CA2082814A1 - Carvable implant material - Google Patents

Carvable implant material

Info

Publication number
CA2082814A1
CA2082814A1 CA002082814A CA2082814A CA2082814A1 CA 2082814 A1 CA2082814 A1 CA 2082814A1 CA 002082814 A CA002082814 A CA 002082814A CA 2082814 A CA2082814 A CA 2082814A CA 2082814 A1 CA2082814 A1 CA 2082814A1
Authority
CA
Canada
Prior art keywords
implant material
stiffening agent
carvable
carvable implant
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002082814A
Other languages
French (fr)
Inventor
Thane Lee Kranzler
Norman Joseph Sharber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2082814A1 publication Critical patent/CA2082814A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • A61F2002/30064Coating or prosthesis-covering structure made of biodegradable material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/924Material characteristic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249958Void-containing component is synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Abstract

A carvable implant material for use in surgery and especially in plastic and reconstructive surgery is described which comprises porous PTFE having a coating of a stiffening agent intended to stiffen the PTFE in order to render it carvable. This material may thus be carved into a desired shape prior to implantation. The stiffening agent is biodegradable to allow tissue ingrowth to stabilize the location of the implant as the biodegradable stiffening agent is degraded and absorbed by the body.

Description

~ W O 92/OOlI0 2 0 8 2 ~ ~ ~ PCT/US91/04404 TIrLE OF THE INVENTION

Carvable Implant Material FIELD OF THE INVENTION

This invention relates to a carvable porous polytetrafluoro-ethylene implant material for use in plastic and reconstructivesurgery and to a method for making such an implant material.

BACKGROUND OF THE INVENTION

Plastic and reconstructive surgery often requires the use of graft materials for the replacement or augmentation of tissues. Materials used for this purpose heretofore have been of biologic or synthetic origin. ~iologic materials of both autologous and homologous origin have been tried extensively. Both types of biologic material have been subject to unpredictable resorption, requiring the patient to undergo additional corrective surgery. The use of homologous implant materials, for example, collagen or bone, can also result in an adverse immunologic reaction that can lead to graft rejection and extrusion. While sucn adverse reactions do not occur with autologous implants, the use of autologous material involves additional surgical time and trauma for their removal.
Synthetic materials previously used for implantation have generally been polymeric, for example, silicone and polytetrafluoro-ethylene (hereinafter PTFE). Non-porous materials do not allow tissue ingrowth and as a consequence are known to migrate from the implant location. Preferred synthetic materials have a porous structure that promotes tissue ingrowth and stabilization of the implanted material.
Proplast~, a carvable porous composite implant material comprising PTFE fibers, powdered PTFE resin and carbon or aluminum oxide, has been available for some time. This material and its methods of manufacture are descrihed in U.S. Patents 3,992,725 and 4,129,470.
Rriefly, this material is made by blending the above listed materials with a soluble filler, filtering the blend to produce a cake, pressing and heating the cake, drying the cake, sintering the cake, and finally leaching out the filler material and again drying the resulting porous - , . . - : ~ -: - . .

W o 92/00110 2 ~ 8 .3 tY ¦ ~ -2 - PCT/US91/04404 composite. This implant material is carvable and allows tissue ingrowth. However, the use of carbon or aluminum oxide in this material increases its tissue reactivity, potentially resulting in undesirable complications such as encapsulation by fibrous tissue, erosion of overlying tissues and extrusion. Finally, the carbon impregnated material is often visible through the skin when implanted subcutaneously in light-skinned patients.
Pure PTFE, that is, PTFE without other added materials such as carbon, has a long history of use as an implantable material because it is one of the least reactive materials known. In porous form it can allow tissue ingrowth. Porous PTFE has been available for some time in a form known as expanded PTFE. The manufacture of this material is described in U.S. Patents 3,953,566, 3,962,153 and 4,187,390. Expanded PTFE has a microstructure characterized by nodes interconnected by fibrils. This material has a history of use in such implant applications as vascular grafts, sutures and structural soft tissue repair including hernia repair and liyament augmentation and replacement. The porosity and microstructure of expanded PTFE can be varied to produce different permeability characteristics for use in a variety of applications.
Many implantable biodegradable synthetic polymers have been investigated and applied in various applications including the controlled time release of drugs and for medical devices such as sutures, prosthetic ligaments and bone repair. These polymers and their copolymers are chosen for specific applications according to their strength characteristics and their known rates of degradation.
Their success in these applications is largely due to the following characteristics:
1) Adequate mechanical strength;
2) Controlled rate of degradation;
3) Complete absorbability without formation of toxic metabolvtes;
and 4) Minimal inflammatory response from the host.
Frequently used implantable biodegradable synthetic homopolymers include polydioxanone (PDS), polyglycolic acid (PGA, also known as polyhydroxyacetic ester), polylactic acid (PLA) and polycaprolactone.
Copolymers of PGA/PLA are also commonly used. Copolymers of PGA/PLA typically degrade faster than either homopolymer PGA or PLA.

': ` ''.: ` : ; ' -~4092/00110 208~ PCr/US91/04404 Degradation rate is affected by the blend of the copolymer, the degree of crystallinity of the polymers, and the addition of other agents.
The PGA degradation rate may also be sensitive to the rate of curing of the polymer, the fast-cured polymer appearing to degrade more quickly than the slow-cured.
In addition to synthetic polymeric materials, several biologically derived materials have been used for implantable biodegradable applications. Such biologically derived materials include albumin and collagen.

SUMMARY OF THE INVENTION

A carvable implant material for use in surgery and especially in plastic and reconstructive surgery is described. The material comprises porous PTFE having a coating of a biocompatible stiffening agent to render the porous PTFE adequately rigid for carving. The coating is preferably applied in a manner that allows the porous PTFE
to become impregnated by the stiffening agent. The stiffening agents used herein are biodegradable materials including synthetic biodegradable polymers and biologically derived materials which allow the ingrowth of tissue into the porous PTFE after the stiffening agent is degraded through absorption.

BRIEF DESCRIPT~ON OF THE DRAWINGS -Figure 1 describes a hardness test performed on a rod-shaped sample as a measure of carvability.
Figure 2 describes a hardness test performed on samples in the form of sheets as a measure of carvability.

DETAILED DESCRIPTION OF THE INVENTION

The ideal material for use in plastic and reconstructive surgery must be biocompatible and should be porous to allow tissue attachment and ingrowth to prevent migration of the material. It would have a texture similar to living tissue, that is, after implantation the . .

.,. . - - ~ , .

' ' . : .~ . - , , ., . ..................... -. ~. : , -..

W O 92/00110 2 0 8 2 ~ 1 1 PCr/US91/04404~

implant material does not feel discontinuous with the surrounding , -tissue. Finally, it must be capable of being readily shaped to the desired contour.
Pure, porous PTFE possesses all of the above attributes with the exception of the ability to be readily shaped. It cannot be shaped by compression as the porosity and tissue ingrowth characteristic of the material will be severely compromised. The inherent softness of this material makes it very difficult to carve to a desired shape.
It has been found possible to render porous PTFE carvable by coating it with a biodegradable stiffening agent before implantation.
The coating can be allowed to penetrate the pores of the PTFE so that the porous microstructure of nodes and fibrils becomes coated with the stiffening agent. The agent can be allowed to fill all or part of the interior space available within the porous structure. Conversely, the penetration of the stiffening agent can be limited to the outer portions of the available thickness of porous PTFE if only a limited amount of shaping is desired. In this instance the stiffening agent can be applied essentially as a surface coating.
Carvable is herein intended to mean capable of being carved to a desired shape with the use of a sharp blade. Porous PTFE typically compresses under the pressure of a sharp blade and so does not lend itself to being carved. The use of a stiffening agent to coat or impregnate the porous structure of the porous PTFE gives the material enough rigidity to render it carvable.
The stiffening agent used in the present invention is absorbable by the body in which it is implanted, that is, biodegradable.
Consequently the implant material of the present invention recovers its original (before coating), inherent softness after it has been carved, implanted in a living body, and the stiffening agent absorbed by the living body.
Suitable biodegradable stiffening aqents include biologically derived materials such as colla~en and albumin, and synthetic polymers such as PLA, PGA, PGA/PLA copolymer, P~S and polycaprolactone.
The coating of absorbable stiffeninq agent is preferably applied to the porous PTFE by soaking the PTFE in a solution of the agent and an appropriate solvent. The soaking time depends on the ability of the mixture to penetrate the porous PTFE and the depth of penetration required. A vacuum ma~y be used to aid penetration. Heating the .. ... . . ..

~ 92/00110 2 0 g 2 ~ 1 ~ PCT/US91/04404 mixture may also improve the penetrating abili~y of some solvent/
stiffening agent solutions. The coated porous PTFE is then air dried to remove the solvent, with or without the aDplication of heat.
Finally and optionally, the coated porous PTFE is baked until the coating is melted in order to increase the rigidity of the porous PTFE.
Suitable stiffening agents and solvents may be selected from a range of materials familiar to those skilled in the art of biocompatible biodegradable materials.
The degree of rigidity of the porous PTFE can be varied during manufacture of the coated porous PTFE. Factors that influence this rigidity include the porosity and fibril length of the PTFE, the amount of heat apptied during manufacture of the porous PTFE, the stiffening agent chosen, the amount of internal space filled by the stiffening agent and the depth of penetration of the stiffening agent.
As no standard exists for measuring carvability that these inventors are aware of, carvability was subjectively compared to the percent increase in weight of expanded PTFE samples impregnated with stiffening agents. Carvability was further compared to hardness measurements made on impregnated, carvable samples and unimpregnated, non-carvable samples. It was determined that percent weight gains on the order of as little as about 1% were more than enough to render the PTFE carvable. Levels of 2 to 3% were still more easily carved and are thus considered preferable. Levels in excess of about 3~ seemed to offer no further increase in ease of carvability.
The hardness test of Example 3 below indicates that a force greater than 0.6 kg shows that the material is adequately hard to be carvable. As the samples tested containing the least amount of stiffening agent (1% by weight of PGA/PLA copolymer~ were more than minimally carvable, it is believed that smaller amounts of stiffening agent would represent the minimum for practical carvability. Less than 1% stiffening agent by weight will have a hardness force value less than the 0.6 kg described above. It is believed that a hardness force value of about 0.4 kg will indicate the minimum hardness necessary for carvab;lity.

, - . . -.. . . . ~ . .
. . . . ~ -: . . .- .- . . ~ , -. -... . ., . ~ , . ..

W o 92/00110 2 0 ~ 2 ~ 1 ~1 PCT/~Sg]/04404~

EXA~PLE 1 PTFE resin (Fluon~ CD-123 obtained from ICI Americas, Inc., Wilmington, DE) was blended with about 320cc of "Isopar~ M" odorless solvent (obtained from Exxon Corporation, Houston, TX) per kg of PTFE, 5 compressed into a tubular billet, heated to 40C and extruded into a 10 mm O.D. rod in a ram extruder having a reduction ratio of about 50.8:1 in cross sectional area from billet to the extruded rod. The extrudate was then placed into an oven set at about 300C and stretched about 3.89:1 (a 289% increase in length) at a rate of about 280%/second (percent change in length divided by stretching time) to produce porous, expanded PTFE rods.
The expanded rods were then restrained from shrinking and heated in a second oven set at approximately 365C for a total of 22 minutes, thereby sintering the rod. The expanded rod material was then cut into 10 cm lengths and each sample was weighed.
Next, eight grams of 50/50 D,L-lactide/glycolide (Medisorb~, Lot #591655046, available from E.I. duPont de Nemours & Co., Inc., Wilmington, DE) were placed into a wide-mouth bottle. Methylene chloride was added to make a 10:1 solution (volume of methylene chloride to weight of copolymer) and the bottle sealed. The mixture was stirred continuously with a magnetic stirrer for several hours until the copolymer was completely in solution. A 10 cm segment of the described rod material was placed in a 60 cc syringe along with about 40 ml of the above solution. The syringe was held with the open end pointed up, and all air was expelled from the syringe by applying pressure with the syringe plunger. The open end of the syringe was then occluded and the plunger was retracted creating a vacuum. The syringe was then uncovered and the resulting air bubble was expelled.
This process was repeated several times until the air was removed from the expanded PTFE rod and replaced by the solution. The resulting D,L-lactide/~lycolide impregnated rod was then removed from the syringe and allowed to dry overnight. After drying, the impregnated rods formed rigid, carvable material.
The impregnated rods were weighed individually after drying to determine the amount of weight gain as follows:
Weight after impregnation x 100% l - 1 = % Weight ~ain Weight before impregnation .
., , ;, . . . . . ..... ~. ~ .
- . . . ; -. - .

- . -. .

. . ~ . - ~ .

~.- WO 92tO01 10 2 ~ ~ ~ 8 ~ ~ PCr/US91/04404 ^7-Typical weight gain for these samples was about 1nZ. Impregnated rod samples were then individually submerged in methylene chloride for various periods of time and subsequently allowed to dry. These were weighed again to determine a new percent weight gain. In this manner, expanded PTFE rods with a range of percent weight gains were created.
Samples were created having weight gains of 1%, 2%, 3%, 4%, 5~ and 10g~ All of these samples were determined to be adequately rigid to be carvable. Unimpregnated control samples were not carvable.
The hardness of the copolymer impregnated rods was measured and compared to that of unimpregnated control rods using a model 4201 Instron testing machine. For this test, a 3.175 mm diameter steel ball (16) was attached to a post (14) and was driven into the surface (10) of the rod to be tested along a rod diameter (20) and perpendicular to the direction of the fibrils (18). The ball (16) and post (14) were driven downward (24) by the Instron at a rate of 10 mm/min perpendicular to a flat surface (12) while the rod sample (10) lay on the flat surface (12~ with its longitudinal axis (22) parallel to the flat surface (12). The force required to indent each sample 1.00 mm was recorded from the Instron chart recorder; these data are shown in Table 1. It should be noted that the hardness of all i~pregnated, carvable samples was substantially greater than the hardness of the un~pregnated, non-carvable samples.
Table 1 Hardness (n = 3 for each % wt gain) 25% wt gain force (kg) of sample to indent 1.00 mm 10% 3.78 5% 3.42 4% 3.32 3g 2.36 270 2.12 1% 1.45 0% 0.08 Ten grams of powdered bovine albumin (bovine albumin, fraction V, 9~-99~O albumin, Lot #58F-0021, Sigma Chemical Co., St. Louis, M0~ was WO 92/0011() ~ 0 8 2 ~ ~ j! PCI/US91/04404 dissolved in 50 ml of 7.2 pH phosphate buffer in distilled water. An additional 4 ml of a surfactant (liquid dish detergent) was added to the solution. Expanded PTFE rods, described in Example 1, approximately 10 cm long, were placed in a 60 cc syringe along with S the albumin/buffer/surfactant solution. The expanded PTFE material was then impregnated using the syringe vacuum technique described in Example 1. The impregnated expanded PTFE rods were then placed in a 6.~% glutaraldehyde solution for 2 hours with constant stirring. The samples were then rinsed in 7.2 pH buffered saline for one hour with constant stirring. Samples were then allowed to dry overnight, forming rigid, carvable material. Four expanded PTFE impregnated rods had average weight gains of 13.3%. Three of these samples were randomly selected for hardness testing as performed in Example 1.
Hardness (indented 1.00 mm by a 3.175 mm diameter ball at a rate of 10 mm/min~ measured an average of 1.69 kg.

EXA~PLE 3 Eight grams of SO/50 D,L-lactide/glycolide (DuPont Medisorb) ~as placed into a wide-mouth jar. Eighty milliliters of methylene chloride was then added to the container and the container sealed.
The mixture then stirred continuously for several hours until the copolymer was completely in solution. GORE-TEX~ Soft Tissue Patch material of 2 mm thickness, a porous expanded PTFE material available from W. L. Gore and Associates, Inc., Flagstaff, AZ, was cut into discs of about 5 cm diameter. These discs were placed, one at a time 2s in rolled up form, into a 60 cc syringe along with about 40 ml of the above solution. The discs were impregnated with the D,L-lactide/
glycolide solution as described in Example 1. The discs were then unrolled, covered with a 1 kg weight to hold them flat, and allowed to dry overnight. The resulting discs were stiff and carvable. The average weight gain for eight 2 mm GORE-TEX Soft Tissue Patch discs was 17.5%.
As shown by Figure 2, the hardness of these samples was tested in the same manner as described in Example 1 except that 2 samples (30 and 31) were stacked to provide a thickness (32) of 4 mm to be indented by the steel ball (16). The results are shown in Table 2.

- : . . :, : . .

~ 0 92/OOIlO 2 0 ~ 2 g 1 ~ PCT/USgl/04404 Table 2 Hardness (n = 3 for each % wt gain) X wt gain force ~kg) of sample to indent 1.00 mm 4Z 1.23 3% 1.10 2% 0.86 1% O. ~1 ., O~ O.Ofi The hardness data for the GORE-TEX Patch material of Example 3 is somewhat different from that of the rod raterial of Example 1. The differences are believed to be a result of the different processing received by the two different forms of expanded PTFE Drior to impregnat;on with the stiffening agents. Both forms exhibited substantial differences in hardness forces between unimpregnated, non-carvable versions and their otherwise equivalent 1% weight gain impregnated, carvable versions.

. . ,. ,. ,: .,.- . , . ., , . . . - .

Claims (22)

We claim:
1. A porous implant material, carvable at room temperature, comprising porous polytetrafluoroethylene having one or more outer surfaces and interior porous surfaces, and having a coating of a biocompatible biodegradable stiffening agent that renders the porous polytetrafluoroethylene adequately rigid for carving.
2. The carvable implant material of claim 1 containing at least about 1% by weight of a biocompatible biodegradable stiffening agent.
3. The carvable implant material of claim 1 containing at least about 2% by weight of a biocompatible biodegradable stiffening agent.
4. The carvable implant material of claim 1 containing at least about 3% by weight of a biocompatible biodegradable stiffening agent.
5. The carvable implant material of claim 1 containing at least about 5% by weight of a biocompatible biodegradable stiffening agent.
6. The carvable implant material of claim 1 wherein the porous polytetrafluoroethylene is expanded polytetrafluoroethylene having a microstructure of nodes and fibrils.
7. The carvable implant material of claim 6 having a hardness force measurement of greater than about 0.4 kg when a sample of at least 4 mm thickness is indented for a distance of 1.0 mm by a ball of 3.175 mm diameter at a rate of 10 mm/min in a direction perpendicular to the direction of the fibrils.
8. The carvable implant material of claim 6 having a hardness force measurement of greater than about 0.6 kg when a sample of at least 4 mm thickness is indented for a distance of 1.0 mm by a ball of 3.175 mm diameter at a rate of 10 mm/min in a direction perpendicular to the direction of the fibrils.
9. The carvable implant material of claim 6 having a hardness force measurement of greater than about 0.86 kg when a sample of at least 4 mm thickness is indented for a distance of 1.0 mm by a ball of 3.175 mm diameter at a rate of 10 mm/min in a direction perpendicular to the direction of the fibrils.
10. The carvable implant material of claim 6 wherein the biodegradable stiffening agent is a biologically derived material.
11. The carvable implant material of claim 6 wherein the biodegradable stiffening agent is albumin.
12. The carvable implant material of claim 6 wherein the biodegradable stiffening agent is collagen.
13. The carvable implant material of claim 6 wherein the coating primarily covers the outer surface of the porous polytetrafluoroethylene.
14. The carvable implant material of claim 6 wherein the coating covers at least part of the interior porous surfaces of the porous polytetrafluoroethylene.
15. The carvable implant material of claim 6 wherein the stiffening agent is comprised of a synthetic biodegradable material.
16. The carvable implant material of claim 15 wherein the synthetic biodegradable stiffening agent is selected from the group consisting of polylactic acid, polyglycolic acid, polydioxanone and polycaprolactone.
17. The carvable implant material of claim 15 wherein the synthetic biodegradable stiffening agent is a copolymer of polylactic acid and polyglycolic acid.
18. A process of manufacturing the carvable implant material of claim 1 having a substrate of porous polytetrafluoroethylene having one or more outer surfaces and interior porous surfaces, the process comprising:
a) coating at least one outer surface of the carvable implant material with a quantity of a liquid stiffening agent sufficient to render the carvable implant material adequately rigid for carving, the quantity of liquid stiffening agent being at least about 1 percent by weight of porous polytetrafluoroethylene; and b) drying the stiffening agent.
19. The process of claim 18 wherein the stiffening agent is diluted with a solvent before coating the carvable implant material.
20. A process of manufacturing the carvable implant material of claim 1 having a substrate of porous polytetrafluoroethylene having one or more outer surfaces and interior porous surfaces, the process comprising:
a) selecting a quantity of a liquid stiffening agent sufficient to render the carvable implant material adequately rigid for carving, the quantity of liquid -11a-stiffening agent being at least about 1 percent by weight of porous polytetrafluoroethylene;
b) diluting the stiffening agent with a solvent to allow the diluted stiffening agent to penetrate the porous structure of the porous polytetrafluoroethylene;
c) coating the carvable implant material by a means for coating suitable for allowing the dilute stiffening agent to coat at least part of the interior porous surfaces of the porous polytetrafluoroethylene;
d) drying the stiffening agent.
21. The process of claim 20 wherein the means for coating comprises soaking the carvable implant material in the diluted stiffening agent.
22. The process of claim 21 wherein the means for coating includes the application of a vacuum to the porous polytetrafluoroethylene.
CA002082814A 1990-06-25 1991-06-21 Carvable implant material Abandoned CA2082814A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US543,240 1990-06-25
US07/543,240 US5098779A (en) 1990-06-25 1990-06-25 Carvable implant material

Publications (1)

Publication Number Publication Date
CA2082814A1 true CA2082814A1 (en) 1991-12-26

Family

ID=24167170

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002082814A Abandoned CA2082814A1 (en) 1990-06-25 1991-06-21 Carvable implant material

Country Status (6)

Country Link
US (1) US5098779A (en)
EP (1) EP0536212B1 (en)
JP (1) JPH05509012A (en)
CA (1) CA2082814A1 (en)
DE (1) DE69118888T2 (en)
WO (1) WO1992000110A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2131902C (en) 1992-03-13 2004-08-03 Paul Martakos Controlled porosity expanded polytetrafluoroethylene products and fabrication
US5702446A (en) * 1992-11-09 1997-12-30 Board Of Regents, The University Of Texas System Bone prosthesis
WO1994013228A1 (en) * 1992-12-15 1994-06-23 International Polymer Engineering, Inc. Joint implant
DE69431302T2 (en) * 1993-08-18 2003-05-15 Gore & Ass TUBULAR INTRALUMINAL APPLICABLE FABRIC
US5491882A (en) * 1993-12-28 1996-02-20 Walston; D. Kenneth Method of making joint prosthesis having PTFE cushion
US5879396A (en) * 1993-12-28 1999-03-09 Walston; D. Kenneth Joint prosthesis having PTFE cushion
WO1995022359A1 (en) * 1994-02-17 1995-08-24 W.L. Gore & Associates, Inc. A carvable ptfe implant material
US5947893A (en) * 1994-04-27 1999-09-07 Board Of Regents, The University Of Texas System Method of making a porous prothesis with biodegradable coatings
US5665114A (en) * 1994-08-12 1997-09-09 Meadox Medicals, Inc. Tubular expanded polytetrafluoroethylene implantable prostheses
AU1287895A (en) 1994-10-03 1996-04-26 Otogen Corporation Differentially biodegradable biomedical implants
US5780147A (en) * 1995-03-14 1998-07-14 Daiso Co., Ltd. Laminate having improved dimensional stability and heat resistance
AU5561296A (en) * 1995-06-07 1996-12-30 W.L. Gore & Associates, Inc. Fluid treated transparent polytetrafluoroethylene product
US7241309B2 (en) * 1999-04-15 2007-07-10 Scimed Life Systems, Inc. Self-aggregating protein compositions and use as sealants
US6129757A (en) * 1998-05-18 2000-10-10 Scimed Life Systems Implantable members for receiving therapeutically useful compositions
CA2350638C (en) 1998-09-11 2009-11-24 Gerhard Schmidmaier Biologically active implants coated with a biodegradable polymer
US6110484A (en) 1998-11-24 2000-08-29 Cohesion Technologies, Inc. Collagen-polymer matrices with differential biodegradability
US6368347B1 (en) * 1999-04-23 2002-04-09 Sulzer Vascutek Ltd. Expanded polytetrafluoroethylene vascular graft with coating
US6277150B1 (en) 1999-06-11 2001-08-21 Gore Enterprise Holdings, Inc. Facial implant having one porous surface
US6454803B1 (en) * 2000-05-23 2002-09-24 Romo, Iii Thomas External nasal valve batten implant device and method
AU2001288585A1 (en) * 2000-08-30 2002-03-13 Wallace K. Dyer Methods and compositions for tissue augmentation
FR2819395B1 (en) * 2001-01-12 2003-08-15 Natural Implant Sa TRANSIENT DENTAL IMPLANT FOR PREPARING A CELL
US6790213B2 (en) 2002-01-07 2004-09-14 C.R. Bard, Inc. Implantable prosthesis
JP3664169B2 (en) * 2003-06-13 2005-06-22 住友電気工業株式会社 Stretched polytetrafluoroethylene molded body, method for producing the same, and composite
US6991637B2 (en) * 2003-06-18 2006-01-31 Gore Enterprise Holdings, Inc. Soft tissue defect repair device
US7776101B2 (en) * 2003-06-18 2010-08-17 Gore Enterprise Holdings, Inc. Soft tissue defect repair device
US20060058891A1 (en) * 2004-09-16 2006-03-16 Lesh Michael D Transformable tissue bulking device
US7641688B2 (en) * 2004-09-16 2010-01-05 Evera Medical, Inc. Tissue augmentation device
US7244270B2 (en) * 2004-09-16 2007-07-17 Evera Medical Systems and devices for soft tissue augmentation
US20060058890A1 (en) * 2004-09-16 2006-03-16 Lesh Michael D Methods for soft tissue augmentation
WO2006034077A1 (en) * 2004-09-16 2006-03-30 Juva Medical, Inc. Tissue augmentation device
US20060058892A1 (en) * 2004-09-16 2006-03-16 Lesh Michael D Valved tissue augmentation implant
US20060157882A1 (en) * 2004-12-10 2006-07-20 Simona Percec Filled ultramicrocellular structures
US8790677B2 (en) * 2004-12-17 2014-07-29 Warsaw Orthopedic, Inc. Device and method for the vacuum infusion of a porous medical implant
US20070155010A1 (en) * 2005-07-29 2007-07-05 Farnsworth Ted R Highly porous self-cohered fibrous tissue engineering scaffold
US8048503B2 (en) * 2005-07-29 2011-11-01 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US7655584B2 (en) * 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US20070027551A1 (en) * 2005-07-29 2007-02-01 Farnsworth Ted R Composite self-cohered web materials
US7604668B2 (en) * 2005-07-29 2009-10-20 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US20070026040A1 (en) * 2005-07-29 2007-02-01 Crawley Jerald M Composite self-cohered web materials
US7655288B2 (en) * 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US7850810B2 (en) * 2005-07-29 2010-12-14 Gore Enterprise Holdings, Inc. Method of making porous self-cohered web materials
US20070026039A1 (en) * 2005-07-29 2007-02-01 Drumheller Paul D Composite self-cohered web materials
US20070048452A1 (en) * 2005-09-01 2007-03-01 James Feng Apparatus and method for field-injection electrostatic spray coating of medical devices
US20080255664A1 (en) 2007-04-10 2008-10-16 Mdesign International Percutaneously deliverable orthopedic joint device
US20090012612A1 (en) * 2007-04-10 2009-01-08 David White Devices and methods for push-delivery of implants
WO2008124737A2 (en) * 2007-04-10 2008-10-16 Mdesign International Percutaneous delivery and retrieval systems for shape-changing orthopedic joint devices
CN101854872B (en) * 2007-09-14 2014-04-30 新特斯有限责任公司 Interspinous spacer
US20090198331A1 (en) * 2008-02-01 2009-08-06 Kesten Randy J Implantable prosthesis with open cell flow regulation
US20090198329A1 (en) 2008-02-01 2009-08-06 Kesten Randy J Breast implant with internal flow dampening
JP2012501810A (en) * 2008-09-12 2012-01-26 アーティキュリンクス, インコーポレイテッド Tether-based orthopedic device delivery method
US9072586B2 (en) 2008-10-03 2015-07-07 C.R. Bard, Inc. Implantable prosthesis
WO2011032043A1 (en) 2009-09-11 2011-03-17 Articulinx, Inc. Disc-shaped orthopedic devices

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276448A (en) * 1962-12-14 1966-10-04 Ethicon Inc Collagen coated fabric prosthesis
US3272204A (en) * 1965-09-22 1966-09-13 Ethicon Inc Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
US3992725A (en) * 1973-11-16 1976-11-23 Homsy Charles A Implantable material and appliances and method of stabilizing body implants
US4129470A (en) * 1974-10-17 1978-12-12 Homsy Charles A Method of preparing a porous implantable material from polytetrafluoroethylene and carbon fibers
US4385093A (en) * 1980-11-06 1983-05-24 W. L. Gore & Associates, Inc. Multi-component, highly porous, high strength PTFE article and method for manufacturing same
US4298998A (en) * 1980-12-08 1981-11-10 Naficy Sadeque S Breast prosthesis with biologically absorbable outer container
CA1258997A (en) * 1984-05-09 1989-09-05 George Ksander Collagen coated soft tissue prostheses
US4772285A (en) * 1984-05-09 1988-09-20 The Board Of Trustees Of The Leland Stanford Junior University Collagen coated soft tissue prostheses
US5032445A (en) * 1984-07-06 1991-07-16 W. L. Gore & Associates Methods and articles for treating periodontal disease and bone defects
CA1292597C (en) * 1985-12-24 1991-12-03 Koichi Okita Tubular prothesis having a composite structure

Also Published As

Publication number Publication date
US5098779A (en) 1992-03-24
EP0536212B1 (en) 1996-04-17
DE69118888T2 (en) 1996-10-31
WO1992000110A1 (en) 1992-01-09
EP0536212A1 (en) 1993-04-14
DE69118888D1 (en) 1996-05-23
JPH05509012A (en) 1993-12-16

Similar Documents

Publication Publication Date Title
US5098779A (en) Carvable implant material
US5326355A (en) Composite material having absorbable and nonabsorbable components for use with mammalian tissue
EP0888140B1 (en) Coated bioabsorbable beads for wound treatment
CA2799211C (en) Porous materials, methods of making and uses
DE69732721T2 (en) BIODEGRADABLE ARTIFICIAL FILMS
US6075180A (en) Carvable PTFE implant material
DE69728054T2 (en) BIORESORABLE SEALING POINTS FOR POROUS ARTIFICIAL VESSELS
US4842575A (en) Method for forming impregnated synthetic vascular grafts
US5948020A (en) Implantable bioresorbable membrane and method for the preparation thereof
US8231930B2 (en) Self-aggregating protein compositions and use as sealants
US6065476A (en) Method of enhancing surface porosity of biodegradable implants
CA1264207A (en) Collagen synthetic vascular graft composite
WO1996019248A9 (en) METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY
JP4408454B2 (en) Self-assembled protein composition and use as sealant
JP3451417B2 (en) Bioceramic-containing cell structure and method for producing the same
KR100464930B1 (en) Barrier membrance for guided tissue regeneration and the preparation thereof
CA1170001A (en) Method for preserving porosity in porous materials
EP0441123A1 (en) Composite material having absorbable and nonabsorbable components
Kwon et al. Histological behavior of HDPE scaffolds fabricated by the “Press-and-Baking” method
US11524094B2 (en) Porous composite material

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead