CA2063971C - Hardeners for powder coating compositions based on polyester resins - Google Patents

Hardeners for powder coating compositions based on polyester resins Download PDF

Info

Publication number
CA2063971C
CA2063971C CA002063971A CA2063971A CA2063971C CA 2063971 C CA2063971 C CA 2063971C CA 002063971 A CA002063971 A CA 002063971A CA 2063971 A CA2063971 A CA 2063971A CA 2063971 C CA2063971 C CA 2063971C
Authority
CA
Canada
Prior art keywords
formula
c4alkyl
powder coating
hydrogen
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002063971A
Other languages
French (fr)
Other versions
CA2063971A1 (en
Inventor
Jacques-Alain Cotting
Philippe Gottis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntsman Advanced Materials Switzerland GmbH
Original Assignee
Vantico GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vantico GmbH filed Critical Vantico GmbH
Publication of CA2063971A1 publication Critical patent/CA2063971A1/en
Application granted granted Critical
Publication of CA2063971C publication Critical patent/CA2063971C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/12Polycondensates containing more than one epoxy group per molecule of polycarboxylic acids with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints

Abstract

The invention relates to the use of polyglycidyl compounds as hardeners in powder coating compositions based on polyester resins which react with epoxy groups, which compounds are polyglycidyl esters of formula (I) or (II) (see formula I, II) wherein in formula (I) R1, R2, R3 and R4 are each independently of one another hydrogen, C1-C4alkyl or radicals of formula (III) (see formula III) wherein A is a polymethylene group of 2 to 4 carbon atoms, and R5 and R6 are each independently of each other hydrogen, C1-C4alkyl or radicals of formula (III) or, when taken together, are an unsubstituted or a C1-C4alkyl-substituted methylene or polymethylene group of 2 to 7 carbon atoms, but with the proviso that at least two of the substituents R1 to R6 are radicals of formula (III), and, in formula (II) n is an integer from 2 to 6, R7 is an organic radical of valency n of 2 to 30 carbon atoms, and Z denotes identical or different radicals of formula (IV):
(see formula IV) wherein R8 and R9 are either each independently of the other hydrogen, chloro, bromo or C1-C4alkyl or one is a radical of formula (V) (see formula V) and the other is hydrogen, chloro, bromo or C1-C4alkyl, and the six-membered ring in formula (IV) is aromatic or non-aromatic.

Description

20639'1 Hardeners for powder casting compositions based on polyester resins The present invention relates to the use of specific polyglycidyl compounds as hardeners based on polyester resins which react with epoxy groups, to powder coating compositions containing these components, and to a special use of said powder coating compositions.
Polyglycidyl compounds have been widely proposed as crosslinking agents or hardeners for powder coating compositions based on polyester resins. Triglycidyl isocyanurate in particular has gained acceptance in practice as hardener for outdoor coatings which must have superior durability (q.v. Ulimann's Encyclopedia of Industrial Chemistry, Sa' Ed., Vol A9, p. 559). Although triglycidyl isocyanurate has proved effective for this utility, when used as hardener for polyester resins with which superior outdoor weathering properties are obtained, the resultant coatings often have only rather poor flexibility and are therefore more susceptible to mechanical stress. If, conversely, polyester resins which form more flexible films are used together with triglycidyl isocyanurate as hardener, the weatherability of the coatings could frequently be even better. At the present time therefore, one is obliged to give preference to one of the cited properties and, depending on the importance of said properties, to choose a suitable polyester resin.
In EP-A-0 383 601 the use of triglycidyl trimellitate is proposed as hardener for polyester resin powder coating compositions. However, triglycidyl trimellitate also has the same shortcomings as those of triglycidyl isocyanurate referred to above.
The present invention has for its object to provide compounds useful as hardeners for polyester resin powder coating compositions which make it possible to produce coatings which simultaneously meet the requirements of weatherability and flexibility to a high degree. In particular, the hardeners shall have this advantage when also used in conjunction with polyesters which have been developed for powder coating compositions which are curable with triglycidyl isocyanurate.
This abject is achieved by using polyglycidyl compounds as hardeners in polyester resin powder coating compositions which react with epoxy groups, which compounds are polyglycidyl esters of formula (I) or (II) O
Rt R2 R4 ~)>
Rs Rs R6 R'7 ~ Z ~ n ~I)>
wherein in formula (I) Rt, R2, R3 and R4 are each independently of one another hydrogen, Cl-Cdalkyl or radicals of formula (III):
O
II O
A-~~OCH CH ~CH2 (nI)>

wherein A is a polymethylene group of 2 to 4 carbon atoms, and Rs and R6 are each independently of each other hydrogen, Ct-C~alkyl or radicals of formula (III) or, when taken together, are an unsubstituted or a Cl-C4alkyl-substituted methylene or polymethylene group of 2 to 7 carbon atoms, but with the proviso that at least two of the substituents Rt to R6 are radicals of formula (III), and, in formula (II) n is an integer from 2 to 6, R~ is an organic radical of valency n containing 2 to 30 carbon atoms, and Z denotes identical or different radicals of formula (IV) O
II O
CCCH2 CH ~ CH2 .-_.
- OC ; ~ ' ~ R8 (IV).
O

wherein Rg and R9 are either each independently of the other hydrogen, chloro, bromo or Ct-C4alkyl or one is a radical of formula (V):
O
O
IIOCH CH ~ CH2 V
a ( )~
and the other is hydrogen, chloro, bromo or Ct-C4alkyl, and the six-membered ring in formula (IV) is aromatic or non-aromatic.
The invention further relates to powder coating compositions comprising at least one polyglycidyl compound and a polyester resin which reacts therewith, which compound is a polyglycidyl ester of formula (I) or (II) as defined above.
Some of the polyglycidyl compounds of formula (I) or (II) are novel compounds.
Compounds of formula (I) are especially preferred if in formula (III) A is an ethylene group.
Representative examples of particularly useful compounds of formula (1) are the 2,2,5,5-tetra((3-carboxyethyl)cyclopentanone tetraglycidyl ester, the 2,2,6,6-tetra((3-carboxyethyl)cyclohexanone tetraglycidyl ester and the 2,2,4,4-tetra([3-carboxyethyl)pentan-3-one tetraglycidylester or 1,1,3,3-tetra((3-carboxyethyl)acetone tetraglycidyl ester.
Rt to R4 in fom~ula (I) further each denote preferably a radical of formula (III) and RS and R6 are preferably together an unsubstituted or a Ct-C4alkyl-substituted methylene or 20639'1 polymethylene group of 2 to 7 carbon atoms, more particularly an unsubstituted polymethylene group of 2 to 4 carbon atoms, The number of alkyl substituents may be up to twice the number of carbon atoms of the methylene or polyrnethylene group, but should desirably be only 1 or 2.
The compounds are obtainable from the corresponding polycarboxylic acids, conveniently by reacting the carboxylic acids with epihalahydrin to give the halohydrin esters, halogen being preferably chloro or bromo. The halohydrin esters can thereafter be dehydrohalogenated with hydrogen halide acceptors to give the corresponding glycidyl esters as described in detail in DE-A-23 19 815 (= GB 1 409 835). The starting cycloaliphatic polycarboxylic acids can be prepared in general accordance with GB patent 1 033 697 (= US 4 102 701).
In formula (II) R~ is preferably a divalent to hexavalent, more particularly a divalent, trivalent or teri~avalent, aliphatic radical of 2 to 10 carbon atoms, a corresponding cycloaliphatic or aromatic radical containing 5 to 10 ring carbon atoms or an araliphatic radical containing 5 to 20 ring carbon atoms in which also one or more of the aromatic nuclei can be hydrogenated up to partial or complete saturation. These radicals may also contain hetero atoms. The radicals R~ can be consideres as the residues of polyalcohols or polyols from which the hydroxyl groups have been removed in an amount corresponding to the number n or, preferably, to one of the valences given above.
Particularly preferred radicals R~ are those derived from straight chain and branched chain aliphatic polyols, typically from glycols such as ethylene or propylene glycol, from glycerol, trimethylolpropane, erythritol or pentaerythritol. Another example is sorbitol. Preferred polyols are also bisphenol types, typically 2,2-bis(4-hydroxyphenyl)propane or bis(4-hydroxyphenyl)methane, and similar wholly or partially saturated saturated compounds, for example 2,2-bis(4-hydroxyeyclohexyl)propane. In some cases the polyols can also be dimerised or prepolymerised, i.e. they can be polyether alcohols such as polyethylene glycols or bis(trimethylol)propane. The prepolymers preferably have a degree of polymerisation of 2 to 6.
The six-membered carbon ring in formula (IV) can be either aromatic or cycloaliphatic, in which latter case it may be wholly or only partially saturated, It may carry further substituents, typically chloro, bromo or CI-C4alkyl, Dpendeni on the degree of saturation of the ring, the ring may carry up to 10 substituents; but for practical reasons it will expediently carry not more than 4 substituents. Most preferably, however, the ring will 20639'1 _s_ contain only the glycidyl ester groups as substituents.
The individual substituents Z in formula (II) may also be different. They also need not have the identical number of glycidyl ester groups.
The compounds of formula (II) are especially suitable for the invention, in particular when R~ is a divalent to tetravalent radical which is derived from an aliphatic polyalcohol or polyether polyol of 2 to 10 carbon atoms by removal of twa to four hydroxyl groups, or when R~ is a divalent to tetravalent, preferably divalent, radical of the molecular . .
formula ~ ~ ctR,oR") ~ ~ , in which Rto and Rt t are each independently of the . ..
other hydrogen or methyl and the six-membered carbon rings may be aromatic or non-aromatic.
Also preferred are the compounds of formula (II) which contain altogether at least 4 glycidyl ester groups.
The compounds of formula (II) can be obtained in the following manner. First the chosen polyalcohol is reacted to the hemiester with phthalic, tetrahydrophthalic, hexahydrophthalic or trimellitic anhydride, which may be hydrogenated up to partial or total saturation, or with a derivative of said anhydrides which carries the substituents cited above in respect of R8 and/or Rg, in the appropriate stoichiometric ratio. In the case of trimelletic anhydride, which carries a carboxyl group in addition to the anhydride group, virtually only the anhydride group reacts to a hemiester carrying two carboxyl groups. The carboxyl groups can subsequently be glycidylised with epihalohydrin, preferably epichlorohydrin, as described above in respect of the compounds of formula (I).
The compounds of formula (I) and (II) are typically hardeners for powder coating compositions based on polyester resins which contain functional groups that react with epoxy groups, typically hydroxyl, thiol, amino, amido or carboxyl groups.
Further examples of suitable functional groups will be found in Henry Lee, Kris Neville, "Handbook of Epoxy Resins", MacGraw-Hill, Inc. 1967, Appendix 5-1. The use of a catalyst can be expedient in the case of many functional groups.
Polyesters carrying terminal carboxyl groups are preferred. Preferably the polyesters have an acid number (given in mg of KOH/g of palyester) of 10 to 100 and a molecular weight ~os3~7~

of S00 to 10 000, preferably of up to 2000. The polyesters are preferably solid at room temperature arid have a glass transition temperature of 35 to 120°C, preferably of 40 to 80°C.
The polyesters described in the foregoing paragraph are disclosed in US-A-3 397 254.
They are reaction products of polyols with dicarboxylic acids and, in some cases, polyfunctional carboxylic acids or carboxylic acid anhydrides. Representative examples of suitable polyols are ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentanediol, isopentyl glycol, 1,6-hexanediol, glycerol, trimethylolethane, trimethylolpropane, erythritol, pentaerythritol or cyclohexanediol. In particular neopentanediol constitutes an essential constituent of the polyester resins which are suitable for very durable coatings. Typical examples of suitable dicarboxylic acids are isophthalic acid, terephthalic acid, phthalic acid, methylphthalic acids, tetrahydrophthalic acid, methyltetrahydrophthalic acids. for example 4-methyltetrahydrophthalic acid, cyclohexanedicarboxylic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, fumaric acid, malefic acid, or 4,4'-diphenyldicarboxylic acid and the like. Suitable tricarboxylic anhydrides are the anhydrides of aliphatic tricarboxylic acid, such as 1,2,3-propanetricarboxylic acid, of aromatic tricarboxylic acid, such as trimellitic acid (benzene-1,2,4-tricarboxylic acid) and hemimellitic acid (benzene-1,2,3-tricarboxylic acid), or of cycloaliphatic tricarboxylic acid, such as 6-methylcyclohex-4-ene-1,2,3-tricarboxylic acid. Exemplary of suitable tetracarboxylic anhydrides are pyromellitic dianhydride or benzophenone-3,3',4,4'-tetra-carboxylic dianhydride.
The glycidyl compounds of formulae (I) and (II) are preferably used in an amount such that the ratio of carboxyl groups to epoxy groups in the powder coating composition is from 0.5:1 to 2:1. They may be used by themsleves or in admixture with other glycidyl esters of formulae (I) or (II). In some cases it may also be advantageous to add other types of epoxy hardeners customarily used for powder coating compositions.
The powder coating compositions can contain still other modifiers conventionally used in the coating industry, typically light stabilisers, dyes, pigments such as titanium dioxide pigment, dearating agents such as benzoin, and/or flow control agents.
Suitable flow control agents are typically polyvinyl acetals such as polyvinyl butyral, polyethylene glycol, polyvinyl pyrrolidone, glycerol, and the acrylic copolymers available under the registered trademarks Modaflow~ [MONSANTO] or Acrylron~ [PROTEX].

'30043-42 A special embodiment of the novel powder coating compositions comprises a polyester which carries terminal carboxyl groups, and a polyglycidyl ester of formula (II), in which R~ is a divalent to tetravalent radical which is derived-from an aliphatic polyalcohol or polyether polyol of 2 to 10 carbon atoms by removal of two to four hydroxyl groups, or R~
is a divalent to tetravalent, preferably divalent, radical of the following molecular .-. .-.
formula ~ ~ ccR,oR") ~ ~ , wherein Rto and Rtt are each independently of the ..
other hydrogen or methyl and the six-membered carbon rings may be aromatic or non-aromatic.
The powder coating compositions of this invention can be prepared by simple mixing of the components, conveniently in a ball mill. Another possibility comprises fusing, mixing and homogenising the components together, preferably in an extruder, as in a Buss Ko-kneader, cooling the product and comminuting it. Especially if the glycidyl ester components are flowable, it can be useful to prepare first a masterbatch from the glycidyl components and to prepare at least a part of the polyester material, as the material can be well stored in this form and, for use, can be readily processed with the other desired components to the final powder coating composition. The powder coating compositions preferably have a particle size in the range from 0.015 to 500 Vim, most preferably from 10 to 75 ~tm.
After application to the coated object, the powder coating compositions are cured at a temperature of not less than c. 100°C, preferably 150 to 250°C.
Normally about 5 to 60 minutes are required for the cure. Suitable for coating are all materials which are stable at the temperatures necessary for the cure, preferably ceramic materials and metals.
It is especially preferred to use the above described crosslinking agents for polyesters which have a very high content of aromatic dicarboxylic acids, such as phthalic acid and terephthalic acid, in conjunction with neopentanediol as alcoholic component, typically containing up to at least 80 percent by weight, preferably up to 90 percent by weight or more, of neopentanediol and aromatic dicarboxylic acids as components.
Inventive powder coating compositions which contain such polyesters that are commercially available under the registered trademarks Crylcoat~ types [UCB], Uralac~ [DSM]
or Grilesta~ [EMS], have on the one hand very superior outdoor durability and, on the other, are usually very flexible both under sudden as well as permanent mechanical stress.

206397.
_g_ It follows from what has been said above that the novel powder coating compositions are especially suitable for outdoor coatings owing to their weather-resistance.
The invention therefore also relates to the use of the novel powder coating compositions for producing weather-resistant coatings.
Example 1: Glycidylation of 2,2,6,6-tetra((3-carboxyethyl)cyclohexanone To 500 g (1.3 mol) of 2,2,6,6-tetra((3-carboxyethyl)cyclohexanone (preparation described in EP-A-0 366 608) are added 3413 g (36.9 mol) of epichlorohydrin and the temperature is kept at 100°C. Then 31 g of a 50 % aqueous solution of tetramethylammonium chloride are added. The temperature is kept between 96 and 100°C and the reaction course is monitored using a pH electrode. After c. 90 minutes, the pH meter registers a sudden increase to a value of c. 10, thereby indicating the end of the addition reaction. After removal of the pH electrode, the reaction mixture is cooled to 50°C and another 31 g of the 50 % aqueous solution of tetramethylammonium chloride are added. Under a vacuum of 0.09 to 0.13 bar and at a temperature of 48-53°C, 463.7 g of a 50 %
aqueous solution of sodium hydroxide are nm in continuously while distilling the resulting water from the reaction mixture with epichlorohydrin as an azeotropic mixture. The epichlorohydrin is separated from the water in a water separator and returned to the reaction mixture continuously. A total of c. 360 g of water can be separated. Afterwards the reaction mixture is washed with 200 ml of a 10 % aqueous solution of monosodium phosphate and with 3 x 300 ml of water. The washed reaction mixture is concentrated on a rotary evaporator under a water jet vacuum. The residue is dried for 20 minutes at 130°C/0.0013 bar, giving 675.6 g (85 % of theory) 2,2,6,6-tetra((3-carboxyethyl)cyclohexanone tetraglycidyl ester in the form of a yellow viscous oil (epoxy value 5.90 equivalents, corresponding to 90 % of theory, chlorine content 1.43 %).
Example 2: Preparation of a masterbatch from 2,2,6,6-tetra((3-carboxyethyl)cyclohexanone tetraglycidyl ester and a polyester A mixture of 800 g of Crylcoat~ 430 (carboxyl-terminated polyester based on neopentanediol and terephthalic acid, with an acid value of c. 30 mg of KOH/g and a glass transition temperature (TG) of c. 70°C (DSC), manufactured by UCB, Belgium) and 160 g of 2,2,6,6-tetra((3-carboxyethyl)cyclohexanone tetraglycidyl ester is homogenised in an extruder (Ko-kneader supplied by Buss, Pratteln, CH) at a temperature in the range from 30 to 110°C, preferably from 70 to 90°C. The cooled extrudate is comminuted to a pac~ticle size of c. 2.4 mm.
Converted in this manner into a solid and storable form, the intrinsically viscous 2,2,6,6-tetra(~i-carboxyethyl)cyclohexanone tetraglycidyl ester can also later be processed very readily to the actual powder coating composition.
Example 3: Preparation of a powder coating composition A mixture of 420 g of the masterbatch of Example 2, a further 98 g of Crylcoat~ 430, 5.2 g of solid Acrylron~ (flow control agent based on a butylated polyacrylate), 1.2 g of benzoin and 259 g of titanium dioxide is homogenised in an extruder similar to that used in Example 2. The extrudate is milled to the finished powder coating composition having a particle size of c. 40 pm.
This composition is sprayed electrostatically onto an aluminium sheet. After stoving for 20 minutes at a temperature of 200°C a film having the following properties is obtained:
film thickness 60 ltm impact strength 160 kg~cm Erichsen cupping test (DIN 53 156)i 1.1 mm gloss at an angle of 60 100 %

flow at 200C good yellowness (DIN 6167/ASTM D 1925-70)0.5 The impact strength is determined by dropping a die of known weight from a specific height onto the back of the coated surface. The value obtained is the product of the weight of the die in kg and the greatest height in cm at which the coating still remains intact.
The flow is assessed visually as fair, good or very good.
Example 4: In accordance with the procedure described in Example 2, a masterbatch is prepared comprising, in place of Crylcoat~ 430, the same amount of Crylcoat~

(carboxyl-terminated polyester of neopentanediol and aromatic dicarboxylic acids having an acid value of c. 30 equivalents of KOH/g and a glass transition temperature (TG) of c. 60°C (DSC), ex UCB, Belgium), and processed to a powder coating composition as in - to -Example 3. After spraying onto aluminium and stoving for 15 minutes at 200°C, a film having the following properties is obtained:
film thickness 55 p.m Erichsen cupping test (DIN 53 156) 6.0 mm gloss at an angle of 60° 90 %
flow at 200°C good The coating has a substantially greater flexibility than the equivalent coating based on triglycidyl isocyanurate as hardener, while having approximately the same weather resistance.
Example 5: Preparation and glycidylation of glycerol 1,3-bis(trimellitate) 960.7 g (5 mol) of trimellitic anhydride are dissolved in 4500 ml of methyl isobutyl ketone at 115°C. Then 230.3 g (2.5 mol) of glycerol are added over 40 minutes at 110°C. The reaction mixture is then refluxed for 4 hours. In the course of the reaction, a white suspension of the crude product forms. Filtration gives 464 g of white crude product. This product is purified with 300 ml of methyl isobutyl ketone and dried at 70°C under a vacuum of c. 0.13 bar. Titration gives 11.0 equivalents/kg of free acid groups (theory: 8.40 equivalents).
To 230 g of the dried product are added 2350 g (25 mol) of epichlorohydrin, while keeping the temperature at 90°C. Then 20 g of a 50 % aqueous solution of tetramethylammonium chloride are added, whereupon a readily controllable exothermic reaction ensues. The temperature is kept between 88 and 92°C, and the reaction course is monitored using a pH electrode. After c. 90 minutes the pH meter registers a sudden rise to a value of c. 10.8, thereby indicating the end of the addition reaction.
After removal of the pH electrode, the reaction mixture is cooled to 50°C and another 20 g of the 50 %
aqueous solution of tetramethylammonium chloride are added. Under a vacuum of 0.09 to 0.13 bar and at a temperature of 45-50°C, 223.5 g of a 50 % aqueous solution of sodium hydroxide are run in continuously while distilling the resulting water from the reaction mixture with epichlorohydrin as an azeotropic mixture. The epichlorohydrin is separated from the water in a water separator and returned to the reaction mixture continuously. A
total of c. 170 g of water can be separated. Afterwards the reaction mixture is washed with 200 ml of a 10 % aqueous solution of monosodium phosphate and with 3 x 300 ml of water. The washed reaction mixture is concentrated on a rotary evaporator under a water jet vacuum. The residue is dried for 30 minutes at 125°C/0.0013 bar, giving 270 g (61 %
of theory) of product in the form of a yellow viscous oil (epoxy value 5.2 equivalents, corresponding to 91 % of theory.
Example 6_ Preparation and glycidylation of the hemiester of hydrogenated bisphenol A
and phthalic acid The reaction is carried out substantially as described in Example 5, initially giving 520.9 g of the hemiester as a white solid with an acid value of 3.6? equivalentslkg (99 % of theory) from the reaction of 500 g (3.37 mol) of phthalic anhydride and 405.7 g (1.68 mol) of hydrogenated bisphenol A in 2000 g of methyl isobutyl ketone. Then 520 g (1.91 equivalents) of this hemiester are reacted using 3534 g (38.2 mol) of epichlorohydrin, 168 g of a 50 % aqueous solution of sodium hydroxide and two times 32 g of a 50 % aqueous solution of tetramethylammonium chloride, to give 607.4 g (98 %
of theory) of the desired solid product with a epoxy value of 2.97 equivalents/kg (96.4 %
of theory) and a chlorine content of 0.51 %.
Example 7: Preparation and glycidylation of glycerol 1,3-diphthalate The reaction is carried out substantially as described in Example 5, initially giving 1165 g (100 % of theory) of the desired hemiester as a pale yellow solid with an acid value of 5.27 equivalents/kg from the reaction of 888.7 g (6 mol) of phthalic anhydride and 276.3 g (3 mol) of glycerol in 960 g of methyl isobutyl ketone. Then 450 g (2.37 equivalents) of this hemiester are reacted using 2193 g (23.7 mol) of epichlorohydrin, 208.6 g of a 50 %
aqueous solution of sodium hydroxide and two times 21 g of a 50 % aqueous solution of tetramethylammonium chloride, to give 509.4 g (86 % of theory) of the desired yellow viscous product having an epoxy value of 3.38 equivalents/kg (85 % of theory) and a chlorine content of 1.4 %.
Example 8: Preparation and glycidylation of the hemiester of hydrogenated bisphenol A
and trimellitic acid The reaction is carried out substantially as described in Example 5, initially giving 507.5 g (100 % of theory) of the desired hemiester as a pale yellow solid with an acid value of 6.3 equivalents/kg from the reaction of 300 g (1.56 mol) of trimelliric anhydride and 187.6 g (0.78 mol) of hydrogenated bisphenol A in 3600 g of methyl isobutyl ketone. Then SOS g (3.18 equivalents) of this hemiester are reacted using 5299 g (57.3 mol) of epichlorohydrin, 280 g of a 50 % aqueous solution of sodium hydroxide and two times 46 g of a 50 % aqueous solution of terramethylammonium chloride, to give 593.0 g (88 %
of theory) of the desired yellow viscous tetraglycidyl ester having an epoxy value of 4.32 equivalents/kg (92 % of theory) and a chlorine content of 1.94 %.
Example 9; Preparation and glycidylation of the hemiester of trimethylolpropane and hexahydrophthalic acid 330.1 g (2.14 mol) of hexahydrophthalic anhydride and 93.9 g (0.70 mol) of trimethylolpropane are charged to a reactor and heated, with stirring, to 130°C. After 180 minutes at 130°C, titration of a sample gives 5.30 equivalents/kg of free acid groups (95 %
of theory). The entire hemiester is reacted further in the same reactor using 1942 g (21 mol) of epichlorohydrin, 185 g of a 50 % aqueous solution of sodium hydroxide and two times 19 g of a 50 % aqueous solution of tetramethylammonium chloride as in Example 5, to give 529.6 g (98.9 % of theory) of the desired yellow, highly viscous triglycidyl ester having an epoxy value of 3.65 equivalents/kg (93.1 % of theory) and a chlorine content of 0.86 %.
Example 10: Preparation and glycidylation of the hemiester of bis(trimethylolpropane) and hexahydrophthalic acid 539.6 g (3.5 mol) of hexahydrophthalic anhydride and 219.0 g (0.87 mol) of bis(trimethylolpropane) are charged to a reactor and heated, with stirring, to 130°C. After 120 minutes at 130°C, titration of a sample gives S.0 equivalents/kg of free acid groups.
The entire hemiester is reacted further in the same reactor using 3228 g (35 mol) of epichlorohydrin, 308 g of a 50 % aqueous solution of sodium hydroxide and two times 32 g of a 50 % aqueous solution of tetramethylammonium chloride as in Example 5, to give 853.8 g (89 % of theory) of the desired pale yellow, highly viscous triglycidyl ester having an epoxy value of 3.75 equivalents/kg (100 % of theory) and a chlorine content of 1.20 %.
Example 11: A mixture of 682 g of Crylcoat~ 430, 114 g of the glycidyl ester of Example 5, 6 g of solid Modaflow~, 1.2 g of benzoin and 300 g of titanium dioxide is homogenised in an extruder (Ko-kneader supplied by BUSS, Pratteln, CH), preparing first a masterbatch from the viscous glycidyl ester and a sufficient amount of the polyesters as described in Examples 2 and 3. The cooled exwdate is milled to a particle size of c. 4U pm. The powder coating composition so obtained is sprayed electrostatically onto an aluminium sheet and stored for 20 minutes at a temperature of 2C~J°C to give a film having the following properties:
film thickness 57 ltm impact strength 160 kg~cm Erichsen cupping test (DIN 53 156)9.9 mm gloss at an angle of 60 90 %

gloss under an angle of 60after 450 h weathering in a Weather-O-meter65 %

flow at 200C gad yellowness (DIN 6167/ASTM D 1925-70)1.2 The weathering test is carried out in this Example, as also in the following Examples, in an Atlas~ Weather-O-Meter using the Atlas NBR 180 weathering cycle.
Example 12: A powder coating composition comprising 426 g of Crylcoat~ 2988, 75 g of the glycidyl ester of Example 5, 5.5 g of Modaflow~ solid, 1.2 g of benzoin and 266 g of titanium dioxide is homogenised as described in Example 11. The powder coating composition so obtained is sprayed electrostatically onto an aluminium sheet and stoved for 30 minutes at a temperature of 200°C to give a film having the following properties:
film thickness 62 ltm impact strength 160 kg~cm Erichsen cupping test (DIN 53 156)9.6 mm gloss at an angle of 60 90 %

gloss at an angle of 60after 700 h weathering in a Weather-O-meter74 %

flow at 200C g~

yellowness (DIN 6167/ASTM D 1925-70)1.9 This powder coating composition gives a coating of substantially greater flexibility than one obtained with a corresponding formulation containing triglycidyl isocyanurate as hardener. The coating has much superior weather resistance to, and the same flexibility as, obtained with a conventional powder coating composition based on e.g.
Crylcoat~430 as polyester and triglycidyl isocyanurate as hardener.
Example 13: A powder coating composition comprising 746 g of Crylcoat~ 430, 190 g of the glycidyl ester of Example 8, 10 g of Modaflow~ solid, 2 g of benzoin and 500 g of titanium dioxide is homogenised as described in Example 11. The powder coating composition so obtained is sprayed electrostatically onto an aluminium sheet and stoved for 30 minutes at a temperature of 200°C to give a film having the following properties:
film thickness 56 ltm impact strength 160 kg~cm Erichsen cupping test (DIN 53 15b) 9.9 mm gloss under an angle of 60° 90 %
flow at 200 °C good yellowness (DIN 6167/ASTM D 1925-70) 0.6 Example 14: A powder coating composition comprising 597 g of Crylcoat~ 2988, 160 g of the glycidyl ester of Example 8, 8.8 g of solid Modaflow~, 1.6 g of benzoin and 400 g of titanium dioxide is homogenised as described in Example 11. The powder coating composition so obtained is sprayed electrostatically onto an aluminium sheet and staved for 30 minutes at a temperature of 200°C to give a film having the following properties:
film thickness 61 pm impact strength 160 kg~cm Erichsen cupping test (DIN 53 156)9.8 mm gloss at an angle of 60 91 %

gloss at an angle of 60after 700 h weathering in a Weather-O-meter73 %

flow at 20UC good yellowness (DIN 6167/ASTM D 1925-70)1.4 This powder coating composition gives a coating of substantially greater flexibility than one obtained with a corresponding formulation containing triglycidyl isocyanurate as hardener. The coating has much superior weather resistance to, while having the same flexibility as, one obtained with a conventional powder coating composition based on e.g.
Crylcoat~ 430 as polyester and triglycidyl isocyanurate as hardener.

Example 15: A powder coating composition comprising 630 g of Crylcoat~ 430, 120 g of the glycidyl ester of Example 9, 7.5 g of solid Modaflow~, 1.5 g of benzoin and 375 g of titanium dioxide is homogenised as described in Example 11. The powder coating composition so obtained is sprayed electrostatically onto an aluminium sheet and stoved for 30 minutes at a temperature of 200°C to give a film having the following properties:
film thickness 79 p.m impact strength 160 kg~cm Erichsen cupping test (DIN 53 156) 9.9 mm gloss at an angle of 60 92 %

gloss at an angle of 60after 450 h weathering in a Weather-O-meter80 %

flow at 200C good yellowness (DIN 6167/ASTM D 1925-70)0 Example 16: A powder coating composition comprising 493 g of Crylcoat~ 430, 107 g of the glycidyl ester of Example 10, 6 g of Acrylron~ MFP (flow control agent based on a butylated polyacrylate which has been stabilised on silicic acid), 1.2 g of benzoin and 300 g of titanium dioxide is homogenised as described in Example 11. The powder coating composition so obtained is sprayed electrostatically onto an aluminium sheet and stoved for 30 minutes at a temperature of 200°C to give a film having the following properties:
film thickness 66 p.m impact strength 160 kg~cm Erichsen cupping test (DIN 53 156) 10.1 mm gloss at an angle of 60° 87 %
flow at 200 °C good yellowness (DIN 6167/ASTM D 1925-70) 0

Claims (11)

1. Use of a polyglycidyl compound as hardener in powder coating compositions based on polyester resins which react with epoxy groups, which compound is a polyglycidyl ester of formula (I) or (II) wherein in formula (I) R1, R2, R3 and R4 are each independently of one another hydrogen, C1-C4alkyl or radicals of formula (III):
wherein A is a polymethylene group of 2 to 4 carbon atoms, and R5 and R6 are each independently of each other hydrogen, C1-C4alkyl or radicals of formula (III) or, when taken together, are an unsubstituted or a C1-C4alkyl-substituted methylene ar polymethylene group of 2 to 7 carbon atoms, but with the proviso that at least two of the substituents R1 to R6 are radicals of formula (III), and, in formula (II) n is an integer from 2 to 6, R7 is an organic radical of valency n of 2 to 30 carbon atoms, and Z denotes identical or different radicals of formula (IV) wherein R8 and R9 are either each independently of the other hydrogen, chloro, bromo or C1-C4alkyl or one is a radical of formula (V) and the other is hydrogen, chloro, bromo or C1-C4alkyl, and the six-membered ring in formula (IV) is aromatic or non-aromatic.
2. ~The use of the polyglycidyl compound of formula (I) according to claim 1, wherein A in formula (III) is an ethylene group.
3. ~The use of the polyglycidyl compound according to claim 1 or 2, wherein R1 to R4 are each a radical of formula (III), and R5 and R6 together are a polymethylene group of 2 to 4 carbon atoms.
4. ~The use of the polyglycidyl compound of formula (I) according to claim 1, wherein R7 is a divalent to tetravalent radical which is derived from an aliphatic polyalcohol or polyether alcohol of 2 to 10 carbon atoms by removal of two to four hydroxyl groups, or R7, is a divalent to tetravalent radical of the molecular formula wherein R10 and R11 are each independently of the other hydrogen or methyl and the six-membered carbon rings may be aromatic or non-aromatic.
5. The use of the polyglycidyl compound of formula (II) according to claim 1, which contains four glycidyl ester groups.
6. A powder coating composition comprising at least one polyglycidyl compound and a polyester resin which reacts therewith, which compound is a polyglycidyl ester of formula (I) or (II) wherein in formula (I) R1, R2, R3 and R4 are each independently of one another hydrogen, C1-C4alkyl or radicals of formula (III):
wherein A is a polymethylene group of 2 to 4 carbon atoms, and R5 and R6 are each independently of each other hydrogen, C1-C4alkyl or radicals of formula (III) or, when taken together, are an unsubstituted or a C1-C4alkyl-substituted methylene or polymethylene group of 2 to 7 carbon atoms, but with the proviso that at least two of the substituents R1 to R6 are radicals of formula (III), and, in formula (II) n is an integer from 2 to 6, R7 is an organic radical of valency n of 2 to 30 carbon atoms, and Z denotes identical or different radicals of formula (IV) wherein R8 and R9 are either each independently of the other hydrogen, chloro, bromo or C1-C4alkyl or one is a radical of formula (V) and the other is hydrogen, chloro, bromo or C1-C4alkyl, and the six-membered ring in formula (IV) is aromatic or non-aromatic.
7. The powder coating composition according to claim 6, wherein the polyester carries terminal carboxyl groups.
8. The powder coating composition according to claim 7 which comprises a polyglycidyl ester of formula (II), wherein R7 is a divalent to tetravalent radical which is derived from an aliphatic polyalcohol or polyether alcohol of 2 to 10 carbon atoms by removal of two to four hydroxyl groups, or R7 is a divalent to tetravalent radical of the molecular formula wherein R10 and R11 are each independently of the other hydrogen or methyl and the six-membered carbon rings may be aromatic or non-aromatic.
9. A powder coating composition according to any one of claims 6 to 8, wherein the polyester has a content of up to 90 percent by weight of neopentanediol and aromatic dicarboxylic acids as components.
10. A powder coating composition according to any one of claims 6 to 8, wherein the polyester has a content of at least 90 percent by weight of neopentanediol and aromatic dicarboxylic acids as components.
11. Use of a powder coating composition according to any one of claims 6 to 10 for the production of weather resistant coatings.
CA002063971A 1991-03-27 1992-03-25 Hardeners for powder coating compositions based on polyester resins Expired - Fee Related CA2063971C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH93991 1991-03-27
CH939/91-0 1991-03-27

Publications (2)

Publication Number Publication Date
CA2063971A1 CA2063971A1 (en) 1992-09-28
CA2063971C true CA2063971C (en) 2003-05-20

Family

ID=4198696

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002063971A Expired - Fee Related CA2063971C (en) 1991-03-27 1992-03-25 Hardeners for powder coating compositions based on polyester resins

Country Status (8)

Country Link
US (1) US5322907A (en)
EP (1) EP0506617B1 (en)
JP (1) JP3348231B2 (en)
KR (1) KR100212687B1 (en)
BR (1) BR9201046A (en)
CA (1) CA2063971C (en)
DE (1) DE59206927D1 (en)
ES (1) ES2090567T3 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW312701B (en) * 1992-12-01 1997-08-11 Dsm Nv
US5728779A (en) * 1992-12-01 1998-03-17 Dsm N.V. Powder paint of epoxy-reactive polymer and aliphatic chain-containing polyepoxide
US5789493A (en) * 1993-05-11 1998-08-04 Dsm N.V. Powder print from melt-mixing and grinding binder particles and additives
TW289044B (en) 1994-08-02 1996-10-21 Ciba Geigy Ag
TW432100B (en) 1995-10-25 2001-05-01 Ciba Sc Holding Ag Powder coating
US6265487B1 (en) 1996-10-17 2001-07-24 Vantico, Inc. Powder coating of carboxyl-containing poly(meth)acrylic resin and trans(cis)-diglycidyl 1,4-cyclohexanedicarboxylate
EP0983254A1 (en) 1997-05-22 2000-03-08 Shell Internationale Researchmaatschappij B.V. Glycidylester and thermosetting resin composition comprising the glycidylester
KR100620120B1 (en) * 1997-12-31 2006-12-05 주식회사 케이씨씨 A composition powder paint
EP0930332B1 (en) * 1998-01-16 2003-05-14 Crompton Vinyl Additives GmbH Stabiliser system for polymers containing chlorine
DE59905797D1 (en) 1998-06-02 2003-07-10 Crompton Vinyl Additives Gmbh Cyanoacetylureas for stabilizing halogen-containing polymers
EP0967209B1 (en) 1998-06-26 2003-01-08 Crompton Vinyl Additives GmbH NH2-modified 6-aminouracils as stabilisers for halogen-containing polymers
EP0967245A1 (en) 1998-06-26 1999-12-29 Witco Vinyl Additives GmbH 1,3 substituted 6-aminouraciles to stabilize halogenated polymers
DE50013562D1 (en) 2000-06-20 2006-11-16 Abb Research Ltd Potting compounds for the production of electrical insulation
EP1172408A1 (en) 2000-07-14 2002-01-16 Abb Research Ltd. Volume modified casting masses based on polymer matrix resins
EP1496083A1 (en) * 2003-07-10 2005-01-12 Arkema Stabilizing composition for chlorine-containing polymers
DE102007037795A1 (en) 2007-08-10 2009-02-12 Nabaltec Ag Stabilizer systems for halogen-containing polymers
DE102008018872A1 (en) 2008-04-14 2009-10-15 Ika Innovative Kunststoffaufbereitung Gmbh & Co. Kg Stabilizer system for halogen-containing polymers
DE102008020203A1 (en) 2008-04-22 2009-10-29 Catena Additives Gmbh & Co. Kg Solvent-free high solids (one-pack) stabilizers for halogen-containing polymers
EP2123659A1 (en) 2008-05-15 2009-11-25 Arkema France High purity monoalkyltin compounds and uses thereof
DE102009045701A1 (en) 2009-10-14 2011-04-21 Ika Innovative Kunststoffaufbereitung Gmbh & Co. Kg Stabilizer combinations for halogen-containing polymers
DE102010008854A1 (en) 2010-02-22 2011-08-25 IKA Innovative Kunststoffaufbereitung GmbH & Co. KG, 06766 Stabilizer system for foamable halogen-containing polymers
DE102010011191A1 (en) 2010-03-11 2011-09-15 Ika Innovative Kunststoffaufbereitung Gmbh & Co. Kg Stabilizer mixtures for halogenated plastics by underwater granulation
DE102010020486A1 (en) 2010-05-14 2011-11-17 Catena Additives Gmbh & Co. Kg Flame retardant halogenated polymers with improved thermal stability
WO2012002404A1 (en) * 2010-06-30 2012-01-05 日本化薬株式会社 Polyvalent carboxylic acid composition, curing agent composition, and curable resin composition containing polyvalent carboxylic acid composition or curing agent composition as curing agent for epoxy resin
WO2012036699A1 (en) 2010-09-17 2012-03-22 Empire Technology Development Llc Partially hydrogenated bisphenol-a-based polymers as substitutes for bisphenol-a-based polymers
CN102558101B (en) * 2010-12-28 2016-01-20 合肥杰事杰新材料股份有限公司 A kind of preparation method of epoxy compound for glass-fiber reinforced thermoplastic polyester
JP7016485B2 (en) * 2019-12-11 2022-02-07 三菱瓦斯化学株式会社 Compounds and manufacturing methods thereof, resin compositions, resin sheets, multilayer printed wiring boards, and semiconductor devices.

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1033697A (en) * 1964-05-27 1966-06-22 Ici Ltd Curing process for epoxy resins
US3397254A (en) * 1964-09-21 1968-08-13 Union Carbide Corp Carboxy terminated polyesters prepared from tribasic acid anhydrides and hydroxy terminated polyesters
US4147737A (en) * 1970-12-23 1979-04-03 Internationale Octrooi Maatschappij Octropa B.V. Powder coating composition employing mixture of polyepoxide resin with modified polyester resin
CH571511A5 (en) * 1972-04-21 1976-01-15 Ciba Geigy Ag
US4112012A (en) * 1972-06-30 1978-09-05 Bayer Aktiengesellschaft Pulverulent coating agents
CH583264A5 (en) * 1973-09-14 1976-12-31 Ciba Geigy Ag
GB1490287A (en) * 1975-03-19 1977-10-26 Ciba Geigy Ag Plaster composition
GB1588230A (en) * 1976-09-27 1981-04-15 British Industrial Plastics Artificial resin powder coating compositions
NL164082C (en) * 1978-10-31 1980-11-17 Unilever Nv POWDER COAT.
US4681811A (en) * 1985-08-19 1987-07-21 Ppg Industries, Inc. Color plus clear coatings employing polyepoxides and polyacid curing agents in the clear coat
US4703101A (en) * 1985-08-19 1987-10-27 Ppg Industries, Inc. Liquid crosslinkable compositions using polyepoxides and polyacids
JP2819418B2 (en) * 1988-10-18 1998-10-30 ダイセル化学工業株式会社 Method for improving pot life of powder coating composition
EP0366608B1 (en) * 1988-10-26 1993-12-15 Ciba-Geigy Ag Powder coating useful as a mat coating
JP2812698B2 (en) * 1989-02-16 1998-10-22 日本ペイント株式会社 Powder coating composition

Also Published As

Publication number Publication date
BR9201046A (en) 1992-11-24
KR100212687B1 (en) 1999-08-02
KR920018178A (en) 1992-10-21
JPH05171063A (en) 1993-07-09
DE59206927D1 (en) 1996-09-26
EP0506617A2 (en) 1992-09-30
JP3348231B2 (en) 2002-11-20
CA2063971A1 (en) 1992-09-28
EP0506617A3 (en) 1993-01-13
ES2090567T3 (en) 1996-10-16
US5322907A (en) 1994-06-21
EP0506617B1 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
CA2063971C (en) Hardeners for powder coating compositions based on polyester resins
US5294683A (en) Solid compositions of polyglycidyl compounds having a molecular weight of less than 1500
US5811198A (en) Acid functional and epoxy functional polyester resins
AU715038B2 (en) Acid functional and epoxy functional polyester resins
KR100327917B1 (en) Manufacturing method of acid functional polyester resin
EP0720997B1 (en) Linear epoxy functional polyester resins
US4130601A (en) Resin composition for powder paint
KR100214816B1 (en) Solid compositions based on polyglycidyl compounds and their preparation methods
EP0751970B1 (en) Outdoor durable powder coating compositions
US6756452B2 (en) Glycidyl ester of cooh polyester and curing agent
CA2001300C (en) Powder coating compositions for matt coatings
EP0518408B1 (en) Thermosetting resin composition
AU745245B2 (en) Epoxy functional polyester resins, process for their preparation, and outdoor durable coating compositions comprising them
KR20000069209A (en) Acid functional and epoxy functional polyester resins
TW515815B (en) Polyglycidyl compounds and their use in curable compositions and process for the preparation of said compounds
US4788076A (en) Powdered lacquer, its manufacture and use
KR940010345B1 (en) Epoxy resin modified with polyester and painting composition containing with it
JPH08157749A (en) Powder coating resin composition
CA2288086A1 (en) Epoxidized polyester-based powder coating compositions
KR20010020186A (en) Epoxidized polyester-based powder coating compositions

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed