CA2063691C - Method and apparatus for the ambulatory detection and diagnosis of the sleep apnea syndrome - Google Patents

Method and apparatus for the ambulatory detection and diagnosis of the sleep apnea syndrome

Info

Publication number
CA2063691C
CA2063691C CA002063691A CA2063691A CA2063691C CA 2063691 C CA2063691 C CA 2063691C CA 002063691 A CA002063691 A CA 002063691A CA 2063691 A CA2063691 A CA 2063691A CA 2063691 C CA2063691 C CA 2063691C
Authority
CA
Canada
Prior art keywords
mobile apparatus
patient
light
apnea
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002063691A
Other languages
French (fr)
Other versions
CA2063691A1 (en
Inventor
Peter Griebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAP Medizintechnik fuer Arzt und Patient GmbH and Co KG
Original Assignee
MAP Medizintechnik fuer Arzt und Patient GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAP Medizintechnik fuer Arzt und Patient GmbH and Co KG filed Critical MAP Medizintechnik fuer Arzt und Patient GmbH and Co KG
Publication of CA2063691A1 publication Critical patent/CA2063691A1/en
Application granted granted Critical
Publication of CA2063691C publication Critical patent/CA2063691C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor

Abstract

A method and an apparatus are described for the ambulatory detection and diagnosis of the sleep apnea syndrome, in which the physiological parameters of heart rate, respiratory and snoring sounds, the degree of oxygen saturation of the blood and the bodily position of the patient are measured and stored in coded form by means of a mobile apparatus. The stored data are transferred to a computer and then analyzed.
The mobile apparatus comprises a detection and storage unit and the following pickups: three EKG electrodes, one laryngeal microphone, an oximeter finger sensor and a position pickup. The apparatus according to the invention permits an ambulatory diagnosis of sleep apnea, which is comparable in its meaningfulness to diagnoses based on stationary sleep laboratory tests.

Description

The invention relates to a method for the ambulatory detection and diagnosis of the sleep apnea syndrome, in which the physiological parameters of pulse rate, breathing sounds and snoring sounds of a 5 patient are detected and a number of sets of the parameters that are detected during brief intervals are stored in coded form in a mobile apparatus, transferred to a computer, and analyzed by the latter, and especially variations of the individual parameters in time and correlations between the various parameters are taken into account. The invention furthermore relates to an apparatus necessary for the practice of this method.
The symptom of sleep apnea is characterized by a combination of a respiratory failure, a considerable hypoxemia (i.e., a reduction of the oxygen content in the arterial blood) and heart rhythm disturbances.
After an episode of apnea, a severe gasping for air and often also a terrifying awakening occur as a rule (see, for example, M.J. Tobin, M.A. Cohn, M.A.
Sackner: Breathing abnormalities during sleep, Arch.
Intern. Med. 1983; No. 143, pp 1221 to 1228). .
The epidimioloqical significance of sleep apnea is increasingly being recognized; it is known that 2s long and frequent phases of apnea during sleep often accompany cardiovascular and cardiopulmonary diseases as well as extensive psychophysical changes. Effects of sleep apnea include an excessively increased tendency to fall asleep during the day ~in this case sleep apnea is statistically identified as the most frequent cause) and the occurrence of difficulty in falling asleep and sleeping through the night (in this case sleep apnea is described as the fifth most frequent cause (R.M. Coleman, H.P. Roffwarg, S.J.
3s Kennedy: Sleep-Wake Disorders Based on , . . , . ,:, . . .
,, . - ~. , -:' . . .~ . .- ,' , , :
. ' - ' . ; - , - :

Polysomnographic Diagnosis. A National Cooperative Study. JAMA 1982; No. 247, pp. 997 to 1003)).
For some time the study of sleep-wake disorders has been performed in sleep laboratories of special s clinics, in which a diagnosis can be performed by a polysomnographic evaluation during sleep~ These studies are time-consuming and costly; on account of the many parameters that have to be recorded they can be performed only by confining the patient. In 10 addition to the high costs, such confinement has the disadvantage that the patient's sleep is disturbed by strange surroundings. This ~; ;nishes the value of such studies. Consequently, there have been a number of efforts to eliminate the disadvantages of diagnosis 15 when the patient is in confinement.
One possibility is to recognize and diagnose the sleep apnea syndrome in an ambulatory manner with the aid of mobile detection and recording apparatus, thus avoiding confinement in sleep laboratories.
Thus, in European patent application 0,371,424 a method and an apparatus for the ambulatory detection ;~ and diagnosis of the sleep apnea syndrome is ~ described, corresponding to the kind referred to i above. In this method heart potentials are measured 25 relative to a third electrode with two electrodes which are applied to the upper body of a patient and , the measured potentials are fed to a peak level detector. The heart rate is determined by the time intervals between the peak values. The breathing and snoring sounds are picked up by an electret microphone which is applied to the patient's larynx and fed to two different threshold detectors, one threshold ' detector being sensitive over the entire frequency range (about 100 Hz to 15 Xhz) and the other being ' 35 sensitive only in the lower frequency range (about 100 Hz to 800 Hz) on account of the damping of the high . ~ .

: 2063691 frequencies of the signals with a filter. The threshold detectors respond when the applied signal exceeds the preset thresholds. The thresholds are adjusted so that normal breathing is detected by the 5 first-named threshold detector, and snoring is detected with the second detector. These physiological parameters, namely heart rate and the presence or absence of breathing and snoring, are measured together at time intervals of one second, and stored in binary code for each time interval in a RAM
located in the apparatus. The data stored during a period of sleep are transferred from the mobile apparatus to a computer and analyzed on the computer for a sleep apnea syndrome. Information as to the 15 presence of an apnea can be derived from the changes in time of the heart rate and the breathing and snoring sounds and the correlations between these parameters.
The seriousness of an apnea depends on the zo frequency of its occurrences, their severity and their duration. The method using the described apparatus has the disadvantage that it permits only a relatively rough, not very reliable diagnosis of the sleep apnea syndrome. The frequency, but not the severity of 25 apnea episodes can be determined, and their duration only imprecisely, because it is not easy to distinguish between a complete cessation of breathing and a light continued breathing. Information on the ~ position and movements of the patient, which is .. 30 important to the diagnosis, say, to distinguish between obstructive and central apnea, myoclonus and other sleep disturbances, is unavailable. In the case of disease conditions, such as polyneuropathy, geriatric heart or diabetes, the heart rate does not change greatly as it does in apnea attacks, but remains virtually constant. In the presence of such , . , . , ~ . .

.. .
, ... ..

:
. . , - : .

206~691 conditions apnea is difficult to diagnose. In many cases, therefore when the apparatus of the state of the art is used, it must be followed by confinement in a sleep laboratory.
s The invention is therefore addressed to the problem of devising a method for the ambulatory detection and diagnosis of the sleep apnea syndrome, which will offer such great reliability of diagnosis that subsequent confinement in a sleep laboratory for observation will as a rule be unnecessary. In addition to determining the frequency, the method should also permit a quantitative determination of the severity and duration of apnea episodes and should cover the position and ~v~ ents of the patient. A
15 diagnosis of apnea should also be possible in the case of the disease conditions mentioned above; vice versa, if their presence is unknown, indications of these ;~ conditions should be provided. This includes the design of an appropriate apparatus.
This problem is solved by a method for the ambulatory detection and diagnosis of the sleep apnea syndrome, which includes detecting the physiological parameters of a patient comprising heart rate, respiratory sounds and snoring sounds by means of a s mobile apparatus, storing in coded form in the mobile ~,......................................................................... .
apparatus, a plurality of sets of the above parameters ~-obtained during brief intervals, transferring this plurality of sets of parameters to a computer and ~,analyzing them by considering time variations of the individual factors and correlations therebetween, which is characterized by the fact that, in . .
~synchronism with the other parameters determined and ,;recorded, the oxygen saturation of the blood and the bodily position of the patient are determined and ~~3s stored in coded form by the mobile apparatus, the stored sets of these parameters together with those of .

- - - ~ - , ~: -206~91 the other parameters are transferred to a computer and analyzed with the latter, so that a measure of the severity of individual episodes of apnea is obtained in the analysis on the basis of the duration and 5 severity of periods of oxygen desaturation, and on the basis of changes in the bodily position a measure of the sleep disturbance is derived and from that a measure of the soundness of sleep is obtained.
By means of the relationship between the occurrence of apnea episodes and positions of the body it is advantageously possible by the analysis to distinguish between obstructive apnea, central apnea and other sleep disturbances, such as myoclonus, .
bearing in mind that in obstructive apnea the episodes 15 occur more frequently in the supine position.
Generally, an apnea episode leads to an important change of the heart rate and to oxygen desaturation of the blood. If, however, desaturation is observed at a virtually constant heart rate, this can be considered as an indication of a polyneuropathy, geriatric heart, diabetes or a threatened coronary infarction. To ~' improve the quality of the diagnosis, it is advantageous to identify special events which, if undetected, might interfere during the analysis, such ~s 25 as getting in bed, waking up, or standing up. This can be accomplished, in addition to the continuous recording of the body position, by enabling the patient, in such an event, to press a button on the mobile apparatus. By measuring the time frame of the , 30 oxygen desaturation of the blood it is possible to determine the duration of an episode of apnea;
consequently it is not necessary to determine the duration by the respiratory sounds. Instead, it is advantageous to analyze only the violent snoring 3s sounds which occur when gasping for breath after an episode of apnea.
.~

' - ~ ~
r ~1 '' , . ' ' ' ~

20~3691 The apparatus according to the invention for the practice of the above method comprises a mobile apparatus which contains means for detecting the heart rate, the breathing and snoring sounds, the degree of s oxygen saturation of the blood and the bodily position of the patient, at brief intervals of time. Moreover, the apparatus has means for the recording of a number of sets of these parameters in coded form. The apparatus can also have means for the marking of 10 certain detection time intervals, this being preferably a push-button switch. The testing time intervals can be of various length according to the ' different factors to be detected and registered;
intervals of 1 to 10 seconds are preferred. In the case of another preferred embodiment, shorter intervals of as little as 0.1 sec can be used. In another embodiment, the length of the detection time intervals is variable, and the length can be set automatically as needed by the mobile apparatus.
Especially short time intervals are then selected by - the apparatus when an especially noteworthy event occurs, i.e., a possible episode of apnea.
The means for measuring the oxygen saturation of the blood include at least one light source and at 25 least one light receiver, which are fastened to an extremity of the patient and serve for measuring the light absorption or reflection produced by the extremity. The light source or sources can be a light-emitting diode or diodes and the receiver or receivers can be a phototransistor or phototransistors. The wavelength of the light is preferably selected such that the change in the blood color associated with a change in the oxygen content of the blood can best be detected; this is the case in 3s the red-light range. If light of two different wavelengths is used, the second light radiation used 206~691 is preferably selected so that its reflectivity or transmissivity are as independent as possible of the oxygen content of the blood; this is the case in the infrared light range. The light of the second s wavelength serves to obtain a reference level independent of the oxygen content by which the transmitted or reflected light that is sensitive to the oxygen content can be standardized. If the measurement of the color change is based on absorption, the light source or sources and light receiver or receivers are preferably disposed opposite one another on a mounting, with the light emitting and ~light receiving sides of the light source or sources iland light receiver or receivers, respectively, facing ;15 each other. In a preferred embodiment, the mounting is a clip, the light source or sources and light receiver or receivers being disposed on confronting legs of the clip. In another preferred embodiment, the mounting is a flexible strip which is bent into a U-shape at one end, the light source or sources and light receiver or receivers being fastened to the limbs of the U. In both embodiments the mounting is fastened to the patient's extremity so that the body tissue is situated between the light source or sources 2s and light receiver or receivers.
The means for detecting the patient's position ~ preferably contain a hollow body to be fastened to the patient's upper body, with a ball of electrically conductive material inside it. The hollow body is -~ 30 advantageously a hollow tetrahedron at whose corners are provided electrical contacts which can be closed by the ball. The hollow tetrahedron can, for example, - be so oriented that, in the supine position, lying on the left and right side, and in the upright position, 35 the ball will come to rest in one of the corners where it closes the contact. In the prone position the ball ,, .
, . , : :: ..,;
..

lies on a surface of the tetrahedron and makes no contact.
Advantageously, the means for the analysis of ! respiratory sounds are arranged such that they detect s only the heavy snoring sounds produced by gasping for air after an episode of apnea. This can be accomplished by raising the threshold of the detector that is sensitive over the entire frequency range.
The devices provided for the detection of the patient's heart rate, breathing and snoring sounds, degree of oxygen saturation of the blood and bodily position are fastened to the patient's body and preferably connected to the mobile apparatus by signal wires. In another preferred embodiment, the signals 15 from these devices are transmitted to the mobile apparatus wirelessly, e.g., by electromagnetic waves.
;; In this case there is no need to fasten the mobile apparatus directly to the patient's body. Instead of ' a push-button on the mobile apparatus for marking 20 special events, a likewise wireless remote-controlled switching device can be used.
As the above statements indicate, the invention ', has the advantage that by measuring the degree of ' oxygen saturation it is possible to determine the . 25 severity of the apnea attacks and thus achieve a quantitatively accurate analysis of the sleep apnea ' syndrome. The detection of the patient's body position permits a determination of restlessness in sleep and a diagnostic distinction between apnea, 30 myoclonus and other sleep disorders. Furthermore, episodes of apnea can be diagnosed also in the '; presence of disorders in which the heart remains virtually constant; the discovery of such disorders is ~' also possible. In general, therefore, in comparison 35 with the state of the art, the invention offers substantially better and broader possibilities for the .. . . : ~ . . . ,,. , , .. , ~ ..... . . . .. .

diagnosis of the sleep apnea syndrome. It has been found that data obtained by means of the method of the invention, using t~e apparatus of the invention, are so very meaningful that, in the case of the great s majority of patients, no further testing was necessary after the data were evaluated by technically trained personnel. In spite of their simplicity, diagnoses can be made with the apparatus according to the invention which are comparable in reliability with those of long-term tests with confinement in sleep ~ laboratories, without the falsifying influences -~ involved during a stay in a sleep laboratory.
An embodiment of the invention will be described with reference to the annexed drawings in which:
Figure l is a perspective view of a mobile detection and recording apparatus;
Figure 2 is a perspective view of the apparatus in working position on a patient's body;
zo Figure 3 is a side view of an oximeter sensor with a stiff finger clamp for detecting the oxygen saturation level by measuring light absorption;
Figure 4 is a side view of another embodiment of an oximeter sensor corresponding to Figure 3, but 25 with a flexible strip instead of a stiff clip; and Figure 5 is a block circuit diagram of the detection and recording apparatus.
The detection and recording apparatus l of Figure l consists of the actual detection and 30 recording unit 2 with a push-button switch 7 on the front, and the following different pickups: three EKG
electrodes 3, a laryngeal microphone 4, an oximeter finger sensor 5, a position detector 6 and two connecting cables 8 and 9 each with a plug.
.. 35 Figure 2 shows how the pickups are positioned on the body of a patient lO.

~., ; ~, :.~, . .: ; , ,: ~ :.

,. , :::

2063~91 The EKG electrodes 3 are commercial disposable electrodes which are fastened to the upper body of the patient 10; two of them measure the heart potential relative to the third electrode. The laryngeal 5 microphone 4 is an electret microphone which is fastened with a strap 24 to the neck of the patient 10 so that it lies against the larynx. The side of the microphone 4 that is in contact with the larynx of the patient 10 is provided with an annular isolating pad and an annular self-adhering disposable bandage.
Figure 3 shows an embodiment of a f inger sensor 5. It comprises two stiff clip legs 11 joined '' together by a flexible bow 29. A compression spring , 15 is disposed on one side of the bow 29 between the legs 11 and presses together the legs 11 on the other side of the bow to grip a finger 14 of the patient 10.
On the upper leg 11 there are two light emitting diodes 12, and on the lower one, two phototransistors 13. Part of the light emitted by the light emitting diodes 12 passes through the finger 14 and is received by the phototransistors 13, and another part is absorbed by the tissue of the finger. This absorption measurement is performed at wavelengths of 660 nm and 925 nm. The absorption of the light of the first 2s wavelength depends very much on the oxygen content of the blood; the absorption of the light of the second wavelength is virtually independent of it.
Another embodiment of a finger sensor 5 is shown in Figure 4. It comprises a flexible strip 30 which is bent into a U-shape at one end. At the end of the free limb 31 of the U there are two light emitting diodes 12. On the other limb there are two phototransistors 13 opposite one another. The U-shape strip 30 is pushed over the tip of finger 14. The 3s finger sensor is held in place by means of one or more straps with hook-and-loop fasteners or disposable 2063691 ~s adhesive tapes. As regards the light used and its ; absorption characteristics, this embodiment is the same as the embodiment shown in Figure 3.
Both of the described embodiments o~ the finger s sensor 5 can be installed easily and in correct position by lay people. The embodiment of Figure 3 permits an especially easy and quick placement, while ~"
the embodiment of Figure 4 offers an especially secure , fixation and, since it exerts no pressure of the ~, 10 finger, it provides good wearing comfort.
The position pickup is fastened to the upper body of the patient 10 with an adhesive ring in a specific orientation indicated by positioning instructions printed on its exterior. The position pickup 6 comprises a hollow tetrahedron containing a ball of electrically conducting material, and electrical contacts which can be closed by the ball are disposed in its corners. The hollow tetrahedron is oriented so that, in the supine position, or lying 20 on the left side or the right side, or in the upright position, the ball will come to rest in one of the corners where it closes the contact. In the prone position the ball rs ~ins on a surface of the tetrahedron and makes no contact. The leads running 2s from the microphone, the EKG electrodes 3 and the position pickup 6 are combined in a single cable 8 which can be attached by a 15-pin plug to the apparatus 2. The finger sensor 5 has its own cable 9 ; to connect it to the apparatus 2 with a 9-pin plug.
The analyzing and recording unit 2 thus has such small ~; ensions (190 x 135 x 45 mm) and such light weight (about 700 g) that it can be carried invisibly on the body by a shoulder belt 25 under the clothing. The unit 2 has on its front side a 15-3s te~ i nal and a 9-terminal receptacle 26 and 27, respectively, into which the corresponding plugs of , ~

the connecting cables 8 and 9 can be pushed and secured with screw fasteners. Beside the push-button switch 7, there are also four light emitting diodes 28 on the unit to check the operation of the unit 2 after s it has been put on. To carry the stored data to a computer, a data transfer cable, not shown, is - provided. Power is supplied either by six small 1.5-volt batteries or by corresponding rechargeable batteries.
~'' 10 The wiring diagram illustrated in Figure 5 shows the signal processinq in the analyzing and storage unit 2. The signals picked up by the - microphone 4 are amplified by an amplifier 16 and distributed in two channels; the signals of one ::, 15 channel are then carried through a filter 17. The ; filter 17 damps signals above 800 Hz with a 12-decibel .~ octave damper. Not shown are the unfiltered branch . and the threshold detectors provided for both channels. The threshold detector which is connected to the filter 17 and is sensitive in the frequency range from about 100 Hz to 800 Hz is set to a medium ,' threshold level such that the signals or normal snoring sounds, but not smooth respiratory sounds, will exceed the threshold. The second threshold 2s detector responding to the entire frequency range from about 100 Hz to 15 Khz is set to such a high threshold level that the threshold is generally exceeded only by the very loud snoring and gasping noises following an apnea attack. The information, "threshold exceeded"
and "threshold not exceeded", constitutes a useful binary value for storage and further processing.
The signals originating from the phototransistors 13 of the finger sensor 5 are first amplified by a signal amplifier 20. Then the oxygen 3s saturation level of the blood is determined and binary-coded in desaturation analyzer 21. The signal levels correspond to the intensities of the light wavelengths emitted by the photodiodes 12 and transmitted through the tissue of the finger 14.
Since the absorption of the shorter wavelength light s depends highly on the oxygen content of the arterial blood, and the longer wavelength light is hardly affected at all by the oxygen content, a measure of the oxygen saturation of the blood can be derived from the signal level of the shorter wavelength light after o standardization to the signal level of the longer wavelength light. An accuracy of up to 2~ is achieved in this manner.
The signals originating from the EKG electrodes 3 are first amplified by an EKG amplifier 18 and then are fed to a heart rate analyzer 19 which determines the heart rate. The determined value of the heart rate is then binary-coded.
The four possible position signals originating from the position pickup 6 are analyzed in a position analyzer 22 and also binary-coded. Not shown in Figure 4 is the push-button switch 7.
All of these parameters are continuously picked up in parallel, coded, and stored successively in sets of parameters that belong together in time in a RAM
2s storage 23 with at least 128 kB storage capacity. The basic scanning interval amounts to 1 second; the oxygen saturation is read every 2 seconds, and the body position is read every 10 seconds, and renewed.
The recording time amounts to at least 22 hours. The 30 stored data for a recording period can be transferred via a modem not shown, with a transmission rate of 9200 baud, through an RS232 port of an XT or AT
personal computer not shown. By using memory chips of greater capacity, a total storage capacity of several 35 megabytes can also be achieved. In this way shorter scanning intervals or longer total recording times can be established.
When starting up at the beginning of a recording period, the attacl- ?nt of the connecting ~~ 5 cable 8 to the unit 2 automatically initiates a self-test. It lasts S minutes and is performed with the aid of the light emitting diodes 28. One of the diodes 28 is provided for checking the EKG function, the saturation measurement and the two respiratory sound channels. The light emitting diode associated with ; the EKG channel will light up upon the detection of an ~- R wave and if the operation is correct it blinks in synchronism with the R waves. The light emitting diode associated with the oxygen saturation channel 15 lights during the first 30 seconds of the self-test if no valid value is present; this is the case, for example, if the finger sensor is not fastened to the finger in the correct position. If the operation is correct this diode r~ ~ins out. The two light 20 emitting diodes associated with the respiratory sounds light up when the threshold is exceeded. If the operation is correct, these two diodes remain out in the normal state and can be made to light up by simulating snoring noises or very loud breathing ' 25 noises. After the self-test, the unit 2 begins the detection and storage of the above-mentioned physiological data for the duration of a data recording period.
At the end of a data recording period the data 30 stored in the mobile unit 2 can be transferred to a computer for evaluation. In the evaluation the data can be processed and displayed in three different ways:
i) The measured parameters (respiratory sounds, 35 heart rate, oxygen saturation, body position) are represented together graphically as a function of time 2063~91 ' for the entire period of study. This graph shows quantitatively the common progress of these parameters with time and thus especially also the correlations among them. It has the advantage of containing all of ; s the recorded information; interpretation, however, requires a certain amount of time.
ii) Some parameters are combined with time and are represented in the form of histograms and tables.
For example, a graphic representation of the distributions of the measured heart rates at successive lO-minute intervals, a graphic ; representation of the distribution of the measured oxygen saturation levels, and representation of the desaturation levels as a function of the frequency of their occurrence, in the form of diagrams and tables.
These representations no longer manifest the total development in time and all correlations between the measured parameters, but they do permit a faster interpretation.
iii) The number of episodes in which apnea was probably involved is directly determined from the data and expressed as the so-called RD index (respiratory disturbance index) as the episodes-per-hour unit.
Three such RD indexes are provided: the snoring index, 2s the heart rate variation index and the oxygen desaturation index.
For computation of the snoring index, pauses between snores, which last between ll and 60 seconds, are counted over the entire ex~;n~tion period and divided by the number of hours of the examination period. Pauses of this length are typical of apnea episodes.
To determine the heart rate variation index, first a relative heart rate is computed by dividing 3s the momentary heart rate by the running average of the heart rate of the previous 300 seconds. Relative : . : .. .. .
-: . . ~ :: ........... :: , -: ,, .:: . : ~
.. . ..

i - 16 -20~3~91 heart rate frequencies between 90% and 109% are associated with the so-called 100% class; other frequencies are outside of this class. The heart rate : variation index gives the number of events in the test ~' 5 period in which the relative heart frequency leaves the 100% class and returns to it within 11 to 60 seconds, divided by the number of hours in the test - period. Thus, the heart rate variations are analyzed as they occur in synchronism with the apnea episode.
10To determine the oxygen desaturation index, first the basal saturation level is determined by ' adding the highest oxygen saturation values from 2 to 10 preceding measurements, and the sum is divided by the number of measurements. A desaturation phase is present when the saturation level decreases by at least 3% from the basal saturation level and lasts until 90% of the basal saturation level is reached again after the decrease. The oxygen desaturation index gives the number of desaturation phases in the zo test period divided by the number of hours in the test period. It detects the desaturation phases as they occur, also in synchronism with the apnea episode.
These RD indexes directly give the number of apnea episodes per hour. Normally the three RD
;2s indexes give approximately the same value. Large differences between the three RD indexes can indicate the presence of special disorders, as mentioned in the beginning. Overall, the determination of the three RD
indexes provides an extremely quick and significant judgment of the apnea event.

, . .

Claims (10)

1. Mobile apparatus for detecting and storing physiological parameters in a patient for use in diagnosing the sleep apnea syndrome comprising:
a) means (4) for sensing respiratory sounds and b) snoring sounds, c) means (5) for sensing and storing in coded form the degree of oxygen saturation of the blood and d) means for storing a plurality of sets of parameters a) to c) obtained for short time intervals, in coded form, characterized in that the mobile apparatus further comprises e) means (3) for detecting heart potentials and sensing the heart rate based on the heart potentials and f) means (6) for sensing and coded storage of the bodily position of the patient (10).
2. The mobile apparatus according to claim 1, characterized in that it furthermore comprises means for the identification in coded form of certain time intervals during which parameters a) to e) are detected.
3. The mobile apparatus according to claim 2, characterized in that the means for the identification of certain time intervals include a push-button switch (7).
4. The mobile apparatus according to any one of claims 1 to 3, characterized in that the means for sensing the degree of oxygen saturation of the blood include a sensor with at least one light source (12) and at least one light receiver (13) for measuring light absorption or reflection produced by an extremity (14) of the patient.
5. The mobile apparatus acceding to claim 4, characterized in that the light source (12) and the light receiver(s) (13) are oppositely disposed on a fastening means, the light emitting and light receiving side of the light source (12) and light receiver (13), respectively, facing one another.
6. The mobile apparatus according to claim 5, characterized in that the fastening means is formed by a clip (5), said light source(s) (12) and light receiver(s) (13) and light receiver(s) (13) being disposed on opposite legs (11) of the clip (5).
7. The mobile apparatus according to claim 5, characterized in that the fastening element is formed by a flexible strip (30) which is bent U-wise at one end, said light source(s) (12) and light receiver(s) (13) being disposed on limbs of the "U".
8. The mobile apparatus according to any one of claims 1 to 7, characterized in that the means for detecting the bodily position of the patient include a hollow body (6) to be fastened to the upper body of the patient (10) with a ball of electrically conductive material situated therein.
9. The mobile apparatus according to claim 8, characterized in that the hollow body (6) is a hollow tetrahedron in whose corners electrical contacts are disposed which can be closed by the ball.
10. The mobile apparatus according to any one of claims 1 to 9, characterized in that the means for the detection of the respiratory and snoring sounds are arranged such that they pick up only loud, snoring sounds resulting from gasping for air after an episode of apnea.
CA002063691A 1991-03-22 1992-03-20 Method and apparatus for the ambulatory detection and diagnosis of the sleep apnea syndrome Expired - Fee Related CA2063691C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4109529 1991-03-22
DEP4109529.4 1991-03-22
DE4138702A DE4138702A1 (en) 1991-03-22 1991-11-26 METHOD AND DEVICE FOR THE DIAGNOSIS AND QUANTITATIVE ANALYSIS OF APNOE AND FOR THE SIMULTANEOUS DETERMINATION OF OTHER DISEASES
DEP4138702.3 1991-11-26

Publications (2)

Publication Number Publication Date
CA2063691A1 CA2063691A1 (en) 1992-09-23
CA2063691C true CA2063691C (en) 1999-01-12

Family

ID=25902168

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002063691A Expired - Fee Related CA2063691C (en) 1991-03-22 1992-03-20 Method and apparatus for the ambulatory detection and diagnosis of the sleep apnea syndrome

Country Status (16)

Country Link
US (1) US5275159A (en)
EP (1) EP0504945B1 (en)
JP (1) JPH0628662B2 (en)
AT (1) ATE160926T1 (en)
AU (1) AU649317B2 (en)
CA (1) CA2063691C (en)
CZ (1) CZ289547B6 (en)
DE (3) DE4138702A1 (en)
DK (1) DK0504945T3 (en)
ES (1) ES2111007T3 (en)
FI (1) FI921203A (en)
GR (1) GR3026314T3 (en)
HK (1) HK1005057A1 (en)
HU (1) HU215223B (en)
NZ (1) NZ242052A (en)
RU (1) RU2096995C1 (en)

Families Citing this family (458)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490502A (en) 1992-05-07 1996-02-13 New York University Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
US20050062609A9 (en) * 1992-08-19 2005-03-24 Lynn Lawrence A. Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
US6342039B1 (en) 1992-08-19 2002-01-29 Lawrence A. Lynn Microprocessor system for the simplified diagnosis of sleep apnea
DE69331951T2 (en) * 1992-08-19 2003-01-09 Lawrence A Lynn DEVICE FOR DISPLAYING APNOE WHILE SLEEPING
US7081095B2 (en) 2001-05-17 2006-07-25 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US7758503B2 (en) * 1997-01-27 2010-07-20 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US6223064B1 (en) 1992-08-19 2001-04-24 Lawrence A. Lynn Microprocessor system for the simplified diagnosis of sleep apnea
US5832448A (en) * 1996-10-16 1998-11-03 Health Hero Network Multiple patient monitoring system for proactive health management
US20040019259A1 (en) * 1992-11-17 2004-01-29 Brown Stephen J. Remote monitoring and data management platform
US8027809B2 (en) 1992-11-17 2011-09-27 Health Hero Network, Inc. Home power management system
US6968375B1 (en) * 1997-03-28 2005-11-22 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US6330426B2 (en) * 1994-05-23 2001-12-11 Stephen J. Brown System and method for remote education using a memory card
US7613590B2 (en) * 1992-11-17 2009-11-03 Health Hero Network, Inc. Modular microprocessor-based power tool system
US9215979B2 (en) * 1992-11-17 2015-12-22 Robert Bosch Healthcare Systems, Inc. Multi-user remote health monitoring system
WO2001037174A1 (en) * 1992-11-17 2001-05-25 Health Hero Network, Inc. Method and system for improving adherence with a diet program or other medical regimen
US5307263A (en) * 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US7941326B2 (en) * 2001-03-14 2011-05-10 Health Hero Network, Inc. Interactive patient communication development system for reporting on patient healthcare management
US8078431B2 (en) 1992-11-17 2011-12-13 Health Hero Network, Inc. Home power management system
US5956501A (en) * 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5951300A (en) * 1997-03-10 1999-09-14 Health Hero Network Online system and method for providing composite entertainment and health information
US8095340B2 (en) 1992-11-17 2012-01-10 Health Hero Network, Inc. Home power management system
US8078407B1 (en) 1997-03-28 2011-12-13 Health Hero Network, Inc. System and method for identifying disease-influencing genes
US20010011224A1 (en) * 1995-06-07 2001-08-02 Stephen James Brown Modular microprocessor-based health monitoring system
US6196970B1 (en) 1999-03-22 2001-03-06 Stephen J. Brown Research data collection and analysis
US7624028B1 (en) * 1992-11-17 2009-11-24 Health Hero Network, Inc. Remote health monitoring and maintenance system
US5511546A (en) * 1993-09-20 1996-04-30 Hon; Edward H. Finger apparatus for measuring continuous cutaneous blood pressure and electrocardiogram electrode
DE4338466A1 (en) * 1993-11-11 1995-05-18 Fraunhofer Ges Forschung Method and device for the automatic detection of conspicuous breathing noises
US5671733A (en) * 1994-04-21 1997-09-30 Snap Laboratories, L.L.C. Method of analyzing sleep disorders
DE4415896A1 (en) * 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
DE4423597C1 (en) * 1994-07-06 1995-08-10 Hewlett Packard Gmbh Pulsoximetric ear sensor
US6866040B1 (en) * 1994-09-12 2005-03-15 Nellcor Puritan Bennett France Developpement Pressure-controlled breathing aid
DE4440985C2 (en) * 1994-11-17 1998-07-23 Bernhard Dipl Phys Brenner Measuring device for analyzing and recording a person's sleep and waking phases
US5505199A (en) * 1994-12-01 1996-04-09 Kim; Bill H. Sudden infant death syndrome monitor
US5782240A (en) * 1994-12-22 1998-07-21 Snap Laboratories, L.L.C. Method of classifying respiratory sounds
US5778882A (en) 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
FR2731340B1 (en) * 1995-03-06 1997-09-19 Artin Pascal Jabourian ASSISTANCE APPARATUS AND METHOD FOR ESTABLISHING A MEDICAL DIAGNOSIS
US5706801A (en) * 1995-07-28 1998-01-13 Caire Inc. Sensing and communications system for use with oxygen delivery apparatus
DE19529111A1 (en) * 1995-08-08 1997-02-13 Bernd Klemm Respiratory function monitor especially for very young children - employs differential amplifier for compensation of extraneous interference with breathing sounds filtered and recorded graphically.
DE19538473A1 (en) * 1995-10-16 1997-04-17 Map Gmbh Device and method for the quantitative analysis of sleep disorders
US5765563A (en) * 1996-08-15 1998-06-16 Nellcor Puritan Bennett Incorporated Patient monitoring system
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
SE9604320D0 (en) 1996-11-25 1996-11-25 Pacesetter Ab Medical device
US6032119A (en) 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US9042952B2 (en) * 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US20060155207A1 (en) * 1997-01-27 2006-07-13 Lynn Lawrence A System and method for detection of incomplete reciprocation
US9468378B2 (en) * 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US8932227B2 (en) * 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
DE19708297A1 (en) * 1997-02-28 1998-09-03 Peter Dipl Ing Griebel Blood oxygen monitor for sudden infant death syndrome monitoring
US6712762B1 (en) 1997-02-28 2004-03-30 Ors Diagnostic, Llc Personal computer card for collection of real-time biological data
US5827179A (en) * 1997-02-28 1998-10-27 Qrs Diagnostic, Llc Personal computer card for collection for real-time biological data
US5888187A (en) 1997-03-27 1999-03-30 Symphonix Devices, Inc. Implantable microphone
AUPO616697A0 (en) * 1997-04-11 1997-05-08 Heartlink Pty Ltd Method for diagnosing psychiatric disorders
WO1998053734A1 (en) * 1997-05-29 1998-12-03 Gilles Ascher Portable equipment and method for intermittent measurement
US20070191697A1 (en) * 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
US20080287756A1 (en) * 1997-07-14 2008-11-20 Lynn Lawrence A Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8480580B2 (en) * 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US9066695B2 (en) * 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US20080004915A1 (en) 1998-09-25 2008-01-03 Brown Stephen J Dynamic modeling and scoring risk assessment
US6306088B1 (en) 1998-10-03 2001-10-23 Individual Monitoring Systems, Inc. Ambulatory distributed recorders system for diagnosing medical disorders
US6083156A (en) * 1998-11-16 2000-07-04 Ronald S. Lisiecki Portable integrated physiological monitoring system
US6425861B1 (en) * 1998-12-04 2002-07-30 Respironics, Inc. System and method for monitoring and controlling a plurality of polysomnographic devices
US6142950A (en) * 1998-12-10 2000-11-07 Individual Monitoring Systems, Inc. Non-tethered apnea screening device
DE19904260A1 (en) * 1999-02-03 2000-11-02 Dietmar Enderlein Glasses for use by patient suffering from sleep apnea have sensors to detect symptoms of sleep disturbance, logic controlling elements and light element that can be triggered to wake patient up
FR2789593B1 (en) * 1999-05-21 2008-08-22 Mallinckrodt Dev France APPARATUS FOR SUPPLYING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND METHODS OF CONTROLLING THE SAME
US6360114B1 (en) * 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6675031B1 (en) * 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
EP1059062A1 (en) * 1999-06-07 2000-12-13 Universite Catholique De Louvain Data processing system for diagnose and/or by tracking respiration diseases
DE19955740A1 (en) * 1999-11-18 2001-06-28 Gansel Reinhard Body position detector e.g. for correcting posture when sleeping, applies vibration based on output of body position sensors
JP2001190526A (en) 2000-01-07 2001-07-17 Minolta Co Ltd Posture detecting device and respiratory function measuring device
EP2322085B1 (en) 2000-04-17 2014-03-12 Covidien LP Pulse oximeter sensor with piece-wise function
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
DE10047365B4 (en) * 2000-09-25 2005-07-28 Siemens Ag Physiological sensor system
US6811538B2 (en) * 2000-12-29 2004-11-02 Ares Medical, Inc. Sleep apnea risk evaluation
US6560471B1 (en) * 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US9053222B2 (en) * 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US20060195041A1 (en) * 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US20090281838A1 (en) * 2008-05-07 2009-11-12 Lawrence A. Lynn Medical failure pattern search engine
US8065180B2 (en) 2001-04-02 2011-11-22 invivodata®, Inc. System for clinical trial subject compliance
US6879970B2 (en) * 2001-04-02 2005-04-12 Invivodata, Inc. Apparatus and method for prediction and management of subject compliance in clinical research
US7041468B2 (en) * 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US7873589B2 (en) 2001-04-02 2011-01-18 Invivodata, Inc. Operation and method for prediction and management of the validity of subject reported data
US8533029B2 (en) 2001-04-02 2013-09-10 Invivodata, Inc. Clinical monitoring device with time shifting capability
DE10123060A1 (en) * 2001-05-11 2002-11-28 Univ Albert Ludwigs Freiburg Computer controlled device for identifying and classifying respiratory behavior due to breathing irregularities when asleep employs integrated monitoring unit
US20030105404A1 (en) * 2001-06-18 2003-06-05 Galen Peter M. Multi-parameter acquisition of ECG and other physiologic data exclusively employing conventional ECG lead conductors
US6754516B2 (en) 2001-07-19 2004-06-22 Nellcor Puritan Bennett Incorporated Nuisance alarm reductions in a physiological monitor
US7025729B2 (en) * 2001-09-14 2006-04-11 Biancamed Limited Apparatus for detecting sleep apnea using electrocardiogram signals
US6748254B2 (en) * 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
US7004928B2 (en) 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
US20080200775A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Maneuver-based plethysmographic pulse variation detection system and method
CA2489808C (en) * 2002-06-20 2016-04-19 Richard Melker Perfusion monitor and system, including specifically configured oximeter probes and covers for oximeter probes
US20050113646A1 (en) * 2003-11-24 2005-05-26 Sotos John G. Method and apparatus for evaluation of sleep disorders
US7282027B2 (en) * 2002-08-07 2007-10-16 Apneos Corporation Service center system and method as a component of a population diagnostic for sleep disorders
US7841987B2 (en) * 2004-03-30 2010-11-30 Apneos Corporation System and method for visualizing sleep-related information
US20060155205A1 (en) * 2003-11-24 2006-07-13 Apneos Corp. System and method for assessing breathing
JP2004121668A (en) * 2002-10-04 2004-04-22 Denso Corp System for detecting and measuring abnormal respiration, and method for detecting abnormal respiration
US7572230B2 (en) * 2002-10-15 2009-08-11 Koninklijke Philips Electronics N.V. Method for the presentation of information concerning variations of the perfusion
US7190986B1 (en) 2002-10-18 2007-03-13 Nellcor Puritan Bennett Inc. Non-adhesive oximeter sensor for sensitive skin
KR20040039621A (en) * 2002-11-04 2004-05-12 최종민 Apparatus and method for a multi-channel integrated laryngeal diagnosis system
US7189204B2 (en) 2002-12-04 2007-03-13 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US7811231B2 (en) * 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US20040200472A1 (en) * 2003-01-09 2004-10-14 Suny Stony Brook/Respironics Method of treating functional somatic syndromes and diagnosing sleep disorders based on functional somatic syndrome symptoms
US7438686B2 (en) * 2003-01-10 2008-10-21 Medtronic, Inc. Apparatus and method for monitoring for disordered breathing
US7006856B2 (en) * 2003-01-10 2006-02-28 Nellcor Puritan Bennett Incorporated Signal quality metrics design for qualifying data for a physiological monitor
US7016715B2 (en) 2003-01-13 2006-03-21 Nellcorpuritan Bennett Incorporated Selection of preset filter parameters based on signal quality
US7052652B2 (en) 2003-03-24 2006-05-30 Rosedale Medical, Inc. Analyte concentration detection devices and methods
US7587287B2 (en) 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
US20050060194A1 (en) * 2003-04-04 2005-03-17 Brown Stephen J. Method and system for monitoring health of an individual
US7399276B1 (en) * 2003-05-08 2008-07-15 Health Hero Network, Inc. Remote health monitoring system
US20040230398A1 (en) * 2003-05-15 2004-11-18 Sanyo Electric Co., Ltd. Sleep analyzer and program product for giving sleep analysis function to computer
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US7588033B2 (en) 2003-06-18 2009-09-15 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
DE10337138A1 (en) * 2003-08-11 2005-03-17 Freitag, Lutz, Dr. Method and arrangement for the respiratory assistance of a patient as well as tracheal prosthesis and catheter
US7787946B2 (en) * 2003-08-18 2010-08-31 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US7510531B2 (en) * 2003-09-18 2009-03-31 Cardiac Pacemakers, Inc. System and method for discrimination of central and obstructive disordered breathing events
US7610094B2 (en) * 2003-09-18 2009-10-27 Cardiac Pacemakers, Inc. Synergistic use of medical devices for detecting medical disorders
US7396333B2 (en) * 2003-08-18 2008-07-08 Cardiac Pacemakers, Inc. Prediction of disordered breathing
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
US7616988B2 (en) * 2003-09-18 2009-11-10 Cardiac Pacemakers, Inc. System and method for detecting an involuntary muscle movement disorder
US7887493B2 (en) * 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US7662101B2 (en) * 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Therapy control based on cardiopulmonary status
JP2007506480A (en) * 2003-08-18 2007-03-22 ワンドカ,アンソニー・ディ Methods and apparatus for non-invasive ventilation with a nasal interface
US7575553B2 (en) * 2003-09-18 2009-08-18 Cardiac Pacemakers, Inc. Methods and systems for assessing pulmonary disease
US8606356B2 (en) 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
JP4472294B2 (en) 2003-08-22 2010-06-02 株式会社サトー Sleep apnea syndrome diagnosis apparatus, signal analysis apparatus and method thereof
US8396565B2 (en) * 2003-09-15 2013-03-12 Medtronic, Inc. Automatic therapy adjustments
US6964641B2 (en) * 2003-12-24 2005-11-15 Medtronic, Inc. Implantable medical device with sleep disordered breathing monitoring
US8925545B2 (en) * 2004-02-04 2015-01-06 Breathe Technologies, Inc. Methods and devices for treating sleep apnea
JP4597541B2 (en) * 2004-02-13 2010-12-15 フクダ電子株式会社 Biological signal measuring device
WO2005089103A2 (en) 2004-02-17 2005-09-29 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7120479B2 (en) * 2004-02-25 2006-10-10 Nellcor Puritan Bennett Inc. Switch-mode oximeter LED drive with a single inductor
US7190985B2 (en) * 2004-02-25 2007-03-13 Nellcor Puritan Bennett Inc. Oximeter ambient light cancellation
US7162288B2 (en) * 2004-02-25 2007-01-09 Nellcor Purtain Bennett Incorporated Techniques for detecting heart pulses and reducing power consumption in sensors
US7751894B1 (en) * 2004-03-04 2010-07-06 Cardiac Pacemakers, Inc. Systems and methods for indicating aberrant behavior detected by an implanted medical device
US7534212B2 (en) * 2004-03-08 2009-05-19 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US7194293B2 (en) * 2004-03-08 2007-03-20 Nellcor Puritan Bennett Incorporated Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8611977B2 (en) * 2004-03-08 2013-12-17 Covidien Lp Method and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US8025063B2 (en) * 2004-03-10 2011-09-27 Apneos Corporation System and method for treatment of upper airway disorders
US7491181B2 (en) * 2004-03-16 2009-02-17 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US7881798B2 (en) 2004-03-16 2011-02-01 Medtronic Inc. Controlling therapy based on sleep quality
US8308661B2 (en) * 2004-03-16 2012-11-13 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US7717848B2 (en) 2004-03-16 2010-05-18 Medtronic, Inc. Collecting sleep quality information via a medical device
US7805196B2 (en) * 2004-03-16 2010-09-28 Medtronic, Inc. Collecting activity information to evaluate therapy
US20070276439A1 (en) * 2004-03-16 2007-11-29 Medtronic, Inc. Collecting sleep quality information via a medical device
US7542803B2 (en) * 2004-03-16 2009-06-02 Medtronic, Inc. Sensitivity analysis for selecting therapy parameter sets
US8725244B2 (en) 2004-03-16 2014-05-13 Medtronic, Inc. Determination of sleep quality for neurological disorders
US8055348B2 (en) 2004-03-16 2011-11-08 Medtronic, Inc. Detecting sleep to evaluate therapy
US7330760B2 (en) * 2004-03-16 2008-02-12 Medtronic, Inc. Collecting posture information to evaluate therapy
US7395113B2 (en) 2004-03-16 2008-07-01 Medtronic, Inc. Collecting activity information to evaluate therapy
US20050209512A1 (en) * 2004-03-16 2005-09-22 Heruth Kenneth T Detecting sleep
US7792583B2 (en) * 2004-03-16 2010-09-07 Medtronic, Inc. Collecting posture information to evaluate therapy
US7366572B2 (en) * 2004-03-16 2008-04-29 Medtronic, Inc. Controlling therapy based on sleep quality
US7878198B2 (en) 2004-03-31 2011-02-01 Michael Farrell Methods and apparatus for monitoring the cardiovascular condition of patients with sleep disordered breathing
WO2005096729A2 (en) * 2004-03-31 2005-10-20 Resmed Limited Methods and apparatus for monitoring the cardiovascular condition of patients with sleep disordered breathing
US8135473B2 (en) * 2004-04-14 2012-03-13 Medtronic, Inc. Collecting posture and activity information to evaluate therapy
US7313440B2 (en) * 2004-04-14 2007-12-25 Medtronic, Inc. Collecting posture and activity information to evaluate therapy
SE0401207D0 (en) * 2004-05-10 2004-05-10 Breas Medical Ab Diagnostic system for disordered breathing
DE102004025200A1 (en) * 2004-05-22 2005-12-22 Weinmann Geräte für Medizin GmbH & Co. KG Device for detecting the severity of a disease and method for controlling a detection device
US8226569B2 (en) * 2004-05-26 2012-07-24 Sotos John G System and method for managing sleep disorders
US20060047215A1 (en) * 2004-09-01 2006-03-02 Welch Allyn, Inc. Combined sensor assembly
US20060094935A1 (en) * 2004-10-20 2006-05-04 Coulbourn Instruments, L.L.C. Portable psychophysiology system and method of use
JP2006167211A (en) * 2004-12-16 2006-06-29 Hitachi Engineering & Services Co Ltd Measuring apparatus for sleep apnea syndrome
JP2006204742A (en) * 2005-01-31 2006-08-10 Konica Minolta Sensing Inc Method and system for evaluating sleep, its operation program, pulse oxymeter, and system for supporting sleep
US7680534B2 (en) 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
US7392075B2 (en) * 2005-03-03 2008-06-24 Nellcor Puritan Bennett Incorporated Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US20060212273A1 (en) * 2005-03-04 2006-09-21 Individual Monitoring Systems.Inc. Real-time snoring assessment apparatus and method
US8112240B2 (en) * 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US8021299B2 (en) * 2005-06-01 2011-09-20 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US20080319277A1 (en) * 2005-06-13 2008-12-25 Braebon Medical Corporation Sleep disorder monitoring and diagnostic system
US20060281187A1 (en) 2005-06-13 2006-12-14 Rosedale Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
US7590439B2 (en) * 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US7657294B2 (en) * 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US20070060808A1 (en) * 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
CN101454041B (en) * 2005-09-20 2012-12-12 呼吸科技公司 Systems, methods and apparatus for respiratory support of a patient
US7725147B2 (en) * 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US7904130B2 (en) * 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7869850B2 (en) * 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US8092379B2 (en) * 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7486979B2 (en) * 2005-09-30 2009-02-03 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US8062221B2 (en) * 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US8233954B2 (en) * 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
JP5147702B2 (en) * 2005-09-30 2013-02-20 インテュイティ メディカル インコーポレイテッド Fully integrated wearable or handheld monitor
US7881762B2 (en) * 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US7555327B2 (en) * 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US20070106126A1 (en) 2005-09-30 2007-05-10 Mannheimer Paul D Patient monitoring alarm escalation system and method
CN100466966C (en) * 2005-10-08 2009-03-11 周常安 Physiological signal extracting and monitoring device and system
US20070100220A1 (en) * 2005-10-28 2007-05-03 Baker Clark R Jr Adjusting parameters used in pulse oximetry analysis
US20090054747A1 (en) * 2005-10-31 2009-02-26 Abbott Diabetes Care, Inc. Method and system for providing analyte sensor tester isolation
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
DE102005053109A1 (en) 2005-11-04 2007-05-10 Koehler, Ullrich, Prof. Dr. Body noise detection
WO2007060560A1 (en) * 2005-11-23 2007-05-31 Koninklijke Philips Electronics N.V. Enhanced functionality and accuracy for a wrist-based multi-parameter monitor
US7957809B2 (en) 2005-12-02 2011-06-07 Medtronic, Inc. Closed-loop therapy adjustment
US8016776B2 (en) * 2005-12-02 2011-09-13 Medtronic, Inc. Wearable ambulatory data recorder
US7706852B2 (en) * 2006-01-30 2010-04-27 Nellcor Puritan Bennett Llc System and method for detection of unstable oxygen saturation
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US20070208259A1 (en) * 2006-03-06 2007-09-06 Mannheimer Paul D Patient monitoring alarm escalation system and method
US8702606B2 (en) * 2006-03-21 2014-04-22 Covidien Lp Patient monitoring help video system and method
US8744587B2 (en) * 2006-03-24 2014-06-03 Medtronic, Inc. Collecting gait information for evaluation and control of therapy
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
DE102006017279A1 (en) * 2006-04-12 2007-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Automatic detection of hypopneas
DE102006017278A1 (en) * 2006-04-12 2007-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Proof of onset of apnea
US7966768B2 (en) * 2006-05-01 2011-06-28 Laminations, Inc. Staking system for growing container
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US7522948B2 (en) * 2006-05-02 2009-04-21 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
EP2023987B1 (en) 2006-05-18 2016-11-09 Breathe Technologies, Inc. Tracheotomy device
US20090054749A1 (en) * 2006-05-31 2009-02-26 Abbott Diabetes Care, Inc. Method and System for Providing Data Transmission in a Data Management System
US20070282181A1 (en) * 2006-06-01 2007-12-06 Carol Findlay Visual medical sensor indicator
US7920907B2 (en) * 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US8380271B2 (en) 2006-06-15 2013-02-19 Covidien Lp System and method for generating customizable audible beep tones and alarms
US7678058B2 (en) * 2006-06-22 2010-03-16 Cardiac Pacemakers, Inc. Apnea type determining apparatus and method
US8360983B2 (en) 2006-06-22 2013-01-29 Cardiac Pacemakers, Inc. Apnea type determining apparatus and method
EP2068992B1 (en) * 2006-08-03 2016-10-05 Breathe Technologies, Inc. Devices for minimally invasive respiratory support
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8372015B2 (en) * 2006-08-28 2013-02-12 Intuity Medical, Inc. Body fluid sampling device with pivotable catalyst member
US7801603B2 (en) * 2006-09-01 2010-09-21 Cardiac Pacemakers, Inc. Method and apparatus for optimizing vagal nerve stimulation using laryngeal activity
US20080064940A1 (en) * 2006-09-12 2008-03-13 Raridan William B Sensor cable design for use with spectrophotometric sensors and method of using the same
US8219170B2 (en) * 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8175671B2 (en) * 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8195264B2 (en) * 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) * 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US20080077020A1 (en) * 2006-09-22 2008-03-27 Bam Labs, Inc. Method and apparatus for monitoring vital signs remotely
US7869849B2 (en) * 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7574245B2 (en) * 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7796403B2 (en) * 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068890B2 (en) * 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Pulse oximetry sensor switchover
US7476131B2 (en) 2006-09-29 2009-01-13 Nellcor Puritan Bennett Llc Device for reducing crosstalk
US8728059B2 (en) * 2006-09-29 2014-05-20 Covidien Lp System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US7680522B2 (en) * 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US7684842B2 (en) * 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8287281B2 (en) * 2006-12-06 2012-10-16 Microsoft Corporation Memory training via visual journal
US20080183049A1 (en) * 2007-01-31 2008-07-31 Microsoft Corporation Remote management of captured image sequence
WO2008123903A1 (en) * 2007-02-09 2008-10-16 Mayo Foundation For Medical Education And Research Peripheral oxistimulator apparatus and methods
US8732188B2 (en) * 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US20080200819A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Orthostasis detection system and method
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8265724B2 (en) * 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US7894869B2 (en) * 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8280469B2 (en) * 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US7559903B2 (en) * 2007-03-28 2009-07-14 Tr Technologies Inc. Breathing sound analysis for detection of sleep apnea/popnea events
EP1978460B1 (en) * 2007-04-05 2014-01-22 ResMed R&D Germany GmbH Monitoring device and method
DE102007020038A1 (en) * 2007-04-27 2008-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Evidence of apnea with blood pressure dependent detected signals
US20080281179A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US8461985B2 (en) * 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
WO2008144589A1 (en) 2007-05-18 2008-11-27 Breathe Technologies, Inc. Methods and devices for sensing respiration and providing ventilation therapy
EP2017586A1 (en) * 2007-07-20 2009-01-21 Map-Medizintechnologie GmbH Monitor for CPAP/Ventilator apparatus
EP2185067A1 (en) * 2007-09-13 2010-05-19 Rudolf Riester GmbH Pressure meter, in particular blood pressure meter
US8567399B2 (en) 2007-09-26 2013-10-29 Breathe Technologies, Inc. Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
US8204567B2 (en) * 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) * 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US20090168050A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc Optical Sensor System And Method
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US20090171167A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc System And Method For Monitor Alarm Management
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8442608B2 (en) * 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US20090171176A1 (en) * 2007-12-28 2009-07-02 Nellcor Puritan Bennett Llc Snapshot Sensor
US20090171166A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Oximeter with location awareness
US8199007B2 (en) * 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8897850B2 (en) * 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8070508B2 (en) * 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US20090165795A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Method and apparatus for respiratory therapy
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US20090171226A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for evaluating variation in the timing of physiological events
CN101977656A (en) * 2008-01-18 2011-02-16 呼吸科技公司 Methods and devices for improving efficacy of non-invasive ventilation
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8275553B2 (en) * 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US8365730B2 (en) 2008-03-24 2013-02-05 Covidien Lp Method and system for classification of photo-plethysmographically detected respiratory effort
US20090247851A1 (en) * 2008-03-26 2009-10-01 Nellcor Puritan Bennett Llc Graphical User Interface For Monitor Alarm Management
US20090247854A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Retractable Sensor Cable For A Pulse Oximeter
US20090247837A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc System And Method For Diagnosing Sleep Apnea
US8140272B2 (en) * 2008-03-27 2012-03-20 Nellcor Puritan Bennett Llc System and method for unmixing spectroscopic observations with nonnegative matrix factorization
US8437822B2 (en) * 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US8112375B2 (en) * 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8364224B2 (en) * 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
WO2009151791A2 (en) 2008-04-18 2009-12-17 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8770193B2 (en) 2008-04-18 2014-07-08 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
CN102112049B (en) 2008-05-29 2014-10-22 伊塔马医疗有限公司 Method and apparatus for examining subjects for particular physiological conditions utilizing acoustic information
US9833183B2 (en) 2008-05-30 2017-12-05 Intuity Medical, Inc. Body fluid sampling device—sampling site interface
WO2009148626A1 (en) 2008-06-06 2009-12-10 Intuity Medical, Inc. Medical diagnostic devices and methods
JP5642066B2 (en) 2008-06-06 2014-12-17 インテュイティ メディカル インコーポレイテッド Method and apparatus for performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid
US20090327515A1 (en) * 2008-06-30 2009-12-31 Thomas Price Medical Monitor With Network Connectivity
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US20090326347A1 (en) * 2008-06-30 2009-12-31 Bennett Scharf Synchronous Light Detection Utilizing CMOS/CCD Sensors For Oximetry Sensing
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
US7887345B2 (en) * 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US8071935B2 (en) * 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US7880884B2 (en) * 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US9895068B2 (en) * 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US9956412B2 (en) * 2008-07-11 2018-05-01 Medtronic, Inc. Linking posture states for posture responsive therapy
US8644945B2 (en) 2008-07-11 2014-02-04 Medtronic, Inc. Patient interaction with posture-responsive therapy
US8249718B2 (en) * 2008-07-11 2012-08-21 Medtronic, Inc. Programming posture state-responsive therapy with nominal therapy parameters
US8504150B2 (en) 2008-07-11 2013-08-06 Medtronic, Inc. Associating therapy adjustments with posture states using a stability timer
US8401666B2 (en) 2008-07-11 2013-03-19 Medtronic, Inc. Modification profiles for posture-responsive therapy
US8323218B2 (en) 2008-07-11 2012-12-04 Medtronic, Inc. Generation of proportional posture information over multiple time intervals
US9050471B2 (en) 2008-07-11 2015-06-09 Medtronic, Inc. Posture state display on medical device user interface
US8708934B2 (en) * 2008-07-11 2014-04-29 Medtronic, Inc. Reorientation of patient posture states for posture-responsive therapy
US9776008B2 (en) * 2008-07-11 2017-10-03 Medtronic, Inc. Posture state responsive therapy delivery using dwell times
US8380531B2 (en) 2008-07-25 2013-02-19 Invivodata, Inc. Clinical trial endpoint development process
CN102196837B (en) 2008-08-22 2015-09-09 呼吸科技公司 Open air flue interface is utilized to provide the method and apparatus of mechanical ventilation
US9089254B2 (en) * 2008-08-28 2015-07-28 Biosense Webster, Inc. Synchronization of medical devices via digital interface
US8398555B2 (en) * 2008-09-10 2013-03-19 Covidien Lp System and method for detecting ventilatory instability
US8280517B2 (en) 2008-09-19 2012-10-02 Medtronic, Inc. Automatic validation techniques for validating operation of medical devices
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US20100076276A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Medical Sensor, Display, and Technique For Using The Same
US20100076319A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Pathlength-Corrected Medical Spectroscopy
US8386000B2 (en) * 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8417309B2 (en) * 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8968193B2 (en) * 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
JP5350735B2 (en) * 2008-09-30 2013-11-27 テルモ株式会社 Information processing apparatus, recording medium, and program
US8914088B2 (en) * 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US20100081912A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Ultrasound-Optical Doppler Hemometer and Technique for Using the Same
US8423112B2 (en) * 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8433382B2 (en) * 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
JP5350736B2 (en) * 2008-09-30 2013-11-27 テルモ株式会社 Information processing apparatus, recording medium, and program
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
CA2739435A1 (en) 2008-10-01 2010-04-08 Breathe Technologies, Inc. Ventilator with biofeedback monitoring and control for improving patient activity and health
NL1036012C (en) * 2008-10-03 2010-04-06 Stephan Arend Hulsbergen MONITORING SYSTEM, RING FITTED WITH SUCH A SYSTEM, AND A SENSOR AND A PROCESSING UNIT AS PART OF THIS SYSTEM.
EP2365776A2 (en) * 2008-10-31 2011-09-21 Nellcor Puritan Bennett LLC System and method for facilitating observation of monitored physiologic data
US8622916B2 (en) * 2008-10-31 2014-01-07 Covidien Lp System and method for facilitating observation of monitored physiologic data
US20090171172A1 (en) * 2008-12-19 2009-07-02 Nellcor Puritan Bennett Llc Method and system for pulse gating
US9132250B2 (en) * 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US7969575B2 (en) * 2009-02-03 2011-06-28 Quawell Technology, Inc. Method and apparatus for measuring light absorption of liquid samples
ES1070396U (en) * 2009-03-02 2009-08-11 Daniel Oreja Puerto Improved cranial device with a rotary inclination detector
US8452366B2 (en) * 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US20100240972A1 (en) * 2009-03-20 2010-09-23 Nellcor Puritan Bennett Llc Slider Spot Check Pulse Oximeter
US20100249550A1 (en) * 2009-03-25 2010-09-30 Neilcor Puritan Bennett LLC Method And Apparatus For Optical Filtering Of A Broadband Emitter In A Medical Sensor
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
JP5758875B2 (en) * 2009-04-02 2015-08-05 ブリーズ・テクノロジーズ・インコーポレーテッド Non-invasive ventilation system
WO2010127050A1 (en) * 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US8175720B2 (en) 2009-04-30 2012-05-08 Medtronic, Inc. Posture-responsive therapy control based on patient input
US9327070B2 (en) * 2009-04-30 2016-05-03 Medtronic, Inc. Medical device therapy based on posture and timing
US8231555B2 (en) 2009-04-30 2012-07-31 Medtronic, Inc. Therapy system including multiple posture sensors
US8509869B2 (en) * 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8634891B2 (en) * 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US20100331640A1 (en) * 2009-06-26 2010-12-30 Nellcor Puritan Bennett Llc Use of photodetector array to improve efficiency and accuracy of an optical medical sensor
US9010634B2 (en) * 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US8505821B2 (en) * 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US20100331631A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc Oxygen saturation ear sensor design that optimizes both attachment method and signal quality
US8311601B2 (en) * 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8391941B2 (en) * 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US20110029865A1 (en) * 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Control Interface For A Medical Monitor
US20110034783A1 (en) * 2009-08-10 2011-02-10 Nellcor Puritan Bennett Llc Systems and methods for balancing power consumption and utility of wireless medical sensors
US8417310B2 (en) * 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8494606B2 (en) * 2009-08-19 2013-07-23 Covidien Lp Photoplethysmography with controlled application of sensor pressure
US8428675B2 (en) * 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
WO2011029074A1 (en) 2009-09-03 2011-03-10 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US8494604B2 (en) * 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8704666B2 (en) * 2009-09-21 2014-04-22 Covidien Lp Medical device interface customization systems and methods
US8788001B2 (en) * 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
WO2011037699A2 (en) * 2009-09-24 2011-03-31 Nellcor Puritan Bennett Llc Determination of a physiological parameter
US8798704B2 (en) * 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8923945B2 (en) * 2009-09-24 2014-12-30 Covidien Lp Determination of a physiological parameter
US8571621B2 (en) * 2009-09-24 2013-10-29 Covidien Lp Minimax filtering for pulse oximetry
US8376955B2 (en) * 2009-09-29 2013-02-19 Covidien Lp Spectroscopic method and system for assessing tissue temperature
US9554739B2 (en) 2009-09-29 2017-01-31 Covidien Lp Smart cable for coupling a medical sensor to an electronic patient monitor
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US20110077470A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Patient Monitor Symmetry Control
US8401608B2 (en) * 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US20110074342A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Wireless electricity for electronic devices
EP2506768B1 (en) 2009-11-30 2016-07-06 Intuity Medical, Inc. Calibration material delivery devices and methods
US8579834B2 (en) * 2010-01-08 2013-11-12 Medtronic, Inc. Display of detected patient posture state
US9956418B2 (en) 2010-01-08 2018-05-01 Medtronic, Inc. Graphical manipulation of posture zones for posture-responsive therapy
US9357949B2 (en) 2010-01-08 2016-06-07 Medtronic, Inc. User interface that displays medical therapy and posture data
US9149210B2 (en) * 2010-01-08 2015-10-06 Medtronic, Inc. Automated calibration of posture state classification for a medical device
US9078610B2 (en) * 2010-02-22 2015-07-14 Covidien Lp Motion energy harvesting with wireless sensors
US20110213217A1 (en) * 2010-02-28 2011-09-01 Nellcor Puritan Bennett Llc Energy optimized sensing techniques
US8483788B2 (en) * 2010-02-28 2013-07-09 Covidien Lp Motion compensation in a sensor
US8874180B2 (en) * 2010-02-28 2014-10-28 Covidien Lp Ambient electromagnetic energy harvesting with wireless sensors
DE102010002562A1 (en) 2010-03-04 2011-09-08 Robert Bosch Gmbh Apparatus and method for measuring sleep apnea
US8553223B2 (en) 2010-03-31 2013-10-08 Covidien Lp Biodegradable fibers for sensing
US8428676B2 (en) 2010-03-31 2013-04-23 Covidien Lp Thermoelectric energy harvesting with wireless sensors
US8391943B2 (en) 2010-03-31 2013-03-05 Covidien Lp Multi-wavelength photon density wave system using an optical switch
US8498683B2 (en) 2010-04-30 2013-07-30 Covidien LLP Method for respiration rate and blood pressure alarm management
US9566441B2 (en) 2010-04-30 2017-02-14 Medtronic, Inc. Detecting posture sensor signal shift or drift in medical devices
US8319401B2 (en) 2010-04-30 2012-11-27 Nellcor Puritan Bennett Llc Air movement energy harvesting with wireless sensors
US10335060B1 (en) 2010-06-19 2019-07-02 Dp Technologies, Inc. Method and apparatus to provide monitoring
CA2803797A1 (en) 2010-06-25 2011-12-29 Intuity Medical, Inc. Analyte monitoring methods and systems
US9380982B2 (en) 2010-07-28 2016-07-05 Covidien Lp Adaptive alarm system and method
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
WO2012024342A1 (en) 2010-08-16 2012-02-23 Breathe Technologies, Inc. Methods, systems and devices using lox to provide ventilatory support
WO2012024401A2 (en) 2010-08-17 2012-02-23 University Of Florida Research Foundation, Inc. Intelligent drug and/or fluid delivery system to optimizing medical treatment or therapy using pharmacodynamic and/or pharmacokinetic data
US8939152B2 (en) 2010-09-30 2015-01-27 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
US20130226020A1 (en) * 2010-11-05 2013-08-29 Resmed Limited Acoustic detection mask systems and/or methods
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method
US20130345585A1 (en) * 2011-03-11 2013-12-26 Koninklijke Philips N.V. Monitoring apparatus for monitoring a physiological signal
WO2013020103A1 (en) 2011-08-03 2013-02-07 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
AU2012335830B2 (en) 2011-11-07 2017-05-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US10276054B2 (en) 2011-11-29 2019-04-30 Eresearchtechnology, Inc. Methods and systems for data analysis
WO2013113950A1 (en) * 2012-01-31 2013-08-08 Torytrans, S.L. Electrostimulation method and system for the treatment of sleep apnoea
US9459597B2 (en) 2012-03-06 2016-10-04 DPTechnologies, Inc. Method and apparatus to provide an improved sleep experience by selecting an optimal next sleep state for a user
US10791986B1 (en) 2012-04-05 2020-10-06 Dp Technologies, Inc. Sleep sound detection system and use
US9907959B2 (en) 2012-04-12 2018-03-06 Medtronic, Inc. Velocity detection for posture-responsive therapy
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
JP5942566B2 (en) * 2012-04-19 2016-06-29 富士通株式会社 Apnea determination program, apnea determination apparatus, and apnea determination method
US9737719B2 (en) 2012-04-26 2017-08-22 Medtronic, Inc. Adjustment of therapy based on acceleration
US9060745B2 (en) 2012-08-22 2015-06-23 Covidien Lp System and method for detecting fluid responsiveness of a patient
US8731649B2 (en) 2012-08-30 2014-05-20 Covidien Lp Systems and methods for analyzing changes in cardiac output
US9357937B2 (en) 2012-09-06 2016-06-07 Covidien Lp System and method for determining stroke volume of an individual
US9241646B2 (en) 2012-09-11 2016-01-26 Covidien Lp System and method for determining stroke volume of a patient
US20140081152A1 (en) 2012-09-14 2014-03-20 Nellcor Puritan Bennett Llc System and method for determining stability of cardiac output
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
CN102940491B (en) * 2012-11-20 2014-05-14 秦皇岛市康泰医学系统有限公司 Sleep and breath preliminary screening instrument with timing power-on function and power-saving method
US8977348B2 (en) 2012-12-21 2015-03-10 Covidien Lp Systems and methods for determining cardiac output
WO2014127252A1 (en) * 2013-02-15 2014-08-21 Welch Allyn, Inc. Remote health care system
US10874577B2 (en) 2013-03-15 2020-12-29 Somne Llc Obtaining, with a sleep-apnea device, information related to sleep-apnea events and sleep-apnea treatment, and correlating sleep apnea events and sleep-apnea treatment with subject lifestyle and wellbeing
US9707121B2 (en) 2013-03-15 2017-07-18 Elwha Llc Treating sleep apnea with negative pressure
JP2016522070A (en) 2013-06-21 2016-07-28 インテュイティ メディカル インコーポレイテッド Analyte monitoring system using audible feedback
US10368798B2 (en) 2013-06-28 2019-08-06 North Carolina State University Systems and methods for determining sleep patterns and circadian rhythms
GB2536163B (en) 2013-10-17 2017-11-15 Monica Healthcare Ltd Apparatus and method for detecting an abdominal electrophysiological signal
WO2015138861A1 (en) * 2014-03-13 2015-09-17 Halare, Inc. Systems and methods for detecting and diagnosing sleep disordered breathing
GB2537574A (en) 2014-03-13 2016-10-19 Halare Inc Systems, methods and apparatuses for the alleviation and outcome monitoring of sleep disordered breathing
CN104545844B (en) * 2014-12-25 2017-02-22 中国科学院苏州生物医学工程技术研究所 Multi-parameter sleep monitoring and intelligent diagnosis system based on 4G mobile communication technology and application method of multi-parameter sleep monitoring and intelligent diagnosis system
US11883188B1 (en) 2015-03-16 2024-01-30 Dp Technologies, Inc. Sleep surface sensor based sleep analysis system
WO2016176668A1 (en) * 2015-04-30 2016-11-03 Somtek, Inc. Breathing disorder detection and treatment device and methods
CN104771166A (en) * 2015-05-04 2015-07-15 思澜科技(成都)有限公司 Sleep breath state signal acquisition device based on biological resistance and monitoring system
EP3307166A4 (en) 2015-06-15 2019-01-02 Medibio Limited Method and system for monitoring stress conditions
EP3307165A4 (en) 2015-06-15 2019-01-02 Medibio Limited Method and system for assessing mental state
US11344254B2 (en) 2016-01-22 2022-05-31 Welch Allyn, Inc. Estimating hydration using capillary refill time
US20180078199A1 (en) * 2016-09-16 2018-03-22 Wayne State University Detection of sleep disordered breathing using cardiac autonomic responses
WO2018089789A1 (en) 2016-11-10 2018-05-17 The Research Foundation For The State University Of New York System, method and biomarkers for airway obstruction
CN106726090B (en) * 2016-12-22 2021-11-23 北京品驰医疗设备有限公司 Rechargeable snoring sleep apnea prevention system
US20180279940A1 (en) * 2017-03-30 2018-10-04 James Campbell Disease Detection Device and Method for Detection of Abnormal Immunological Activity
US20180279947A1 (en) * 2017-03-30 2018-10-04 Sunil Kumar Ummat Wearable device with integrated sensors
BR112019023255A2 (en) 2017-05-05 2020-05-19 ResMed Pty Ltd screening, diagnosis and monitoring of respiratory disorders
US11596795B2 (en) 2017-07-31 2023-03-07 Medtronic, Inc. Therapeutic electrical stimulation therapy for patient gait freeze
US10792449B2 (en) 2017-10-03 2020-10-06 Breathe Technologies, Inc. Patient interface with integrated jet pump
CN108938174A (en) * 2018-05-29 2018-12-07 四川九通慧医药信息科技有限公司 A kind of anti-snore device and snore relieving method
US11793455B1 (en) 2018-10-15 2023-10-24 Dp Technologies, Inc. Hardware sensor system for controlling sleep environment
US11744501B2 (en) 2020-05-07 2023-09-05 GE Precision Healthcare LLC Multi-sensor patch
CN114391807B (en) * 2021-12-17 2023-12-19 珠海脉动时代健康科技有限公司 Sleep breathing disorder analysis method, device, equipment and readable medium

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7641981A (en) * 1980-09-24 1982-04-14 Alencastro Valle De Carvalho Absolute pressure, pulse rate and temperature meter
AU8070482A (en) * 1981-02-20 1982-08-26 Rorke, W.F. Body function monitor and alarm
CA1278044C (en) * 1985-06-06 1990-12-18 The Boc Group, Inc. Hinged finger stall with light emitter and detector
CH670374A5 (en) * 1986-04-15 1989-06-15 Hatschek Rudolf A
US4777962A (en) * 1986-05-09 1988-10-18 Respitrace Corporation Method and apparatus for distinguishing central obstructive and mixed apneas by external monitoring devices which measure rib cage and abdominal compartmental excursions during respiration
DE8618982U1 (en) * 1986-07-15 1988-03-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4834532A (en) * 1986-12-05 1989-05-30 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon Health Sciences University Devices and procedures for in vitro calibration of pulse oximetry monitors
US4802485A (en) * 1987-09-02 1989-02-07 Sentel Technologies, Inc. Sleep apnea monitor
US4846183A (en) * 1987-12-02 1989-07-11 The Boc Group, Inc. Blood parameter monitoring apparatus and methods
DE3810411A1 (en) * 1988-03-26 1989-10-12 Nicolay Gmbh DEVICE FOR FIXING A SENSOR, IN PARTICULAR A SENSOR FOR OXIMETRIC MEASUREMENTS
US4825872A (en) * 1988-08-05 1989-05-02 Critikon, Inc. Finger sensor for pulse oximetry system
US4982738A (en) * 1988-11-30 1991-01-08 Dr. Madaus Gmbh Diagnostic apnea monitor system
US5123425A (en) * 1990-09-06 1992-06-23 Edentec Obstructive sleep apnea collar

Also Published As

Publication number Publication date
CA2063691A1 (en) 1992-09-23
DK0504945T3 (en) 1998-08-24
FI921203A (en) 1992-09-23
GR3026314T3 (en) 1998-06-30
DE4138702A1 (en) 1992-09-24
HK1005057A1 (en) 1998-12-18
CZ289547B6 (en) 2002-02-13
EP0504945B1 (en) 1997-12-10
HU9200934D0 (en) 1992-05-28
US5275159A (en) 1994-01-04
NZ242052A (en) 1994-10-26
ES2111007T3 (en) 1998-03-01
AU1309392A (en) 1992-10-01
DE59209049D1 (en) 1998-01-22
AU649317B2 (en) 1994-05-19
HU215223B (en) 1998-10-28
EP0504945A3 (en) 1993-05-19
EP0504945A2 (en) 1992-09-23
FI921203A0 (en) 1992-03-20
JPH05200031A (en) 1993-08-10
DE9200422U1 (en) 1992-07-30
JPH0628662B2 (en) 1994-04-20
HUT65091A (en) 1994-04-28
ATE160926T1 (en) 1997-12-15
RU2096995C1 (en) 1997-11-27
CS84992A3 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
CA2063691C (en) Method and apparatus for the ambulatory detection and diagnosis of the sleep apnea syndrome
US11690519B2 (en) Apparatus, system, and method for monitoring physiological signs
US6064910A (en) Respirator rate/respiration depth detector and device for monitoring respiratory activity employing same
US5795300A (en) Heart pulse monitor
US5807267A (en) Heart pulse monitor
CA2004293C (en) Diagnostic apnea monitor system
US5226417A (en) Apparatus for the detection of motion transients
US6881191B2 (en) Cardiac monitoring apparatus and method
US20090024044A1 (en) Data recording for patient status analysis
CN114652303B (en) Intelligent monitoring system
FI98266C (en) Personal vital signs monitor
JPH07204169A (en) Device for detecting information on living body and its applied apparatus
US6496723B1 (en) Method of obtaining information that corresponds to electrocardiogram of human body from pulse wave thereof
CN115633937A (en) Sleep monitoring device
US20180242858A1 (en) Method of registering the intervals between adjacent R-peaks of the ECG signal with the one hand in order to diagnose and assess the state of the human body and Heart Rate Variability wearable monitoring device
KR20110027152A (en) Individual a lie detector

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed