CA2099588C - Prevention of synovial adhesions - Google Patents

Prevention of synovial adhesions Download PDF

Info

Publication number
CA2099588C
CA2099588C CA002099588A CA2099588A CA2099588C CA 2099588 C CA2099588 C CA 2099588C CA 002099588 A CA002099588 A CA 002099588A CA 2099588 A CA2099588 A CA 2099588A CA 2099588 C CA2099588 C CA 2099588C
Authority
CA
Canada
Prior art keywords
steroidal anti
inflammatory agent
adhesions
surgery
synovial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002099588A
Other languages
French (fr)
Other versions
CA2099588A1 (en
Inventor
Larry J. Moore
Jill Adler-Moore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexstar Pharmaceuticals Inc
Original Assignee
Nexstar Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexstar Pharmaceuticals Inc filed Critical Nexstar Pharmaceuticals Inc
Publication of CA2099588A1 publication Critical patent/CA2099588A1/en
Application granted granted Critical
Publication of CA2099588C publication Critical patent/CA2099588C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Abstract

Adhesions in synovial capsules are prevented through the administration of liposome intercalated nonsteroidal anti-in-flammatory agents.

Description

PREVENTION OF SYNOVIAL ADHESIONS
Field of the Invention This invention relates to the field of biochemistry and medicine, and more particularly to methods for the prevention of adhesions in traumatized synovial tissue.
Background and Summary of the Invention The mammalian body is replete with joint spaces, that is, areas which comprise an articulating mechanism for the movement of limbs and other members. These joint spaces are also known as synovial capsules. Joint spaces include synovial tissue, which supplies a lubricating synovia (fluid) for the articulating members.
Trauma to the joint space, whether as a result of injury or surgery, often produces adhesions within the joint space which is accompanied by further destruction of the synovial tissue (disk perforation and other secondary trauma) which interferes with healing and proper functioning of the joint.
Work has been performed in an attempt to limit the formation of adhesions in unrelated (epithelial) tissues of the mammalian body, specifically, the formation of adhesions in peritoneal surgery. See, for example, the data set forth in EP 225162, Ethiconlac, published June 10, 1987. However, the joint space differs significantly from epithelial tissue and the formulations described in the aforementioned publication have not been thought to be adaptable to synovial tissue. thus, efforts to prevent adhesions within the joint spaces, particularly following arthroscopic surgery, have been unsuccessful.
Accordingly, it has been a desideratum to provide a method to prevent adhesions in the synovial capsule.
In accordance with the invention there is provided use of a liposomal intercalated non-steroidal anti-inflammatory agent for the manufacture of a medicament for the prevention of adhesion formation in synovial tissue produced by trauma or surgery.

la In another aspect of the invention there is provided a pharmaceutical composition for the prevention of adhesion formation between non-epithelial tissues in a synovial joint space, the adhesion formation being produced by trauma or surgery, comprising an acceptable, adhesion-preventing amount of a liposomal intercalated non-steroidal anti-inflammatory agent for the synovial joint space in association with a pharmaceutically acceptable carrier.
In still another aspect of the invention there is provided a liposomal intercalated non-steroidal anti-inflammatory agent for use in prevention of adhesion formation between non-epithelia tissues in a synovial joint space, the adhesion formation being produced by trauma or surgery.
The invention also provides a method for the prevention of adhesion formation between non-epithelial tissues in a synovial joint space, the adhesion formation being produced by trauma or surgery, comprising the administration of a liposomal intercalated non-steroidal anti-inflammatory agent to the synovial space in an amount which is effective for the treatment.
Detailed Description of the Invention A wide variety of lipid particles may include a non-steroidal anti-inflammatory agent to form the vesicles of the invention, which are capable of preventing the formation of adhesions in a synovial capsule. For example, the delivery vehicles disclosed in EP 0272091, Nexstar Pharmaceuticals, published June 22, 1988, may be employed. These vehicles are composed of a single encapsulating phospholipid membrane associated with an amphiphile-associated substrate. However, the lipid particles are preferably comprised of phospholipids and most preferably are liposomes.
Phospholipids are amphipathic molecules which are the primary constituents of cell membranes. Typical phospholipid hydrophilic groups include phosphatidylcholine and phosphatidylethanolamine moieties, while typical hydrophobic groups include a variety of saturated and unsaturated fatty acid moieties. Mixture of a phospholipid in water causes spontaneous organization of the phospholipid molecules into a variety of characteristic phases depending on the conditions used. These include bilayer structures in which the hydrophilic groups of the phospholipids interact at the exterior of the bilayer with water, while the hydrophobic groups interact with similar groups on adjacent molecules in the interior of the bilayer. Such bilayer structures can be quite stable and form the principal basis of cell membranes.
Phospholipid bilayer structures can also be formed into closed spherical shell-like structure<.~ which are called phospholipid vesicles or liposomes.
The membrane bilayer;s in these structures typically encapsulate an aqueous volume, and form a permeability barrier between the encapsulated volume and the exterior solution. Phospholipids dispersed in aqueous solution spontaneously forrr~ bilayers with the hydrocarbon tails directed inward and the polar headgroups outward to interact with water. Simple agitation of the mixture usually produces multilamellar vesicles (MLVs), structures with many bilayers in an anion-like form having diameters of 1-10 ~,m (1000-10,000 nm).

' CA 02099588 1999-11-09 2a Sonication of these structures, or other methods known in the art, leads to formation of unilamellar vesicles (UVs) having an average diameter of about 30-300 nm. However, the range of 50 to 100 nm is considered to be optimal from the standpoint of, e.g., maximal circulation time in vivo. The actual equilibrium diameter is largely determined by the nature of the phospholipid used and the extent of incorporation of other lipids such as cholesterol.
Standard methods for the formation of liposomes are known in the art, for example, methods for the commercial production of liposomes are described in U.S. Patent No. 4,'153,788 to Ronald C. Gamble and Patent No. 4,935,171 to Kevin R. Bracken.

PCT! US91 /09017 J 92/09268 ' Either as MLVs or UVs, liposomes have proven valuable as vehicles for drug delivery in animals and in humans. Active drugs, including small hydrophilic molecules and polypeptides, can be trapped in the aqueous core of the liposome, while hydrophobic substances can be dissolved in the liposome membrane. The s liposome structure can be readily injected and form the basis for both sustained release and drug delivery to specific cell types, or parts of the body. MLVs, primarily because they are relatively large, are usually rapidly taken up by the reticuloendothelial system (the liver and spleen). The invention typically utilizes vesicles which remain in the circulatory system for hours and break down after to internalization by the target cell. For these requirements the formulations preferably utilize UVs having a diameter of less than 200 nm, preferably less than 100 nm.
Preferred , liposome compositions include various mole ratios of distearoylphosphatidylcholine (DSPC) and dipalinitoylphosphatidylcholine (DPPC) and cholesterol. The preferred liposomes consist of a 2:1 mole ratio of DSPC and is cholesterol.
Nonsteroidal~ anti-inflammatory drugs and prodrugs include azapropazone, carprofen, diclofenac sodium, fenamic acids or salts (particularly meclafenamate sodium), fenbufen, fenclofenac, flurbiprofen, ibuprofen, ketoprofen, naproxen, oxaprozin, tolmetin sodium, piroxicam and related oxicams.
ao The lipid particle/nonsteroidal anti-inflammatory composition of the invention is preferably administered to the joint space by injection (or as part of the arthroscopic irrigation fluid) after trauma or surgery, so that a bolus of the agent remains in the synovial capsule following the trauma. From the example which follows, one of ordinary skill can easily determine the dose which is effective.
a Generally, the solution which comprises the composition should be isotonic.
Temporomandibular joint (TMJ) disorder is a common problem affecting young to middle aged adults, resulting in pain, suffering, and loss of productivity.
TMJ disorder may be divided into two distinct entities, myofascial pain dysfunction syndrome, and internal derangement. Internal derangement is a surgical ~o disease requiring arthroscopic surgery or open arthroplasty for relief of pain and improved function.

WO 92/09268 ~ U ~ 1 r ;<~...

f;~':.,.

Arthroscopic surgery of the human TMJ has revealed a high frequency of intraartictilar adhesions in patients with internal derangements. These adhesions arise from traumatic or iatrogenic injuries to the soft tissues of the joint.
Postsurgical adhesions play an important role in those surgeries which fail to restore normal range s of motion and function.
Various modalities are currently used to reduce inflammation and prevent the formation of new adhesions following arthroscopic or open TMJ surgery.
Corticosteroid suspensions, injected into the joint at surgery, are widely employed to minimize postsurgical inflammation. However, serious side effects have long been io associated with intraarticular steroid use, including destructive arthropathy. Other agents have been used, including hyaluronic acid salts and hyaluronidase.
Hyaluronate is used as a lubricant, while hyaluronidase is supposed to inhibit adhesion of exposed ground substance in injured ttssues. No published studies support the efficacy of either agent in preventing postoperative adhesions in the TMJ.
Is In spite of successful surgical mobilization, intraarticular corticosteroids, and appropriate physical therapy, failure rates following TMJ surgery are approximately 1.5 to 2?%. The formation of new adhesions after surgery is believed to be a principal factor in failure of surgical therapy.
A model exists, as described in the examples belou,~, in which adhesions which zo result from arthroscopic surgery such as TMJ adhesions can be reliably induced in the rabbit. The rabbit has been used frequently as a model for human TMJ surgery due to similarities in form and function, and adequate size and accessibility.
Examples Preparation of the omposition as L-alpha-distearoyl phosphatidylcholine ("DSFC"), 1.21 g, and 0.29 g cholesterol (molar ratio of DSPC to cholesterol is 2:1) and 4.3 mole % alpha-tocopherol were dissolved in a suitable solvent (chloroform), with heat and agitation to a minimum concentration of approximately 30% (w/v). The lipid was then spray dried to a fine powder in a spray drying apparatus using an air-nitrogen mixture. Example operating ~o conditions include an air temperature of 71°C., air input of 3.5-4.5 m3/min, a nozzle setting of 1.5-2.0 kg/cmz and a feed rate of 5-8 ml/min. Na-tolmetin in sterile, PC1'/L'S91 /09017 S
pyrogen-free phosphate buffered saline was added to the spray dried lipid components to effect a final concentration of 30 mg/ml of drug and 120 mg/ml of lipid.
The materials were vortex-stirred for 40 to 60 minutes in a 65°C water bath under nitrogen to form MLVs and then autoclaved. Prior to use, the MLVs were diluted I:3 with s phosphate-buffered saline.
Prevention of Adhesions in TMJ ArthroscopY
Twenty-one female New Zealand White rabbits weighing 2.?3 to 3.7~ kg received autogenous dermal grafts to the temporomandibular joints (TMJs) bilaterally for reconstruction of surgically created defects of the disk. This procedure is known io to produce intraarticular adhesions. Three joints were unoperated to serve as normal controls. General anesthesia was induced with Ketamine 50 mg/kg IM, and maintained by inhalation of Forane and N~~/O2. 300,000 units of procaine penicillin was injected intramuscularly prior to surgery. Surgical defects were created with a scalpel at the junction of the disk and posterior attachment tissues. The 2 by 3 mm is defect was then repaired with autogenous dermis harvested from the lateral thigh.
The grafts were secured with four sutures of 6-0 mersiline. The TMJ capsules were closed with S-0 Vicryl sutures, and the superior joint spaces injected with 0.5 ml of one of the following: Lactated Ringer's solution (operated control)- 10 joints, tolmetin liposomes 10 mg/ml- 9 joints, sodium hyaluronate 10 mg jml- IO
joints, ~ao dexamethasone acetate 8 mg/ml- 10 joints. The control or experimental substances were supplied to the surgeon in covered syringes in a randomized double blind fashion. The skin incisions were closed with 3-0 chromic gut sutures and dressed with triple antibiotic ointment. All the rabbits survived surgery and gained weight in the postoperative period. Half the animals were sacrificed at 4 weeks postoperative, and zs the remaining animals were sacrificed at 8 weeks postoperative.
Gross dissection of the operated TMJs revealed severe adhesions in 10/10 joints treated with lactated Ringer's solution, moderate to severe adhesions in 10/10 joints treated with hyaluronate, mild, moderate or severe adhesions in 10/10 joints treated with dexamethasone, and mild adhesions in 2/9 joints treated with tolmetin ao liposomes (7 of 9 joints were adhesion-free}.

PCTlL'S91/0)01 ..
4.::.:,: .l Based on nonparametric statistical analysis of the results of gross dissections, tolmetin liposomes show significant reduction in formation of experimentally induced adhesions in the rabbit TMJ. I~yaluronate and dexamethasone showed no significant reduction in adhesions over lactated Ringer's controls.

Claims (9)

1. Use of a liposomal intercalated non-steroidal anti-inflammatory agent for the manufacture of a medicament for the prevention of adhesion formation in synovial tissue produced by trauma or surgery.
2. Use according to claim 1, wherein the non-steroidal anti-inflammatory agent is selected from azapropazone, carprofen, diclofenac sodium, fenamic acids, meclafenamate sodium, fenclofenac, flurbiprofen, ibuprofen, ketoprofen, naproxen, oxaprozin, tolmetin sodium and piroxicam.
3. Use according to claim 1 or 2, wherein the non-steroidal anti-inflammatory agent is encapsulated in multilamellar vesicles.
4. Use according to claim 1 or 2, wherein the non-steroidal anti-inflammatory agent is encapsulated in unilamellar vesicles.
5. A pharmaceutical composition for the prevention of adhesion formation between non-epithelial tissues in a synovial joint space, the adhesion formation being produced by trauma or surgery, comprising an acceptable, adhesion formation-preventing amount of a liposomal intercalated non-steroidal anti-inflammatory agent for the synovial joint space in association with a pharmaceutically acceptable carrier.
6. A composition of claim 5, in which the non-steroidal anti-inflammatory agent is selected from the group consisting of azapropazone, carprofen, diclofenac sodium, fenamic acids, meclafenamate sodium, fenbufen, fenclofenac, flurbiprofen, ibuprofen, ketoprofen, naproxen, oxaprozin, tolmetin sodium and piroxicam.
7. A composition of claim 5 or 6, in which the non-steroidal anti-inflammatory agent is encapsulated in multilamellar vesicles.
8. A composition of claim 5 or 6, in which the non-steroidal anti-inflammatory agent is encapsulated in unilamellar vesicles.
9. A liposomal intercalated non-steroidal anti-inflammatory agent for use in prevention of adhesion formation between non-epithelial tissues in a synovial joint space, the adhesion formation being produced by trauma or surgery.
CA002099588A 1990-12-03 1991-12-03 Prevention of synovial adhesions Expired - Lifetime CA2099588C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US62162590A 1990-12-03 1990-12-03
US07/621,625 1990-12-03
PCT/US1991/009017 WO1992009268A1 (en) 1990-12-03 1991-12-03 Prevention of synovial adhesions

Publications (2)

Publication Number Publication Date
CA2099588A1 CA2099588A1 (en) 1992-06-04
CA2099588C true CA2099588C (en) 2003-04-15

Family

ID=24490933

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002099588A Expired - Lifetime CA2099588C (en) 1990-12-03 1991-12-03 Prevention of synovial adhesions

Country Status (11)

Country Link
US (1) US5411743A (en)
EP (1) EP0560900B1 (en)
JP (1) JPH06507882A (en)
AT (1) ATE118168T1 (en)
AU (1) AU664359B2 (en)
CA (1) CA2099588C (en)
DE (1) DE69107309T2 (en)
DK (1) DK0560900T3 (en)
ES (1) ES2071481T3 (en)
GR (1) GR3015663T3 (en)
WO (1) WO1992009268A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2206119C (en) * 1994-12-12 2008-05-13 Omeros Medical Systems, Inc. Irrigation solution and method for inhibition of pain, inflammation and spasm
US20040127884A1 (en) * 1994-12-12 2004-07-01 Omeros Corporation Vascular irrigation solution and method for inhibition of pain, inflammation, spasm and restenosis
AU4467396A (en) 1994-12-12 1996-07-10 Omeros Medical Systems, Inc. Irrigation solution and method for inhibition of pain, inflammation and spasm
US20020028798A1 (en) * 1995-12-12 2002-03-07 Omeros Medical Systems Irrigation solution and method for inhibition of pain and inflammation
US7091181B2 (en) 1994-12-12 2006-08-15 Omeros Corporation Method of inhibition of pain and inflammation during surgery comprising administration of soluble TNF receptors
US6492332B1 (en) * 1995-12-12 2002-12-10 Omeros Corporation Irrigation solution and methods for inhibition of tumor cell adhesion, pain and inflammation
US6413961B1 (en) * 1995-12-12 2002-07-02 Omeros Medical Systems, Inc. Irrigation solution and method for inhibition of pain and inflammation
US7067144B2 (en) * 1998-10-20 2006-06-27 Omeros Corporation Compositions and methods for systemic inhibition of cartilage degradation
JP2004135177A (en) 2002-10-11 2004-04-30 Sharp Corp Cellular phone
ES2330295B1 (en) 2008-06-06 2010-09-23 Laboratorios Alcala Farma, Sl TOPIC FORMULATION OF IBUPROFEN.
ES2770575T3 (en) 2010-10-28 2020-07-02 Pacira Pharmaceuticals Inc Sustained-release formulation of a non-steroidal anti-inflammatory drug
CN109983013A (en) 2016-11-18 2019-07-05 帕西拉制药有限公司 Meloxicam zinc complexes particle multivesicular liposome preparation and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1523965A (en) * 1976-03-19 1978-09-06 Ici Ltd Pharmaceutical compositions containing steroids
US4346108A (en) * 1981-06-22 1982-08-24 The Upjohn Manufacturing Company M Method for preventing adhesion formation
DE3217315C2 (en) * 1982-05-08 1986-05-22 Gödecke AG, 1000 Berlin Medicinal preparations containing oxicam derivatives
EP0152379A3 (en) * 1984-02-15 1986-10-29 Ciba-Geigy Ag Process for preparing pharmaceutical compositions containing unilamellar liposomes
CA1260393A (en) * 1984-10-16 1989-09-26 Lajos Tarcsay Liposomes of synthetic lipids
IN166447B (en) * 1985-11-27 1990-05-12 Ethicon Inc
DE3683606D1 (en) * 1985-11-27 1992-03-05 Ethicon Inc INHIBITION OF POST-OPERATIVE ADHAESION FORMATION BY TOPICAL ADMINISTRATION OF AN INFLAMMATORY-RESISTANT NON-STEROID ACTIVE SUBSTANCE.
CA1320130C (en) * 1986-06-12 1993-07-13 Alan L. Weiner Methods and compositions using liposome-encapsulated non-steroidal anti-inflammatory drugs
US4877619A (en) * 1986-08-25 1989-10-31 Vestar, Inc. Liposomal vesicles for intraperitoneal administration of therapeutic agents
US5403592A (en) * 1987-08-25 1995-04-04 Macnaught Pty Limited Lubricant composition for rheumatism
GB2217596A (en) * 1988-04-26 1989-11-01 American Cyanamid Co Anti-arthritic liposome composition
WO1991016920A1 (en) * 1990-05-07 1991-11-14 Vical, Inc. Lipid prodrugs of salicylate and nonsteroidal anti-inflammatory drugs

Also Published As

Publication number Publication date
ES2071481T3 (en) 1995-06-16
CA2099588A1 (en) 1992-06-04
US5411743A (en) 1995-05-02
EP0560900A1 (en) 1993-09-22
DE69107309T2 (en) 1995-06-08
AU664359B2 (en) 1995-11-16
WO1992009268A1 (en) 1992-06-11
DE69107309D1 (en) 1995-03-23
ATE118168T1 (en) 1995-02-15
DK0560900T3 (en) 1995-05-08
EP0560900B1 (en) 1995-02-08
JPH06507882A (en) 1994-09-08
AU9127991A (en) 1992-06-25
GR3015663T3 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US4937254A (en) Method for inhibiting post-surgical adhesion formation by the topical administration of non-steroidal anti-inflammatory drug
EP0591492B1 (en) A pharmaceutical composition containing a defined lipid system
US4877619A (en) Liposomal vesicles for intraperitoneal administration of therapeutic agents
CA2271750C (en) Prolonged anesthesia in joints and body spaces
AU692460B2 (en) Bioadhesive emulsion preparations for enhanced drug delivery
JP2848583B2 (en) ER based on alpha-tocopherol
KR101030403B1 (en) Formulation comprising buprenorphine
CA2099588C (en) Prevention of synovial adhesions
US5208226A (en) Medicaments
EP0287198B1 (en) Mixtures of polar and neutral lipids for protecting the gastronointestinal tract
AU9494298A (en) Sustained-release liposomal anesthetic compositions
EP0416951A1 (en) Medicaments comprising salmeterol and fluticason
US11040011B2 (en) Zinc meloxicam complex microparticle multivesicular liposome formulations and processes for making the same
JPH04505319A (en) Use of liposomes as delivery of therapeutic agents for wounds, cuts and abrasions
GB2235626A (en) Medicaments for treating respiratory disorders
EP0225162B1 (en) Inhibition of post-surgical adhesion formation by the topical administration of non-steroidal anti-inflammatory drug
JP5616565B2 (en) Formulations for applying anti-inflammatory agents
PT1180017E (en) Preparations with povidon iodine for wound treatment
GB2235627A (en) Inhalation medicaments
EP1276477B1 (en) Medicaments containing pantothenic acid for the treatment of inflammatory joint disease
JP3074732B2 (en) Fat emulsion
JP2634047B2 (en) ER based on alpha-tocopherol
US20210322316A1 (en) Zinc meloxicam complex microparticles and anesthetic formulations and processes for making the same

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry