-01-20 Trimble Navigation Limited Method and system for delivering virtual reference station data
US7091778B2 (en) 2003-09-19 2006-08-15 M/A-Com, Inc. Adaptive wideband digital amplifier for linearly modulated signal amplification and transmission
US7411930B2 (en) 2003-12-17 2008-08-12 Qualcomm, Incorporated Apparatus and method for prioritized apportionment of transmission power in a multi-carrier terminal
US7248890B1 (en) * 2004-02-06 2007-07-24 Vativ Technologies, Inc. Channel power balancing in a multi-channel transceiver system
US7333563B2 (en) * 2004-02-20 2008-02-19 Research In Motion Limited Method and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
US7308042B2 (en) * 2004-02-27 2007-12-11 Research In Motion Limited Method and apparatus for optimizing transmitter power efficiency
FI20045195A0 (en) * 2004-05-27 2004-05-27 Nokia Corp Procedure and arrangement for uplink scheduling
US8452316B2 (en) 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US7594151B2 (en) * 2004-06-18 2009-09-22 Qualcomm, Incorporated Reverse link power control in an orthogonal system
US7197692B2 (en) 2004-06-18 2007-03-27 Qualcomm Incorporated Robust erasure detection and erasure-rate-based closed loop power control
US8942639B2 (en) 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US8848574B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US7349504B2 (en) * 2005-03-18 2008-03-25 Navini Networks, Inc. Method and system for mitigating interference in communication system
US7274253B2 (en) * 2005-03-28 2007-09-25 Broadcom Corporation Transmitter apparatus with extended gain control
US7345534B2 (en) * 2005-05-31 2008-03-18 M/A-Com Eurotec Bv Efficient power amplification system
JP2007013489A (en) * 2005-06-29 2007-01-18 Kyocera Corp Communication system, communication apparatus, transmission power control method, and program
US7392021B2 (en) * 2005-08-03 2008-06-24 M/A-Com, Inc. Apparatus, system, and method for measuring power delivered to a load
US20070087770A1 (en) * 2005-10-14 2007-04-19 Hong Gan Methods and apparatuses for transmission power control in a wireless communication system
IN2013MN00252A (en) 2005-10-27 2015-06-05 Qualcomm Inc
US7583625B2 (en) * 2006-04-06 2009-09-01 Broadcom Corporation Access point multi-level transmission power and protocol control based on the exchange of characteristics
US7684799B2 (en) * 2006-03-28 2010-03-23 Motorola, Inc. Method for data transfer with a mobile station while in discontinuous reception state
US20070280377A1 (en) * 2006-06-02 2007-12-06 Rucki John S Apparatus and method for controlling the output power of a transmitter using a pilot channel power level
EP2027650B9 (en) * 2006-06-14 2013-02-20 Research In Motion Limited Input drive control for switcher regulated power amplifier modules
US8761305B2 (en) 2006-06-14 2014-06-24 Blackberry Limited Input drive control for switcher regulated power amplifier modules
JP5185115B2 (en) 2006-06-14 2013-04-17 リサーチ イン モーション リミテッド Improved control of switcher-regulated power amplifier modules
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US8442572B2 (en) 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
US20080220803A1 (en) * 2007-03-06 2008-09-11 Motorola, Inc. Control of signal transmission power adjustment requests
US20090027112A1 (en) * 2007-07-26 2009-01-29 Chin Li Controllable precision transconductance
US7671699B2 (en) * 2007-08-14 2010-03-02 Pine Valley Investments, Inc. Coupler
JP5255986B2 (en) * 2008-10-20 2013-08-07 株式会社日立ハイテクノロジーズ Patterned media inspection method and inspection apparatus
US8811200B2 (en) 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
JP2011135570A (en) * 2009-11-27 2011-07-07 Sanyo Electric Co Ltd Terminal device
US8620238B2 (en) 2010-07-23 2013-12-31 Blackberry Limited Method of power amplifier switching power control using post power amplifier power detection
US9115908B2 (en) 2011-07-27 2015-08-25 Honeywell International Inc. Systems and methods for managing a programmable thermostat
US9157764B2 (en) 2011-07-27 2015-10-13 Honeywell International Inc. Devices, methods, and systems for occupancy detection
US9621371B2 (en) 2012-07-24 2017-04-11 Honeywell International Inc. Wireless sensor device with wireless remote programming
DE102013205936B4 (en) * 2013-04-04 2016-07-14 TRUMPF Hüttinger GmbH + Co. KG Method for controlling a controlled system with a standardized selection variable
KR102347213B1 (en) * 2015-07-29 2022-01-04 주식회사 엘지유플러스 Transmission power of the base station control method and apparatus
CN112399541B (en) * 2019-08-16 2022-08-09 华为技术有限公司 Uplink power control method and device suitable for non-ground network
JP7382178B2 (en) 2019-08-30 2023-11-16 株式会社イトーキ Chair

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2048056C1 (en) * 1970-09-30 1978-10-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Receiver for electrical oscillations modulated in SSMA technology
US3925782A (en) * 1975-02-28 1975-12-09 Us Army Adaptive RF power output control for net radios
US4112257A (en) * 1977-03-24 1978-09-05 Frost Edward G Comprehensive automatic mobile radio telephone system
US4225976A (en) * 1978-02-28 1980-09-30 Harris Corporation Pre-calibration of gain control circuit in spread-spectrum demodulator
US4222115A (en) * 1978-03-13 1980-09-09 Purdue Research Foundation Spread spectrum apparatus for cellular mobile communication systems
US4193031A (en) * 1978-03-13 1980-03-11 Purdue Research Foundation Method of signal transmission and reception utilizing wideband signals
GB2132452B (en) * 1982-12-08 1986-10-08 Racel Ses Limited Radio systems
US4495648A (en) * 1982-12-27 1985-01-22 At&T Bell Laboratories Transmitter power control circuit
US4641322A (en) * 1983-10-18 1987-02-03 Nec Corporation System for carrying out spread spectrum communication through an electric power line
US4613990A (en) * 1984-06-25 1986-09-23 At&T Bell Laboratories Radiotelephone transmission power control
US4868795A (en) * 1985-08-05 1989-09-19 Terra Marine Engineering, Inc. Power leveling telemetry system
US4672658A (en) * 1985-10-16 1987-06-09 At&T Company And At&T Bell Laboratories Spread spectrum wireless PBX
FR2592256B1 (en) * 1985-12-20 1988-02-12 Trt Telecom Radio Electr DEVICE FOR CONTROLLING THE TRANSMIT POWER OF A RADIO BEAM
DE3607687A1 (en) * 1986-03-08 1987-09-10 Philips Patentverwaltung METHOD AND CIRCUIT ARRANGEMENT FOR SWITCHING A RADIO CONNECTION INTO ANOTHER RADIO CELL OF A DIGITAL RADIO TRANSMISSION SYSTEM
FR2595889B1 (en) * 1986-03-14 1988-05-06 Havel Christophe TRANSMISSION POWER CONTROL DEVICE IN A RADIO COMMUNICATION TRANSCEIVER STATION
US4901307A (en) * 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
JPS63226124A (en) * 1986-10-29 1988-09-20 Oki Electric Ind Co Ltd Level control circuit for radio equipment
US5056109A (en) * 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5093840A (en) * 1990-11-16 1992-03-03 Scs Mobilecom, Inc. Adaptive power control for a spread spectrum transmitter
US5107487A (en) * 1991-05-28 1992-04-21 Motorola, Inc. Power control of a direct sequence CDMA radio

Also Published As

Publication number Publication date
ATE200371T1 (en) 2001-04-15
EP0607359B1 (en) 2001-04-04
HK1014814A1 (en) 1999-09-30
BG61417B1 (en) 1997-07-31
BG98704A (en) 1995-05-31
IL103368A (en) 1996-01-19
NO941264L (en) 1994-06-08
KR0179403B1 (en) 1999-05-15
FI941637A (en) 1994-06-08
HUT69842A (en) 1995-09-28
AU654891B2 (en) 1994-11-24
EP0607359A1 (en) 1994-07-27
NO941264D0 (en) 1994-04-07
HU9400983D0 (en) 1994-07-28
FI115018B (en) 2005-02-15
GR3035934T3 (en) 2001-08-31
DK0607359T3 (en) 2001-07-02
ES2156863T3 (en) 2001-08-01
CA2120768A1 (en) 1993-04-15
DE69231769D1 (en) 2001-05-10
WO1993007702A1 (en) 1993-04-15
MX9205759A (en) 1993-04-01
DE69231769T2 (en) 2001-11-22
HU216926B (en) 1999-10-28
EP0607359A4 (en) 1996-07-31
BR9206606A (en) 1995-11-14
FI941637A0 (en) 1994-04-08
US5267262A (en) 1993-11-30
RO119762B1 (en) 2005-02-28
JP2935896B2 (en) 1999-08-16
JPH07502631A (en) 1995-03-16
AU3054392A (en) 1993-05-03
TW223206B (en) 1994-05-01
ZA927539B (en) 1993-07-07

Similar Documents

Publication Publication Date Title
CA2120768C (en) Transmitter power control system
US5265119A (en) Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5485486A (en) Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
AU646001B2 (en) Power control in CDMA mobile telephone system
US5257283A (en) Spread spectrum transmitter power control method and system
EP1569360A1 (en) Spread-spectrum system and method
US6188678B1 (en) Method and apparatus for adaptive closed loop power control using open loop measurements
KR19990022258A (en) Pilot Signal Power Control for Low Orbit Satellite Communication System

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry
MKEX Expiry

Effective date: 20121009