CA2084732A1 - Cartridge-free stacks of slide elements - Google Patents

Cartridge-free stacks of slide elements

Info

Publication number
CA2084732A1
CA2084732A1 CA002084732A CA2084732A CA2084732A1 CA 2084732 A1 CA2084732 A1 CA 2084732A1 CA 002084732 A CA002084732 A CA 002084732A CA 2084732 A CA2084732 A CA 2084732A CA 2084732 A1 CA2084732 A1 CA 2084732A1
Authority
CA
Canada
Prior art keywords
stack
elements
side edge
white
test elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002084732A
Other languages
French (fr)
Inventor
Maurice Alfred Kildal
Frank Alton Richardson
Claude Early Monsees
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of CA2084732A1 publication Critical patent/CA2084732A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/76Making non-permanent or releasable joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D69/00Articles joined together for convenience of storage or transport without the use of packaging elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/137Beaded-edge joints or bead seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/40Test specimens ; Models, e.g. model cars ; Probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00168Manufacturing or preparing test elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00742Type of codes
    • G01N2035/00752Type of codes bar codes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1153Temperature change for delamination [e.g., heating during delaminating, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49885Assembling or joining with coating before or during assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature

Abstract

Abstract A stack of plastic articles and a process of forming the stack are disclosed. Preferably the stack is of heat-fusible plastic slide elements for use in a diagnostic analyzer, the elements being temporarily and non-destructively fused together so that the stack can be used free of a cartridge.
In another embodiment, the stack can be of any plastic article temporarily fused to adjacent elements, one side edge of each element bearing a colorant and another bearing no colorant, so that a bar code for the stack is inherently formed simply by rotating each element to project outwardly the colored side edge or the side edge lacking colorant, prior to fusing the elements together.

Description

CARTRIDGE-FREE STACKS OF SLIDE ELEMENTS
Field of the Invention This invention relates to a stack of slide-like test elements used in a diagnostic analyzer, and particularly aspects allowing the stack to be so used, free of any cartridge.
Background of the Invention In the field of dry slide diagnostic analysis, it has been most common, particularly in the large analyzers, to package the slide test elements in a cartridge. Such cartridges keep the essentially identical members of a particular lot of an assay together, and allow the analyzer to properly interface with the slide elements. These features are illustrated in, e.g., U.S. Patent Nos. 4,187,077 and 4,190,420.
Notwithstanding the outstanding success of such packagin~, as witnessed by the hundreds of thousands of cartridges that have been sold in the 80's by Eastman Kodak Co. under the trademark ~Ektachemn, there remains some drawbacks in such use of cartridges.
That is, the cartridges are a sizable contribution to the expense of the slide elements, and further require a careful determination of when they are empty, as is explained in the aforesaid '420 patent. Still further, even after determining that they are empty, the empties have to be disposed of - a sizable problem as throughput is increased. Because of these drawbacks, there has been interest in packaging an assembly of slide elements without requiring the use of a cartridge. However, due to the fact that the readily apparent solutions lack a sturdy way of keeping together the identical, lot-specific members of the stack, sans cartridge, there has not been an acceptable way of eliminating the cartridge prior to this lnventlon .

208~732 Yet another drawback of cartridge-supplied slide elements has been the manner in which coded information is supplied to identify the assay of the cartridge, e.g., by bar codes. Either the cartridges are printed directly, or printed labels have been used heretofore. Such labels require a separate printing operation and then a correct combining of the printed label with its associated cartridge. It would be more advantageous to inherently provide the coding, e.g., a bar code, simply by the act of assembling together the stack of slide elements.
Summary of the Invention We have designed an assembly of slide elements that solves the above-noted problems.
More specifically, the invention in one aspect provides an assembly of slide-like test elements suitable for insertion into a diagnostic analyzer, the assembly comprising a plurality of slide-like elements placed one on another to define a stack having at least one side face, each of the test elements comprising a heat-fusible plastic frame and at least one reagent within the frame capable of producing, in response to the presence of an analyte, a detectable signal; each of the frames of the stack being temporarily fused to the next adjacent frames.
In another aspect of the invention, there is provided a stack of slide-like elements assembled together, the stack comprising heat-fusible plastic frames of generally planar configuration, disposed in the stack one above another, the stack having at least one side face, means for temporarily holding the frames together at least a common side edge of the frames, and a bar-code extending along the at least one side face of the stack.
In still another aspect of the invention, there is provided a method of affixing together a group of completed slide-like test elements for use in an analyzer, comprising the steps of:
a) assembling together into a stack, one above the other, a plurality of slide-like test elements each of which comprises a heat-fusible plastic frame and at least one reagent effective to test a patient liquid in an analyzer, to form at least one stack side face, b) temporarily heat-fusing the elements together as a stack by fusing at least a portion of at least one side edge of the frame of each element to the side edge of the frame of an adjacent element along the at least one side face of the stack, and c) inserting the stack of temporarily fused test elements into an analyzer.
In yet another aspect of the invention, there is provided a method of encoding in colored and white bars a stack of articles each having at least two side edges, one of which is totally white and the other of which has a portion bearing an exposed colorant, the method comprising a) assigning some of the elements of the stack the value of the colored part of a colored and white bar code, and b) assembling in proper sequence the stack so that the assigned some elements have the colored side edge showing and the rest of the stack elements have the white edge showing, in the sequence of the colored and white code.
Still another aspect of the invention features a temporary stack of plastic articles individually releasable from the stack, and bearing bar coded information, the stack comprising a plurality of individual plastic articles each comprising at least two exposable side edges, one of the edges having an exposed colorant in at least a 208~ 732 portion of its surface and the other of the edges being substantially free of colorant, the articles being temporarily fused to each other so that the one side edges bearing the exposed colorant are placed in the stack with the other, colorless side edges so as to inherently form the bar-coded information by the colored edges alternating with the colorless edges in the sequence of said coded information.
Accordingly, it is an advantageous feature of the invention that an assembly of slide elements is provided for storage and use in an analyzer as an entire stack, without necessitating the added complicating presence of a cartridge.
It is another advantageous feature of the invention that necessary codes can be provided simply by the manner in which the slide elements are assembled in such a stack, avoiding the need for printing and attaching a coded label.
Other advantageous features will become present upon reference to the following Detailed Description, when read in light of the attached drawings.
Brief Descri~tion of the Drawinas Fig. 1 is an isometric view of a slide useful in the process, and also of the stack of the invention, the stack being suggested in phantom;
Fig. 2 is an isometric view of the completed stack, as it is shipped and stored in an analyzer;
Fig. 3 is an isometric and slightly schematic, partially fragmented view of a storage and dispense station in an analyzer, using a stack in accordance with the invention;
Fig. 4 is a fragmentary isometric ~iew of a stack showing the process by which the elements thereof are temporarily fused together;

Fig. 5 is a fragmentary elevational view in section illustrating an alternative interface between the storage and dispensing station of an analyzer, and the assembled stack of the invention;
Fig. 6 is an enlarged, fragmentary isometric view of the stack of Fig. 5; and Fig. 7 is a view similar to that of Fig. 2, but illustrating a preferred mode of providing a coding of information on the stack.
DescriDtion of the Preferred Embodiments The invention is described in connection with the certain preferred embodiments, in which the slide elements of the stack are primarily those heretofore described in the patent literature and available under the registered trademark ~Ektachem~ from Eastman Kodak Company. In addition, the invention is useful with any slide element comprising a frame of heat-fusible plastic of any kind, regardless of how it is otherwise constructed, or assembled, and regardless of whether it is conventional or not. That is, the invention is in the stack of slide elements useful in a diagnostic analyzer, and method of constructing and using such a stack, and not in the details or the assembly of the slide element construction per se. Still further, respecting the bar code portion of the invention, that portion is applicable to any plastic article that is bar coded, whether it is a slide element or not.
Thus, as shown in Fig. 1, slide-like test elements particularly useful in the invention can be selected from any of the, e.g., colorimetric slide test elements 10 sold by Eastman Kodak Co. under the "Ektachem~ trademark. These comprise, as is conventional, a heat-fusible plastic frame of polystyrene, surrounding and holding within the frame a 3~ reaction member of one or more layers 30, containing one or more reagents to provide a detectable change 208~ 732 indicative of the amount of analyte present, when patient sample is added, as is well-known. Likewise, the invention is useful if the test element lO is instead an ion-selective electrode test element (not shown) that also has a heat-fusible plastic frame made from polystyrene. In such an element, the reagent that is used to produce a detectable change includes, e.g., an ionophore that is selective for the analyte of choice, and the detectable change is an electric signal registered by the electrode (not shown). Again, such test elements are well-known under the registered trademark UEktachem~.
In accordance with one aspect of the invention, slide element 10 and all the others 10' shown in phantom, Fig. 1, can be affixed together in a stack which is useful in an analyzer without the need for a cartridge. Each of the elements 10, 10' has opposite major surfaces 12, 14, and side edges 16, 18, 20, 24, there being four such side edges in the preferred rectangular configuration. They are stacked so that the generally planar slide elements 10, 10' have their major surfaces 12, 14 in contact with the corresponding major surfaces 12, 14 of the next adjacent slide element. Most preferably, the stack has the side edges positioned so as to be coplanar, thus forcing an axis of symmetry 28 of the stack, to be generally perpendicular to each slide element.
~ ptionally, at least one but less than all of the side edges 16-24, for example edge 16, is coated with an exposed colorant, preferably a black colorant, such as a black pigment coated onto the plastic. Such colorant can cover all of the side edge, as shown, or only a portion thereof. The remaining side edges are left colorless or white. Its use is discussed hereinafter. As used herein, ~colorantU refers to a color other than white.

208~732 As noted above, such slide elements, when ready for use in an analyzer as shown, include in an interior portion thereof, at least one layer 30 containing a reagent that produces a signal in response to an analyte. For colorimetric slide elements as shown, the reagent produces a change in density. A
depositing aperture 32 is present in surface 12 of element 10, 10' to allow liquid to be deposited, and a viewing aperture (not shown) is formed in opposite surface 14, generally aligned with aperture 32 but not necessarily of the same size.
In accordance with one aspect of the invention, the stack 8 of Fig. 1 is rendered usable in a diagnostic analyzer by temporarily fusing, Fig. 2, at least one of the common side edges of the elements 10, 10' in the stack, at a stripe 40 which necessarily extends the length of the stack to temporarily join all the elements together. As shown, stripe 40 occurs along each of side edges 18 of the slide elements, that is, each element 10, 10' has been oriented to align side edges 18 together, etc. to form a stack side face 38. Stripe 40 can occupy only a small portion of side edges 18, as shown, or a majority or all of that edge.
Most preferably, it extends generally parallel to axis 28, but it will be readily obvious that it can be tilted at any angle, e.g., as shown in phantom, 40~.
Only one such stripe is needed, but additional stripes can be used. Optionally, more than one side edge, e.g., side edges 20, can also be striped (not shown).
The striping phenomenon is more specifically described hereinafter. It is however a very slight fusion of the edges of the surface of the side edge so as to create no significant change in the geometry of the side edge. As used herein, Uno significant change~
means that when individual elements are shucked off the stack, it is difficult for the naked eye to detect any 2~8~732 surface alteration where the stripe had been. Thus, the stripe, while holding the stack together temporarily, is not such a strong fusion that each slide element cannot be non-destructively sheared off the stack as described below. The fusion or striping process is that described in U.S. Patent Nos. 4,662,974 and 4,811,861, to which attention is directed for further details.
Any plastic polymer is useful for the frames of the slide test elements (or whatever article is being stacked), provided it is heat-fusible to allow two test elements stacked together, to be temporarily heat-fused together at a side edge. Useful plastic polymers include thermoplastic polymers such as polyolefins and copolymers of olefins. Highly preferred are polystyrene, polyethylene, polypropylene, and the latter copolymerized with ethylene vinyl acetate.
As shown in Figs. 2 and 3, R shucking" or shearing off of individual elements is achieved by applying a force 50 against one of the side edges of the element. Most preferably, it is applied to the side edge perpendicular to the side edge having the stripe, e.g., side edge 16, and in a dire^tion generally perpendicular to axis 28. Because adhesion at stripe 40 is minimal, the shear force required is minimal, e.g., about 1 to 3 kg of force applied to a slide element side edge 24 having a surface area of about 15 mm2 for polyethylene elements. Polystyrene elements require a higher force.
Fi~. 3, when stack 8 is placed into an analyzer, it is preferably done so without benefit of a cartridge (and hence without the disadvantages of a cartridge). A biasing means, e.g. a spring 60, is used to urge the stack to a slide element dispersing station 70, which comprises means for applying force 50 against 208~ 732 the top-most element 10 in the stack, e.g. a pusher blade 72, and a removable holding plate 74 for holding down the stack. (Plate 74 is shown for clarity as not covering completely top element 10, but it can also completely cover it.) Plate 74 is removable to allow stack 8 to be inserted. Additionally, station 70 includes a side support 76 abutting side face 78 of the stack. In this embodiment, stripe 40 is shown as being parallel to force 50 being applied for dispensing, but it can also be opposite to force 50 as shown in Fig. 2.
Stripe 40 is preferably formed, as mentioned above, by the technique of the aforesaid '974 and '861 patents. More specifically, in one useful method as shown in Fig. 4, slide elements 10, 10' are moved through guideways 80 on a surface 82, the guideways being applied with pressure to hold the assembled stack together. Surface 82 can be horizontal, vertical or tilted. The side edges to be striped, e.g. edges 18, are forced upwardly as elements 10 and 10' are faced, arrow 84, to advance between guideways 80. As the stack 8 advances, an air gun 90 projects a jet 92 of very hot air onto side edges 18, and the fusion stripe 40 is formed. The temperature of this jet is adjusted, depending upon the plastic that is being used. For example, if the frames of elements 10, 10' are polyethylene or polystyrene, the temperature is about 200-215C. The presence of the jet can be varied, and a useful pressure is about 50 cm of water.
Any number of elements 10, 10' can be so fused together to form stack 8. This is an improvement over analyzers requiring the use of a cartridge, since a cartridge is limited in its capacity.
Optionally (not shown), a blank element can be used as the top-most and the bottom-most element in each stack, which blank element comprises a solid frame without any apertures and without a reaction member 208~ 732 within the frame. Such blanks at the ends provide useful protection against light exposure and/or physical damage to the reaction members of the test elements.
It is not necessary that a removable holding plate be used to hold the stack in place for dispensing. Instead, Figs. 5 and 6, other mechanisms can be used. Parts similar to those previously described bear the same reference numeral to which the distinguishing suffix ~A~ is appended. Thus, Fig. 5, stack 8A comprises individual slide elements lOA, lO'A
temporarily fused together by stripe 40A to allow the stack to be used at a slide element dispensing station 70A without a cartridge as described heretofore.
Pusher blade 72A shears off elements 10, 10' and a pusher such as a plunger 60A pushes the stack in the direction of arrow 100. However, unlike the previous embodiment, station 70A is completely open at 102, and plunger 60A is free to be moved away from stack 8A, arrow 104, without causing stack 8A to follow it.
Instead, a pair of grippers 110, 112 is used to releasably hold the stack in place. Grippers 110 and 112 each comprise a moment arm 114, a gripping face 116 at one end of the arm, and a hinge pin 118 at the other end of arm 114. A spring such as a torsion spring (not shown), pivots arm 114 outwardly, arrows 120. Gripping face 116 is provided with a surface that specially mates with side edges 20A of stack 8A.
More specifically, Fig. 6, each edge 20A is 30 preferably beveled at 130, to create a gripping lip 132 between the opposite surfaces 12A and 14A. Gripping face 116 is then serrated with grooves that line up with the mating lips 132 of elements lOA and lO'A.
Preferably, the uppermost surface of grippers 110 and 112 is beveled at 132 to provide a camming surface to allow faces 116 to be pushed apart merely by 208~ 732 pushing a stack down through opening 102 between grippers 110 and 112.
It is conventional for a bar code to be associated with a stack of slide elements. The code reveals the assay and the lot number, for example.
However, this has been done conventionally by imprinting in some way the cartridge surrounding the stack, with such a bar code. In the absence of the cartridge, the question arises as to how to associate the bar code with the stack.
In accordance with the invention, the code is formed on one side face of the stack, e.g., the face comprising side edges 16 of the stack of Figs. 1 or 2 (edges 16 being hidden in Fig. 2). The code can be imprinted directly via ink jet or laser printing, or it can be printed on a removable label which is temporarily applied to the side face and then removed after the bar code is scanned.
In accordance with another aspect of the invention, the bar code can be inherently formed during the stack formation, as an integral part of the stack.
Such an embodiment has the advantage that no additional step of ink jet printing or labeling is needed on the stack side face. It is this embodiment that utilizes the colorant in at least one, but not all, side edges, e.g. side edge 16 as described above. It will be readily appreciated that any combination of colored and white (or colorless) side edges in a stack of side edges will, if properly arranged, inherently produce a bar code, Fig. 7. Parts similar to those previously described bear the same reference numeral, to which the distinguishing suffix ~B~ is appended. Thus, stack 8B
comprise elements lOB and lO'B, stacked up with an axis 28B and a temporary stripe 40B, with side edges 16B
being blackened for at least part, and preferably all, of that surface. Remaining side edges, e.g. 18B, etc., 2~8~732 are white or colorless, as previously described. By having two black side edges 16B adjacent to each other, adjacent to a single white edge 18B, adjacent to a single black edge 16B, etc., the result is a double 5 black bar 202, a single white ~blank~ 204, and a single black bar 206, etc., of a total bar code 200. All that is needed to create this code is, to pre~arrange each element lOB, 10 ' B in the stack so as to face outwardly (towards arrow 200), either side edge 16B or side edge 10 18B, as needed for the code. The code in turn depends on, e.g., the assay type and lot number for that particular stack, which is information readily storable in computer memory of the machine used to stripe the stack, shown in Fig. 4. That is, such machine simply 15 rotates each element about axis 28B until the proper side edge faces Uoutwardly~, Fig. 7, before the striping process begins.
It will be readily appreciated that for this embodiment of the invention, the articles of the stack have a symmetry such that the stack looks the same, except for the color of the side edges, whether edge 16B or 18B faces outwardly against arrow 200.
Rectangular or square major surfaces 12B and 14B are most preferred for such symmetr~.
The stack 8B of plastic articles so produced has its bar code 200 inherently produced, to indicate, e.g., the type of slide elements present, e.g., those suitable for testing for blood urea nitrogen (BUN).
For other kinds of plastic articles not used in diagnostic analyzers, the code can be used to indicate price, date of manufacture, or the like.
The invention disclosed herein may be practiced in the absence of any element which is not specifically disclosed herein.
The invention has been described in detail with particular reference to certain preferred 208~732 embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

Claims (20)

1. An assembly of slide-like test elements suitable for insertion into a diagnostic analyzer, the assembly comprising a plurality of slide-like elements placed one on another to define a stack having at least one side face, each of the test elements comprising a heat-fusible plastic frame and at least one reagent within said frame capable of producing, in response to the presence of an analyte, a detectable signal;
each of the frames of said stack being temporarily fused to the next adjacent frames.
2. An assembly as defined in claim 1, wherein said frames are fused at a common side edge to define a joining stripe extending approximately the length of the stack on said side face.
3. An assembly as defined in claim 2, wherein said stripe creates no significant change in the geometry of said common side edge, and wherein each said frame is capable of non-destructive shearing across said stripe to separate it from adjacent frames.
4. An assembly as defined in claim 1, 2, or 3 wherein said stack is free of a cartridge surrounding it.
5. A stack of slide-like elements assembled together, said stack comprising heat-fusible plastic frames of generally planar configuration, disposed in the stack one above another, the stack having at least one side face, means for temporarily holding said frames together, at least a common side edge of said frames, and a bar-code extending along said at least one side face of said stack.
6. A stack as defined in claim 5, wherein said bar-code comprises colored bars and white spaces that extend generally parallel to said planes of said frames.
7. A stack as defined in claim 5 or 6, wherein said colored bars extend across at least a portion of a side edge of at least one of said frames and are formed by a colorant embedded within said side edge.
8. A stack as defined in claim 6, wherein said white spaces comprise a white side edge of at least one of said frames that has another side edge not aligned with said one stack side, that is at least partially colored, so that said colored bar or said white space of said bar-code is determined by rotating each slide element about a center point to place either said colored side edge or a white side edge at said one stack side face.
9. A stack as defined in claim 1 or 5, wherein said stack has an axis of symmetry, and wherein each of said test elements of said stack lies generally in a plane that is generally perpendicular to said axis, so that the uppermost test element of said stack is directly above the lowermost test element.
10. A temporary stack of plastic articles individually releasable from the stack, and bearing bar coded information, the stack comprising a plurality of individual articles each comprising at least two exposable side edges, one of said edges having an exposed colorant in at least a portion of its surface and the other of said edges being substantially free of colorant, said articles being temporarily fused to each other so that said one side edges bearing said exposed colorant are placed in the stack with said other, colorless side edges so as to inherently form said bar-coded information by said colored edges alternating with said colorless edges in the sequence of said coded information.
11. A method of affixing together a group of completed slide-like test elements for use in an analyzer, comprising the steps of:
a) assembling together into a stack, one above the other, a plurality of slide-like test elements each of which comprises a heat-fusible plastic frame and at least one reagent effective to test a patient liquid in an analyzer, to form at least one stack side face, b) temporarily heat-fusing said elements together as a stack by fusing at least a portion of at least one side edge of said frame of each element to the side edge of said frame of an adjacent element along said at least one side face of said stack, and c) inserting said stack of temporarily fused test elements into an analyzer.
12. A method as defined in claim 11, wherein said step c) is done in the absence of any cartridge surrounding said stack.
13. A method as defined in claim 11, and further including the step of providing a portion of said side face of said stack with a black and white code that identifies at least the chemistry of said test elements of said stack.
14. A method as defined in claim 11, wherein said stack has an axis of symmetry, and wherein said stack is disposed so that said axis of symmetry extends generally perpendicular to each of said test elements in said stack, and the uppermost test element is directly above the lowermost test element of said stack.
15. A method as defined in claim 11, wherein said fusing step is accomplished so that said continuous stripe creates no significant change in the geometry of said one side edge and said stack of test elements is non-destructively shearable across said stripe to separate the test elements one from another.
16. A method as defined in claim 11 or 15, and further including the step of d) non-destructively shearing off one of said stack test elements at one end of said stack, from the rest of the elements of said stack.
17. A method as defined in claim 13, wherein some of said test elements in said stack have at least a portion of a side edge of the frame bearing a black colorant in amounts sufficient to provide said portion with a black color, and wherein said step a) of assembling said test elements comprises the step of coding said stack by stacking said test elements sequentially so that said black color of said some test elements creates at least the black part of said coding.
18. A method as defined in claim 17, wherein said some test elements with a black portion of a side edge, have another side edge that is totally white, and wherein said coding step further comprises inserting some of said some test elements so that said other white edge is disposed adjacent a black edge in members sufficient to create the white part of said coding.
19. A method of encoding in colored and white bars a stack of articles each having at least two side edges, one of which is totally white and the other of which has a portion bearing an exposed colorant, the method comprising a) assigning some of the elements of the stack the value of the colored part of a colored and white bar code, and b) assembling in proper sequence said stack so that said assigned some elements have said colored side edge showing and the rest of said stack elements have said white edge showing, in the sequence of said colored and white code.
20. A method as defined in claim 19, wherein said colorant is black.
CA002084732A 1991-12-19 1992-12-07 Cartridge-free stacks of slide elements Abandoned CA2084732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US810,229 1977-06-27
US81022991A 1991-12-19 1991-12-19

Publications (1)

Publication Number Publication Date
CA2084732A1 true CA2084732A1 (en) 1993-06-20

Family

ID=25203325

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002084732A Abandoned CA2084732A1 (en) 1991-12-19 1992-12-07 Cartridge-free stacks of slide elements

Country Status (7)

Country Link
US (2) US5384947A (en)
EP (1) EP0547710A3 (en)
JP (1) JP3195451B2 (en)
CA (1) CA2084732A1 (en)
FI (1) FI925785A (en)
MX (1) MX9207358A (en)
TW (1) TW227042B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW227042B (en) * 1991-12-19 1994-07-21 Eastman Kodak Co
US5576214A (en) * 1994-09-14 1996-11-19 Johnson & Johnson Clinical Diagnostics, Inc. Method of supplying disposable tips to an aspirator
JP3040325B2 (en) * 1995-04-13 2000-05-15 株式会社第一器業 Preparation with search means
US5972476A (en) * 1997-11-21 1999-10-26 Means Industries, Inc. Laminated parts and method of making same
US6333112B1 (en) 1997-11-21 2001-12-25 Means Industries, Inc. Laminated one-way clutch
DE19806049A1 (en) * 1998-02-13 1999-08-19 Bodenseewerk Perkin Elmer Co Procedure for labeling sample containers
US5855240A (en) 1998-06-03 1999-01-05 Ford Motor Company Automotive heat exchanger
US7090455B2 (en) * 1998-11-13 2006-08-15 Pneutools, Incorporated Stacked assembly of roofing caps
US7312084B2 (en) * 2001-07-13 2007-12-25 Ortho-Clinical Diagnostics, Inc. Tandem incubator for clinical analyzer
DE50309876D1 (en) * 2002-10-29 2008-07-03 Roche Diagnostics Gmbh Test element analysis system
US7632468B2 (en) * 2003-12-04 2009-12-15 Idexx Laboratories, Inc. Retaining clip for reagent test slides
US7588733B2 (en) * 2003-12-04 2009-09-15 Idexx Laboratories, Inc. Retaining clip for reagent test slides
EP2597462A1 (en) 2011-11-24 2013-05-29 F. Hoffmann-La Roche AG Symmetrical test element for detecting an analyte
JP6111323B2 (en) 2012-04-19 2017-04-05 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method and apparatus for measuring analyte concentration in blood
US9915282B2 (en) 2012-06-06 2018-03-13 Pneutools, Incorporated Stacked caps with connecting stems
WO2014096184A1 (en) 2012-12-20 2014-06-26 Roche Diagnostics Gmbh Method for analyzing a sample of a body fluid
CA2946684C (en) * 2014-06-30 2020-10-27 Ventana Medical Systems, Inc. Automated specimen processing systems and methods
JP2018512560A (en) * 2015-02-27 2018-05-17 ベンタナ メディカル システムズ, インコーポレイテッド Assay reaction controller magazine
JP2019529935A (en) 2016-10-05 2019-10-17 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Detection reagents and electrode arrangements for multi-sample diagnostic test elements and methods of using them
EP3928226A4 (en) * 2019-02-21 2022-11-02 RVC Technologies, Inc. Reconstructed segmented codes and methods of using the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR952811A (en) * 1947-09-09 1949-11-24 Secretariat Central De L Alime New process for producing displays using boxes, cartons or appropriate packages called
US3802987A (en) * 1972-03-23 1974-04-09 Corning Glass Works Method of joining
US4187077A (en) * 1978-06-05 1980-02-05 Eastman Kodak Company Container with article positioning element for dispensing reagent coated slides to an automated analyzer
DE2965718D1 (en) * 1978-06-05 1983-07-28 Eastman Kodak Co Device for receiving cartridges and cartridges therefor
US4190420A (en) * 1978-06-05 1980-02-26 Eastman Kodak Company Container for dispensing articles to an automated analyzer
US4377890A (en) * 1979-05-21 1983-03-29 Rca Corporation Method of CRT manufacture using machine readable coded markings
DE2929716A1 (en) * 1979-07-21 1981-02-12 Philips Patentverwaltung PACKAGING TO RECEIVE A VARIETY OF PLAIN-SHAPED PARTS
US4482521A (en) * 1981-05-21 1984-11-13 The Secretary Of State For Social Services In Her Britannic Majesty's Government Of The United Kingdom Of Great Gritain And Northern Ireland Support means
US4440301A (en) * 1981-07-16 1984-04-03 American Hospital Supply Corporation Self-stacking reagent slide
US4662974A (en) * 1982-09-23 1987-05-05 Roberts John T Method of dispensing from a cartridge for thermoplastic articles
US4811861A (en) * 1982-09-23 1989-03-14 Poly Pro, Inc. Homogeneously fusion bonded cartridges
US4621732A (en) * 1983-07-11 1986-11-11 Mobil Oil Corporation Fastening apparatus for twist ties
FR2596365B1 (en) * 1986-03-27 1989-09-01 Kodak Pathe RECEPTACLE FOR THE PRESENTATION OF ARTICLES
JPS62247260A (en) * 1986-04-19 1987-10-28 Fuji Photo Film Co Ltd Slide loader for analysis
JPH087220B2 (en) * 1987-03-12 1996-01-29 富士写真フイルム株式会社 Analytical method using chemical analysis slide
US4805772A (en) * 1988-02-26 1989-02-21 Eastman Kodak Company Adaptors for use with various containers bearing bar code labeling
TW227042B (en) * 1991-12-19 1994-07-21 Eastman Kodak Co

Also Published As

Publication number Publication date
JP3195451B2 (en) 2001-08-06
TW227042B (en) 1994-07-21
US5507388A (en) 1996-04-16
JPH05281105A (en) 1993-10-29
FI925785A0 (en) 1992-12-18
EP0547710A3 (en) 1993-08-04
US5384947A (en) 1995-01-31
FI925785A (en) 1993-06-20
EP0547710A2 (en) 1993-06-23
MX9207358A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
US5507388A (en) Cartridge-free stacks of slide elements
AU778320B2 (en) Improved test strip for the assay of an analyte in a liquid sample
US6432694B1 (en) Cartridge and system for storing and dispensing of reagents
JP4044968B2 (en) Automatic reading device of identification code carried by tubular container
EP0660924B1 (en) Optical biosensor matrix
US8211365B2 (en) Immunodiagnostic test cards having indicating indicia
CA1282376C (en) Test tube holder
US6187537B1 (en) Process and apparatus for forming a dry DNA transfer film, a transfer film product formed thereby and an analyzing process using the same
US5632399A (en) Self-sealing reagent container and reagent container system
EP3613338A1 (en) Non-visible detectable marking for medical diagnostics
EP0654668B1 (en) Chemical analysis element cartridge
JP2004537319A (en) Automatic random access microbial analyzer
CA2193824A1 (en) Method and apparatus for automated chemical analysis with variable reagents
JPS6039561A (en) Method and device for manufacturing test piece
CA2503789A1 (en) Apparatus and methods to process substrate surface features
US7635452B2 (en) System, kit, and method for measuring membrane diffusion
AU2008101286A4 (en) Multiwell plate device
GB2369086A (en) Reaction plate
US20040091401A1 (en) Self-aligning blood collection tube with encoded information
US20030175170A1 (en) System for preparing and handling multiple laser desorption ionization probes
EP0726465B1 (en) Element pressing mechanism for dry chemical analysis element cartridge
US8371051B2 (en) System to label plates
CN115267221A (en) Test strip assembly with container
US6713018B2 (en) Dry chemical analysis element cartridge
EP0205078A1 (en) Test strips and process for the production of test strips

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued