CA2027683C - Pressure sensing scope cannula - Google Patents

Pressure sensing scope cannula Download PDF

Info

Publication number
CA2027683C
CA2027683C CA002027683A CA2027683A CA2027683C CA 2027683 C CA2027683 C CA 2027683C CA 002027683 A CA002027683 A CA 002027683A CA 2027683 A CA2027683 A CA 2027683A CA 2027683 C CA2027683 C CA 2027683C
Authority
CA
Canada
Prior art keywords
inner tube
tube
passage
cannula
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002027683A
Other languages
French (fr)
Other versions
CA2027683A1 (en
Inventor
Herbert D. Marcus
Allen H. Desatnick
Paul Alexander Torrie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of CA2027683A1 publication Critical patent/CA2027683A1/en
Application granted granted Critical
Publication of CA2027683C publication Critical patent/CA2027683C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00135Oversleeves mounted on the endoscope prior to insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/317Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for bones or joints, e.g. osteoscopes, arthroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs

Abstract

An arthroscope cannula including inner and outer intimately engaged concentric tubes with the inner tube having a longitudinally extending wall depression defining, in conjunction with the outer tube, a pressure passage. The inner tube receives the scope which is restrained therein by the wall depression to define an inflow fluid passage. The outer tube is selectively removable from about the inner tube with both tubes mounting on and projecting from a flow controlling and directing bridge assembly.

Description

202"~0~~
I 'Pi t l a . PRESSURE SENSING SCflP'E C'ANNLJI~
~nventcrs . 3erbert D. Marcus, Allen ~i. DeSatnick and Paul Alexander Torrie BAC3GBCUND OF T:-~E T21VL~"'~I'Z'ION
'''he present invention is broadly concerned with cannula devices, and more particularly relates to cannula assemblies for use in arthroscopy or similar medical or surgical procedures wherein the sensing of pressure in the body joint or at the site of the procedure is a factor.

U.S. patent Nos. 4,650,462 and 4,820,265, are directed to equipment for use in arthroscopic procedures, which procedures are generally described in the patents. Such procedures have resulted in the development of number of special purpose cannulas for inflow and outflow of fluid, as well as far pressure sensing in the joint, including:

1. A dedicated pressure sensing cannula which is inserted into the joint in the manner of a ' f large hypodermic needle, and connected to a 1 ~
J n Q m ~
n s m ~
J m ' 3 a = ~
y s v ~
x ~

o ~ Q
ui x >

c o n N n 41 w J

~

f ~

z.

N_ y 202'~6~3 pressure sensing line, as for e:cample, noted in i the tube set of Patent No. 4,820,265.
2. A dedicated outflow cannula comprising a tube i between 3 mm and 6 mm in Diameter which is i inserted in the joint and connected to the outflow i line. I
3. A combination inflow cannula consisting of concentric tubes With the inner tube approximately 3 mm and the outer tube approximately 4 mm in diameter. A small annulus is defined between the tubes which is used to sense the fluid pressure in the joint. The larger inside diameter of the inner tube carries the inflow from the input tube of the pump.
4. A combination outflow cannula which is similar to the combination inflow cannula except that the inner tube carries the outflow from the joint z while the annulus senses the pressure.
N r N
x ° W°v N
I
a a In an arthroscopic procedure, there is always at least o s z r I N
one additional cannula involved, the arthroscope cannula in i&~sA n w k~
~HW=_ 2 VI a '' ~
Z
O
N_ W
O

~uz~~~~
which the scope or viewing instrument is positioned. This cannu'_a will normally incorporate means for fluid I
communication with the joint provided by the space defined I
betwee.~. the outside diameter of the inserted arthroscope and the i~side diameter of the arthroscope cannula tube.
i From the above, it will be recognized that the doctor i i has many choices for setting up the joint for the arthroscopic I
procedu=e. Some of the most common are: i 1. Inflow through the arthroscope cannula, pressure sensing by a dedicated pressure sensing cannula, and outflow by a dedicated outflow cannula.
2. Inflow and pressure sensing through a combination inflow cannula, and outflow through the arthroscope cannula.
3. Inflow through the arthroscope cannula, and outflow and pressure sensing through a combination outflow cannula.
W
z W
U
a ;N Methods 2 and 3 above are the ones most favored by Y ° a n ~_" doctors since only two incisions are required, as opposed to a ~ a m v O a > 2 n m a a oW ~o;~~ three incisions for method 1. A desirable alternative to o ; a =' n m a w a n N a W z m 2 =
o N
z z m 202~6~3 methods 2 and 3, recognized in the development of the present I
i invention, would be the incorporation of pressure sensing in j an arthrosco a cannula. Onl two p y portals or incisions would I be required, with inflow and pressure sensing in the t arthroscope cannula, and outflow using a dedicated outflow i cannula. This has a big safety advantage since both pressure I ' sensing and inflow occur together. The same safety advantage is gresent in method 2 above, however, suction may be required to assist outflow.
An initial proposal was to use concentric tubes with an annular passage provided therebetween in the manner of the combination inflow and outflow cannulas. As far as the fluid control system was concerned, the cannula was acceptable.
However, because of its manner of construction, with the spaced concentric tubes, a little over 1 millimeter was added to the diameter of the arthroscope cannula. This was considered undesirable and unacceptable to the doctors/users of the device. Thus the problem still remained as to how to provide for acceptable pressure sensing utilizing the W
arthroscope cannula.
W
s a a ~. N
Y ~ ~ a U W "~
a ~ z N
m 3 a m a m m ~ a '~° o z °~i,a,='~e a S W a Ul N y~j =
111 r ~ J
~ a W
Z
W

SUMMARY OF THE INVENTION
The present invention provides for use in receiving and positioning a medical instrument during a surgical procedure, a pressure sensing scope cannula comprising a bridge assembly, a pair of elongate concentric inner and outer hollow tubes defining a longitudinal axis along their lengths, said inner tube including a proximal end portion fixed to said bridge assembly and a forward end adapted for reception within the body of a patient, said inner tube defining a hollow interior for receiving and guiding a medical instrument introduced therethrough, a linear depression in said inner tube comprising a minor portion of the circumference of said inner tube and extending longitudinally therealong proximally from the forward end of the inner tube, said inner tube forming a fluid passage, a fluid port in said bridge assembly communicating with the fluid passage of said inner tube at the proximal end portion of the inner tube, said outer tube being slidably received over said inner tube and, other than for the linear depression in said inner tube, being in fluid-tight relation therewith, said outer tube overlying said depression and defining therewith a peripherally closed pressure passage independent of said inner tube fluid passage, said bridge assembly including a pressure port communicating with the pressure passage, said linear depression forming a lateral restraint within said inner tube for laterally positioning and retaining a received medical instrument in said inner tube diametrically opposed from said depression with said fluid passage within said inner tube being defined about the received medical instrument and principally adjacent said depression and said pressure passage.
The present invention also provides in an arthroscopic cannula, a tube assembly including concentric inner and outer tubes defining a longitudinal axis along their lengths, said inner tube being adapted to receive a scope therethrough and define a longitudinal inflow fluid passage outward of the scope and within said inner tube, and a pressure sensing passage defined longitudinally between said inner and outer tubes independent of said inflow fluid passage, said pressure sensing passage being defined by a longitudinal depression in said inner tube said depression extending linearly along said inner tube and being of an arcuate width comprising a minor portion of the circumference of said inner tube, said inner and outer tubes, other than for said depression, being in peripheral fluid-tight engagement, said inner and outer tubes having tapered forward ends defining a forwardmost tip portion on each tube, said tip portions being radially aligned and adjacent each other, said pressure sensing passage being aligned between, extending to and opening forwardly through said forwardmost tip portions.
The arthroscope cannula of the present invention provides a pressure sensing channel therein without increasing the overall diameter of the cannula tube assembly. In other words, notwithstanding the incorporation of a pressure sensing channel in an arthroscope cannula, a desired overall tube diameter e.g. of approximately 5 mm can be maintained. The resultant cannula is within acceptable diameter parameters, allows use of only two incisions in the actual medical procedure, and incorporates the significant safety advantage of pressure sensing and inflow occurring together.
Basically, the preferred pressure sensing scope cannula of the invention provides that each of the concentric inner and outer tubes, has a wall thickness of approximately 1/4 mm or .010 to .012 inches, which is in turn approximately one half of the wall thickness of a conventional arthroscope cannula. The concentric tubes are sized to engage, one within 5a the other, without space therebetween, and with a tolerance sufficient only to allow for telescoping engagement of the outer tube over the inner tube.
5b 2~2'~6~3 Tn order to provide the fluid path fox pressure sensing, the wall of the inner tube, for substantially the full effective length thereof rearward from the forward or i leading end, is inwardly dimpled or depressed to a depth of approximately .025 inches or .635 mm along a narrow arc approximately .090 inches or 2.29 mm wide. This defines a fluid pressure receiving channel comprising a linear flow passage between and along the otherwise intimately engaged inner and outer tubes. The depth of the dimpling is equal to the height of the arc thereover and is formed without distortion of the circular configuration of the inner tube.
The pressure channel is formed without an increase in the overall external diameter of the cannula tube assembly. The arthroscope is in turn generally restrained or retained in position in the inner tube by the longitudinal inwardly directed dimple or depression whereby considerable fluid inflow area is provided about the scope.

In addition to incorporating the pressure sensing channel with no increase in overall diameter, there is also no W

W decrease in the structural strength of the cannula and no U

; significant variance in the size of the inflow passage.

Y N

a ~_" Additional advantages residing in the utilization of s m m ~ a o 'aSz a ~
o o p two separate tubes in~ the formation of the scope cannula a ;~

W ~o 01 H
N

3 ~
z W

m ~
o 6 W
N a ~
'~Z

a a z o N_ z m ~o~~s~~
include convenient disassembly for cleaning, particularly in the restrictive area of the pressure sensing passage. Tf the i pressure sensing passage were formed by an internal rib or partition, adequate cleaning thereof would be substantially impossible. A further advantage of the separab:ility of the i j tubes is the manner of insertion of the cannula. In other I
j words, the outer tube can be inserted into the joint capsule using a round obturator therein for smooth and easy insertion.
The obturator can then be removed and the inner tube inserted.
Additional objects and advantages of the invention will become apparent from the following detailed discussion of the construction and manner of use of the pressure sensing scope cannula with specific reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is an elevation view of the arthroscope cannula with portions broken away for purposes of W
w illustration;
x a y Figure 2 is an enlarged cross-sectional view, with N
Y ~ n N
portions in elevation, of the cannula taken substantially on a plane passing along line 2-2 in Figure 1;
o ui ~ o > ~ n '~ 0 Z e1 3 W U u. ~ n Ul N y~ 2 h! ~ '1 J
F' a Q
N_ Z
Z
W

202'~6~3 i Figure 3 is an elevation view, partially in section, i l illustrating the outer tune disengaged and forwardly shifted;
Figure 4 is an enlarged cross-sectional view taken substantially on a plane passing along line 4-4 in Figure 1 III
through the concentric cannula tubes and with a scope schematically positioned therein; and Figure 5 is a perspective detail or" the telescope inner and outer tubes with the defined pressure passage.
DESCRIPTION OF PREFERRED EMBODIMENT
s v The pressure sensing scope'eannula 10 includes a bridge assembly 12 and a tube assembly 14 in fluid communication with the bridge assembly and forwardly extending therefrom for selective reception within the body of a patient.
The bridge assembly 12 includes an elongate cylindrical fixed bridge 16 with a central bore 18 W
w longitudinally therethrough. An elongate sleeve-like rotating U
d '' bridge 20 is closely received about the fixed bridge 16 along N

a =_" a major portion of the length thereof, forward from the rear W J ~ ~ < n a ~ z n ~. a '° o oW ~o;~p or proximal end. immediate forward of the rotating bridge 20, m ~ ~ ~ n w a W z mo~~d v z =

N_ Z
W
O

2 ~e'~ ~' 8 :~
the fined bridge includes a radially enlarge leading end i portion 22 defining a forwardly opening cylindrical chamber 24 of a substantially greater internal diameter than the internal diameter of the bore 18. This leading end portion mounts the tube assembly 14 and also defines an abutment to j longitudinally position the rotating bridge 20 on the fixed bridge 16.
The rotating bridge 20 includes a pair of rear and i forward longitudinally spaced openings 26 and 28 therein, and a pair of fluid lines 30 and 32 engaged within the openings 26 and 28, for example by threading therein in a fluid-tight manner. The line 30, provided with a flow-controlling valve 34 with an operating handle, is adapted to couple to an appropriate source of fluid and constitute an inflow line.
The line 32 is adapted to communicate with apgropriate pressure sensing means and constitutes a pressure sensing line.
Each of the openings 26 and 28 in the rotating bridge 20, in at least one rotated position thereof, aligns with a w port or opening 36, radially throughthe fixed bridge x a ; and into communicationwith the bore therethrough.
18 An N
Y v a n a ~_" annular recess 40, is defined in fixed bridge in 42 the a a a ~
o >
z O ,~
a m alignment with each the ports 36, whereby fluid oW of 38 o>I

F A
H m Z

m a w o ut a W x W
~

o p a Z
O

N

Z

W
D

i I
communication is maintained between each of the lines 30 and 32 and the interior of the bore 18 regardless of the rotational position of the rotating bridge 20. In this manner, adjustments as desired may be made in the alignment of the fluid lines 30 and 32. Appropriate annular elastomer seals 44 are provic~d to the opposite sides of the ports 36, 38 and associated recesses 40, 42 to preclude fluid leakage and provide for fractionally restrictive rotation of the rotating bridge 20 about the fixed bridge 16. The seals 44 also provide for a retention of the rotating bridge in any rotated adjusted position until manually moved therefrom.
The forwardly extending tube assembly 14 includes an elongate hollow cylindrical inner tube 46 having a flared proximal or rear end 48. The inner tube 46 is longitudinally received through the fixed bridge bore 18 inwardly through the proximal end thereof with the proximal end 48 of the tube 46 seating and sealing against an appropriate annular seat 50 defined within the proximal end of the bore 18 immediately rearward of the rearmost port or ports 36.
The inner tube m W

W will in turn by retained within the fixed bridge by an end a U
b '~ plug 52 mounted immediately rearward thereof and in engagement ' y N
Y a Wv with the proximal end of the tube 46. As desired, the end W J
~
~
<
L
y 2 - plug can be mounted by threaded engagement within the bore 18 >

IJ n F n O

~
m i ~ n a W

W
u .
~

W ~ 10 ~
a a O

N_ Z
Z

W
O

rear;~ar3 of the enlarged and 48 of the tube 46, the bore, at ' i the rear end thereof, being appropriately enlarged to accommodate 'the enlarged tube end 48 and the threaded shank ;
portion of the end plug 52. The end plug 52 will also incorporate an annular flange 54 which, upon a mounting of the n i end plug 52, engages against the proximal or rear end of the I
rotating bridge 20 for a longitudinal retention of the bridge. I, i The end plug 52 includes a central bore 56 therethrough aligned with the bore 18 for reception of an arthroscope or like medical instrument 58 as shall be referred to in greater detail subsequently. The rear portion of the plug bore 56 will be appropriately tapered or configured to conform to the mounting end of the scope 58 which in turn will be releasably retained by an appropriate rotatable lock assembly 60 of conventional construction.
The inner tube46, at the proximal end portion thereof immediately forward the mounting end 48, includes at of least one lateral opening therein alignable with a rotating bridge rear port 36. Opposed or multiple openings 62 can be W

y provided r alignmentwith an equal number of ports 36.
fo As a a ~ will be app reciated, he communication will be maintained t N
x ~
a n a throughout all rotatedpositions of the rotating bridge a a O
o >
z a ,~ a ow ~ ~ relative the fixed bridge 16 through the annual recess o>~ to 40.

J ~n n b 2 O r w a ~ a n W Z
W o '' a 's t -O

N

W

O

i i 2tl27683 The inner tube 46, =orward of the openings 62, and between the inflow line ports 36 and the pressure line ports 38 forward thereof, is cylindrically sealed to the bore 18.
The inner tube 46, from the pressure line port 38 to the forward or distal end of the tube 46 is provided with a linearly extending dimple or depression oo approximately .025 inches or .635 mm deep and .090 inches or 2.29 mm wide, which defines a pressure sensing channel in tze otherwise completely cylindrical tube wall. This channel opens forwardly of the distal end of inner tube 46 and, within the fixed bridge 16, communicates directly and solely with the pressure line port 38.
Mounted within the forwardly opening chamber 24 of the enlarged forward portion 22 of the fixed bridge 16 is a seal tube 68 of cylindrical configuration which closely conforms to the cylindrical exterior configuration of the inner tube 46, spanning the depression 66 therein. The seal tube 68 has the rear portion thereof received and adhesively secured within an annular seat 70 within an inner wall 72 of the fixed bridge W immediately forward of the pressure line port 38. The seal s U
' tube 68 extends to approximately midpoint within the chamber N
Y Y
" ~
a "'' 24 and is surrounded by an elastomer seal or seals 74 which "

a v J ~
z o ~ ' i o ~ engage against the forward face of the bridge wall 72.
o ~
;~

W o w ra ~

S a W ~
~
~

W o ~ 12 f N_ T.

2U2'~~83 The tube assembly 14 also includes an outer c~Ilindrical tube 76 approximately 5 mm or .20 inches in diameter concentrically receivable in sliding fluid-tight relationship on the inner tube 46. The channel fornned by the linear inwardly depressed portion 66 of the wall of the inner ' tube 4c defines, with the overlying wall of the outer tube 76, I
I a closed elongate fluid passage 78 for pressure sensing which constitutes a minimal portion of the cross-sectional area of the tube assembly. As will be appreciated, this passage 78 opens through the forward leading end of the cannula 10, or more particularly the tube assembly 14. At its proximal or rear end, the pressure sensing passage 78 communicates directly with the pressure line 32 through the pressure line port 38.
The outer tube 76 is releasably mounted by means of a cylindrical mounting head 80 on and fixedly sealed to the proximal end portion of the tube 76. This mounting head, including a hollow bore 82 therethrough in alignment with the hollow outer tube 76, is telescopically received within the W

W forwardly opening chamber 24 of the leading end portion 22 of U

; the fixed bridge 16 and into sealing engagement with the o a ~
N

a s=" elastomer seals 74 about the tube seal 68. The proximal or WJ~~2_ n ~ d ~ p near end of the mounting head 80 may be peripherally beveled D
~
o ~
;~

w , o 0 30"0 s ~
~
~

,~ 13 ~
W
Z
W;~~

z Z

W

i I as at 84, to facilitate alignment with and introduction into the chamber 24 and for enhanced sealing engagement with the I
seals 74, which, in an obvious manner, expand under pressure I
to effect the desired fluid tight seal. Appropriate lock ' i means, in the nature of a bayonet lock including a radially i i inwardly projecting lug 86 on the chamber wall and I
corresponding right angle slot 88 in the exterior surface oz i the mounting head 80, releasably lock the mounting head 30 in its mounted position. Manipulation of the head 80 relative to the fixed bridge 16 is facilitated by a laterally extending '' pin-like handle 90 on the mounting head sufficiently forward to not interfere With the full extension of the mounting head 80 into the receiving chamber 24. A similar manipulating pin handle 92 may be provided on the leading end portion 22 of the fixed bridge 16. When mounted and sealed, through the elastomer seal 74, the pressure passage 78, extending through seal tube 68, is in fluid communication solely with the pressure line port 38.

Referring specifically to the cross-sectional detail W

W of Figure 4, the tube assembly 14 is. of a size, and utilized x U

a ; in the manner of known arthroscope cannulas insofar as ~

g ~=s longitudinally receiving a scope 58 therethrough and defining ~
a a o o >
z o H <
t7 ~ an inflow passage 94 between the scope and immediate inner oW
~o;~

o W a N N
w Z

m a ~

a <

Z
O

N

Z
Z

W
O

i ~U2'~6~3 tube diameter. In addition thereto, the tube assembly of the invention uniquely provides fox the segregated pressure passage 78 by the expedient of using intimately engaged concentrically telescopic tubes with the inner tube 46 longitudinally recesses a~.org a restricted linear extent i thereof. By defining '-e pressure passage in this manner, and I
I, utilizing wall thicknesses for the inner and outer tubes which are each approximately one half the thickness of the tube wall of a standard arthroscope cannula, the outside diameter of the tube assembly is maintained equivalent to that of the conventional arthroscope cannula. Further, through the intimate engagement of the tubes without space therebetween other than in the pressures passage, 'the structural integrity of the tube assembly is significant and at least equal to that of a single tube arthroscope cannula.
Noting Figure 2, the leading ends of the inner and outer tubes 46 and 76 are tapered rearwardly from forwardmost tip portions of 96 and 98 respectively. These tip portions 96 and 98, in the assembled cannula, are radially adjacent each W
W other with the pressure passage 78 defined therebetween and x a ;N opening through the forwardmost extent of the leading end of Y Y ~ n ~_" the cannula. In other Words, the linear depression in the m J < m < m u0ai_z »
w. o. m D ~
oW ~ o>Ip inner tube 46 is aligned with and opens forwardly through the J w m W a ~ ~ ~

W : ~ 3 15 z =

z z W

~02'~683 'i forwardmost tip portion 96 of inner tube 46. ~'he inner tube tip portion 96 in turn aligns with the forwardmost tip portion ' I
98 of the outer tube. Such an arrangement provides a I
( significant safety feature in that, even if the scope is I

i I partially withdrawn from the joint capsule, the pressure ' I

i sensing passage will still be positioned to sense the pressure j in the joint capsule. If the pressure sensing passage was I

i positioned 180 degrees from the forwardmost tip portions, the sensing passage would be the first thing withdrawn from the joint capsule and would no longer be sensing pressure in the joint capsule even though the cannula is still at least partially operatively engaged therein.

The separability of the tubes is important in allowing for proper cleaning and sterilization of the instrument.
For example, if the outer tube were not removable, it would be impossible to adequately clean the pressure sensing passage.

Further, because of the reparability of the tubes, the outer tube can be inserted into a body joint using a round obturator positioned for smooth and easy insertion. The obturator can W

W then be removed and the inner tube inserted to complete the x a 3 assembly of the cannula.

~

a szh The defined linear depression 66 within the inner tube ".,<"<
a a o >
z ~.' a o p 46 also restrains and generally positions and stabilizes oW, the ~o;~

3 ~ A w 0 ~
3 z W a ~

N a ~ 6 m ~
_ a a Z =
O

_N

z W
D

scope within the inner tube is a manner whereby a stable inflow passage 94 is maintained thereabout. Noting Figure 4, it ~ai:.l be seen that most of the area available for fluid flow in the inflow passage 94 is adjacent the depression 66 and thus adjacent the pressure sensing passage ?8. The passage 94 narrows considerably as it extends circumfeiential away from the depression 66 to the diametrically oppcsed portion of the inner tube 46. This narrowing of the inflow passage is a direct result of the positioning and retention of the scope in substantially tangential contact with the inner surface of the inner tube 46 by the depression 66. Thus, very little flow occurs in this area remote from the pressure sensing passage 78. Such an arrangement and passage' relationship is considered to provide the optimum configuration for safety and efficacy in that the pressure is being measured as close as possible to the point of maximum flow introduction.
Additionally, the relationship between the passages is such whereby the pressure in the joint capsule sensed is concurrently and continuously with flow introduction into the a W

W joint capsule until such time as the leadingend of the x a ; cannula is completely removed from the capsule.
joint Y h a ~
n < "'=" The actual introduction of the scope 58 into the a ~

W a J '~
a o o >
z o w. cannula is effected in a substantially a conventional manner 3w~~u W a 17 ~
~

v Z
O

Z

W
O

20~"~6~3 ' through the rear of the bridge assembly with the scope releasably locked into operative position by the lock assembly i 60. Note the schematic showing of the proximal end of a I
mcunted scope 58 in Figure 2. In mounting the scope, the rear i portion of the bridge assembly bore 18 is sealed as at 100 to i I
?reclude rearward discharge of the inflow fluid and restrict i i ~:ze flow to move forwardly from the inflow line 30 through the ~, i inner tube.
From the foregoing, it will be appreciated that construction of the cannula in the manner described provides for a unique dual tube cannula within a given acceptable outer diameter, with no loss of strength and with only minimal and insignificant loss of tube area, along with the advantages of a practical pressure sensing arthroscope cannula enabling utilization of a single incision for inflow, pressure sensing, and the scope itself.
W
i z x U
N y a 3' N
Y a W°v N
= N
W J ~ A a m V > Z
~ 4. j O
O 4t 1<. O > ( p w N ~ z f Q a i =
m z z m

Claims (10)

1. For use in receiving and positioning a medical instrument during a surgical procedure, a pressure sensing scope cannula comprising a bridge assembly, a pair of elongate concentric inner and outer hollow tubes defining a longitudinal axis along their lengths, said inner tube including a proximal end portion fixed to said bridge assembly and a forward end adapted for reception within the body of a patient, said inner tube defining a hollow interior for receiving and guiding a medical instrument introduced therethrough, a linear depression in said inner tube comprising a minor portion of the circumference of said inner tube and extending longitudinally therealong proximally from the forward end of the inner tube, said inner tube forming a fluid passage, a fluid port in said bridge assembly communicating with the fluid passage of said inner tube at the proximal end portion of the inner tube, said outer tube being slidably received over said inner tube and, other than for the linear depression in said inner tube, being in fluid-tight relation therewith, said outer tube overlying said depression and defining therewith a peripherally closed pressure passage independent of said inner tube fluid passage, said bridge assembly including a pressure port communicating with the pressure passage, said linear depression forming a lateral restraint within said inner tube for laterally positioning and retaining a received medical instrument in said inner tube diametrically opposed from said depression with said fluid passage within said inner tube being defined about the received medical instrument and principally adjacent said depression and said pressure passage.
2. The cannula of claim 1, wherein said outer tube includes a proximal end and a forward end, means at the proximal end of said outer tube for mounting and sealing said outer tube to said bridge assembly, the forward end of the mounted outer tube being generally coextensive with the forward end of the inner tube.
3. The cannula of claim 2, wherein said bridge assembly includes a proximal end and a distal end with a longitudinal bore through said bridge assembly therebetween, said fluid port and said pressure port communicating laterally with said bore, said fluid port being closer to the proximal end of the bridge assembly than said pressure port, said inner tube being received within said bore with the proximal end portion of the inner tube adjacent the fluid port in the bridge assembly, said inner tube, between said fluid port and said pressure port, being sealed to said bore completely about the periphery of the inner tube to preclude fluid passage between the ports.
4. The cannula of claim 3, wherein said linear passage terminates at a proximal end at and in communication with said pressure port.
5. The cannula of claim 4, wherein the means at the proximal end of the outer tube for mounting and sealing the outer tube to the bridge assembly comprises a forwardly opening chamber in said bridge assembly generally coaxial with and in direct communication with said longitudinal bore, and a mounting head on the proximal end of said outer tube telescopically receivable within said chamber, said mounting head including a bore therethrough directly communicating the outer tube with the bridge bore upon a reception of the mounting head in said chamber, and lock means releasably locking said mounting head within said chamber.
6. The cannula of claim 2, wherein the forward ends of said inner and outer tubes are rearwardly tapered and define a forwardmost tip portion on each of said forward ends of said inner and outer tubes, said tip portions being radially aligned and adjacent each other with the pressure passage defined therebetween and opening forwardly therethrough.
7. In an arthroscopic cannula, a tube assembly including concentric inner and outer tubes defining a longitudinal axis along their lengths, said inner tube being adapted to receive a scope therethrough and define a longitudinal inflow fluid passage outward of the scope and within said inner tube, and a pressure sensing passage defined longitudinally between said inner and outer tubes independent of said inflow fluid passage, said pressure sensing passage being defined by a longitudinal depression in said inner tube said depression extending linearly along said inner tube and being of an arcuate width comprising a minor portion of the circumference of said inner tube, said inner and outer tubes, other than for said depression, being in peripheral fluid-tight engagement, said inner and outer tubes having tapered forward ends defining a forwardmost tip portion on each tube, said tip portions being radially aligned and adjacent each other, said pressure sensing passage being aligned between, extending to and opening forwardly through said forwardmost tip portions.
8. The cannula of claim 7, wherein said depression extends into the fluid path within the inner tube and constitutes a means for laterally retaining a scope within the inner tube diametrically opposed to said depression whereby the major area of the fluid path is defined adjacent to said depression and adjacent said pressure sensing passage.
9. The cannula of claim 8, wherein said inner and outer tubes have tapered forward ends defining a forwardmost tip portion on each tube, said tip portions being radially aligned and adjacent each other, said pressure sensing passage being aligned between and opening forwardly through said tip portions.
10. The cannula of claim 8 including means for communicating the fluid passage with a source of inflow fluid, and means for communicating the pressure sensing passage with pressure sensing means.
CA002027683A 1989-11-17 1990-10-15 Pressure sensing scope cannula Expired - Lifetime CA2027683C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US437839 1989-11-17
US07/437,839 US5037386A (en) 1989-11-17 1989-11-17 Pressure sensing scope cannula

Publications (2)

Publication Number Publication Date
CA2027683A1 CA2027683A1 (en) 1991-05-18
CA2027683C true CA2027683C (en) 2001-07-10

Family

ID=23738119

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002027683A Expired - Lifetime CA2027683C (en) 1989-11-17 1990-10-15 Pressure sensing scope cannula

Country Status (5)

Country Link
US (1) US5037386A (en)
JP (1) JP2514174Y2 (en)
CA (1) CA2027683C (en)
DE (1) DE4034143C2 (en)
FR (1) FR2654608B3 (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573504A (en) * 1990-01-26 1996-11-12 C. R. Bard, Inc. Composite irrigation and suction probe and valve
US5743875A (en) * 1991-05-15 1998-04-28 Advanced Cardiovascular Systems, Inc. Catheter shaft with an oblong transverse cross-section
CA2068483A1 (en) * 1991-05-15 1992-11-16 Motasim Mahmoud Sirhan Low profile dilatation catheter
ATE176595T1 (en) * 1991-08-21 1999-02-15 Smith & Nephew Inc FLUID TREATMENT SYSTEM
US5399160A (en) * 1991-10-04 1995-03-21 Minnesota Mining And Manufacturing Company Irrigation tubing set having compliant sections
AU661240B2 (en) * 1991-10-18 1995-07-13 Imagyn Medical, Inc. Apparatus and method for independent movement of an instrument within a linear eversion catheter
WO1993017733A1 (en) * 1992-03-02 1993-09-16 American Surgical Instruments, Inc. Composite irrigation and suction probe
US5290308A (en) * 1992-07-15 1994-03-01 Edward Weck Incorporated Endoscopic instrument
US5403277A (en) * 1993-01-12 1995-04-04 Minnesota Mining And Manufacturing Company Irrigation system with tubing cassette
US5626563A (en) * 1993-01-12 1997-05-06 Minnesota Mining And Manufacturing Company Irrigation system with tubing cassette
US5392765A (en) * 1993-02-11 1995-02-28 Circon Corporation Continuous flow cystoscope
NL9301526A (en) * 1993-09-03 1995-04-03 Cordis Europ Device for hemostasis treatment after catheter surgery.
DE69534065T2 (en) * 1994-12-27 2005-09-15 Advanced Cardiovascular Systems, Inc., Santa Clara CATHETER WITH REINFORCED LONG-SECTION CROSS-SECTION
DE19510707A1 (en) * 1995-03-15 1996-09-19 Uwe Dipl Ing Dey Maintaining cleanliness inside medical working instrument inserted in live body
US5514102A (en) * 1995-05-05 1996-05-07 Zevex Incorporated Pressure monitoring enteral feeding system and method
US6024720A (en) * 1995-07-18 2000-02-15 Aquarius Medical Corporation Fluid management system for arthroscopic surgery
US5800383A (en) * 1996-07-17 1998-09-01 Aquarius Medical Corporation Fluid management system for arthroscopic surgery
US5830180A (en) * 1996-07-17 1998-11-03 Aquarius Medical Corporation Fluid management system for arthroscopic surgery
US5810770A (en) * 1996-12-13 1998-09-22 Stryker Corporation Fluid management pump system for surgical procedures
US6086542A (en) * 1997-07-01 2000-07-11 Linvatec Corporation Pressure sensing input/output scope sheath
NL1006944C2 (en) * 1997-09-04 1999-03-11 Mark Hans Emanuel Surgical endoscopic cutting device.
US6196967B1 (en) 1998-03-18 2001-03-06 Linvatec Corporation Arthroscopic component joining system
US6126592A (en) * 1998-09-12 2000-10-03 Smith & Nephew, Inc. Endoscope cleaning and irrigation sheath
US6558379B1 (en) * 1999-11-18 2003-05-06 Gyrus Medical Limited Electrosurgical system
JP2002169461A (en) * 2000-11-30 2002-06-14 Norio Watanabe Language lesson device
US6478731B2 (en) 2001-02-23 2002-11-12 Linvatec Corporation Endoscope-sheath interface using scope light post
US7226459B2 (en) * 2001-10-26 2007-06-05 Smith & Nephew, Inc. Reciprocating rotary arthroscopic surgical instrument
JP4316252B2 (en) * 2002-02-27 2009-08-19 テルモ株式会社 catheter
US7163524B2 (en) * 2002-02-27 2007-01-16 Terumo Kabushiki Kaisha Catheter
US7150713B2 (en) * 2003-10-16 2006-12-19 Smith & Nephew, Inc. Endoscopic device
EP1523932B1 (en) * 2003-10-17 2006-05-03 Henke-Sass, Wolf GmbH Endoscope
US7500947B2 (en) * 2004-01-29 2009-03-10 Cannonflow, Inc. Atraumatic arthroscopic instrument sheath
US7435214B2 (en) * 2004-01-29 2008-10-14 Cannuflow, Inc. Atraumatic arthroscopic instrument sheath
FR2867054B1 (en) * 2004-03-04 2006-09-15 Future Medical System ENDOSCOPY SYSTEM AND PRESSURE SENSOR CONNECTOR FOR SUCH A SYSTEM
US9661989B2 (en) * 2004-05-28 2017-05-30 U.S. Endoscopy Group, Inc. Overtube assembly
US8062214B2 (en) 2004-08-27 2011-11-22 Smith & Nephew, Inc. Tissue resecting system
US7503893B2 (en) * 2006-02-03 2009-03-17 Cannuflow, Inc. Anti-extravasation sheath and method
US8226548B2 (en) 2007-07-07 2012-07-24 Cannuflow, Inc. Rigid arthroscope system
EP2219533A4 (en) * 2007-12-07 2013-12-18 Zevex Inc Method of inducing transverse motion in langevin type transducers using split electroding of ceramic elements
US8109956B2 (en) * 2008-03-07 2012-02-07 Medtronic Xomed, Inc. Systems and methods for surgical removal of tissue
WO2010022329A1 (en) * 2008-08-22 2010-02-25 Zevex, Inc. Removable adapter for phacoemulsification handpiece having irrigation and aspiration fluid paths
US9155454B2 (en) 2010-09-28 2015-10-13 Smith & Nephew, Inc. Hysteroscopic system
US10631889B2 (en) 2014-12-16 2020-04-28 Covidien Lp Surgical device with incorporated tissue extraction
EP3250105B1 (en) 2015-01-28 2020-11-11 Covidien LP Tissue resection system
WO2016191422A1 (en) 2015-05-26 2016-12-01 Covidien Lp Systems and methods for generating a fluid bearing for an operative procedure
US10804769B2 (en) 2015-06-17 2020-10-13 Covidien Lp Surgical instrument with phase change cooling
WO2016205126A1 (en) 2015-06-17 2016-12-22 Covidien Lp Endoscopic device with drip flange and methods of use thereof for an operative procedure
US10799264B2 (en) 2015-06-18 2020-10-13 Covidien Lp Surgical instrument with suction control
CN108495582B (en) 2015-09-03 2020-10-02 海王星医疗公司 Instrument for advancing an endoscope through the small intestine
US11864735B2 (en) 2016-05-26 2024-01-09 Covidien Lp Continuous flow endoscope
US10299819B2 (en) 2016-07-28 2019-05-28 Covidien Lp Reciprocating rotary surgical cutting device and system for tissue resecting, and method for its use
US10299803B2 (en) 2016-08-04 2019-05-28 Covidien Lp Self-aligning drive coupler
CN110191667B (en) 2016-08-18 2022-06-03 海王星医疗公司 Device and method for enhancing the visual effects of the small intestine
US10772654B2 (en) 2017-03-02 2020-09-15 Covidien Lp Fluid-driven tissue resecting instruments, systems, and methods
WO2019123815A1 (en) * 2017-12-22 2019-06-27 オリンパス株式会社 Insertion device
US10869684B2 (en) 2018-02-13 2020-12-22 Covidien Lp Powered tissue resecting device
US11547815B2 (en) 2018-05-30 2023-01-10 Covidien Lp Systems and methods for measuring and controlling pressure within an internal body cavity
JP2021531111A (en) 2018-07-19 2021-11-18 ネプチューン メディカル インク. Dynamic hardening medical composite structure
US11065147B2 (en) 2018-10-18 2021-07-20 Covidien Lp Devices, systems, and methods for pre-heating fluid to be introduced into a patient during a surgical procedure
US11197710B2 (en) 2018-10-26 2021-12-14 Covidien Lp Tissue resecting device including a blade lock and release mechanism
US11083481B2 (en) 2019-02-22 2021-08-10 Covidien Lp Tissue resecting instrument including an outflow control seal
US11154318B2 (en) 2019-02-22 2021-10-26 Covidien Lp Tissue resecting instrument including an outflow control seal
US10898218B2 (en) 2019-02-25 2021-01-26 Covidien Lp Tissue resecting device including a motor cooling assembly
US10945752B2 (en) 2019-03-20 2021-03-16 Covidien Lp Tissue resecting instrument including a rotation lock feature
US11883058B2 (en) 2019-03-26 2024-01-30 Covidien Lp Jaw members, end effector assemblies, and ultrasonic surgical instruments including the same
US11793392B2 (en) 2019-04-17 2023-10-24 Neptune Medical Inc. External working channels
US11553977B2 (en) 2019-05-29 2023-01-17 Covidien Lp Hysteroscopy systems and methods for managing patient fluid
US11890237B2 (en) 2019-10-04 2024-02-06 Covidien Lp Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures
US11452806B2 (en) 2019-10-04 2022-09-27 Covidien Lp Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures
US11179172B2 (en) 2019-12-05 2021-11-23 Covidien Lp Tissue resecting instrument
US11376032B2 (en) 2019-12-05 2022-07-05 Covidien Lp Tissue resecting instrument
US11547782B2 (en) 2020-01-31 2023-01-10 Covidien Lp Fluid collecting sheaths for endoscopic devices and systems
US11737777B2 (en) 2020-02-05 2023-08-29 Covidien Lp Tissue resecting instruments
US11317947B2 (en) 2020-02-18 2022-05-03 Covidien Lp Tissue resecting instrument
EP4126095A1 (en) 2020-03-30 2023-02-08 Neptune Medical Inc. Layered walls for rigidizing devices
US11596429B2 (en) 2020-04-20 2023-03-07 Covidien Lp Tissue resecting instrument
US11571233B2 (en) 2020-11-19 2023-02-07 Covidien Lp Tissue removal handpiece with integrated suction
US20230346205A1 (en) 2022-04-27 2023-11-02 Neptune Medical Inc. Multi-lumen port adapter manifold devices and methods of use

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32158A (en) * 1861-04-23 Coal-scuttle
US2038393A (en) * 1933-02-27 1936-04-21 Wappler Frederick Charles Electrodic endoscopic instrument
US3081770A (en) * 1960-09-21 1963-03-19 John M Hunter Surgical instrument
US3610226A (en) * 1968-02-27 1971-10-05 Anthony M Albisser A double lumen cannula for blood sampling
US3850175A (en) * 1972-07-03 1974-11-26 J Lglesias Resectoscope with continuous irrigation
US3850162A (en) * 1972-07-03 1974-11-26 J Iglesias Endoscope with continuous irrigation
US3835842A (en) * 1972-07-03 1974-09-17 J Iglesias Endoscope with continuous irrigation
US3900022A (en) * 1973-12-10 1975-08-19 Jerrold Widran Endoscope with uninterrupted flow purging system
US4132227A (en) * 1974-08-08 1979-01-02 Winter & Ibe Urological endoscope particularly resectoscope
US4160448A (en) * 1977-05-23 1979-07-10 Jackson Richard R Blood pressure measuring catheter
US4180068A (en) * 1978-04-13 1979-12-25 Motion Control, Incorporated Bi-directional flow catheter with retractable trocar/valve structure
US4368348A (en) * 1979-12-21 1983-01-11 Techno-Chemie Kessler & Co. Gmbh Vacuum cleaner hose with an electrical conductor
US4407301A (en) * 1981-01-27 1983-10-04 C. R. Bard, Inc. Disc membrane catheter for performing cystometrograms and urethral profiles
US4423727A (en) * 1981-04-10 1984-01-03 Jerrold Widran Continuous flow urological endoscopic apparatus and method of using same
DE3303181C1 (en) * 1983-01-31 1984-08-16 Techno-Chemie Kessler & Co Gmbh, 6000 Frankfurt Vacuum hose
DE8407894U1 (en) * 1984-03-15 1984-09-06 Richard Wolf Gmbh, 7134 Knittlingen DILATATOR FOR WIDING INPUT CHANNELS OF THE KIDNEY
US4603699A (en) * 1984-11-20 1986-08-05 Himpens Jacques M Apparatus and method for measuring osmotic pressure in situ
US4637389A (en) * 1985-04-08 1987-01-20 Heyden Eugene L Tubular device for intubation
US4710181A (en) * 1985-06-11 1987-12-01 Genus Catheter Technologies, Inc. Variable diameter catheter
US4650462A (en) * 1985-07-29 1987-03-17 Minnesota Mining And Manufacturing Company Irrigation system
US4750902A (en) * 1985-08-28 1988-06-14 Sonomed Technology, Inc. Endoscopic ultrasonic aspirators
AT385890B (en) * 1987-04-13 1988-05-25 Immuno Ag BIOPSY DEVICE FOR OBTAINING TEST SAMPLES AND APPLICATION OF SUBSTANCES IN ONE WORKPROCESS
US4795439A (en) * 1986-06-06 1989-01-03 Edward Weck Incorporated Spiral multi-lumen catheter
US4820265A (en) * 1986-12-16 1989-04-11 Minnesota Mining And Manufacturing Company Tubing set
US4769018A (en) * 1987-07-15 1988-09-06 Storz Instrument Company Cannula assembly
US4904246A (en) * 1988-07-19 1990-02-27 Snyder Laboratories, Inc. Cannula assembly
US4954129A (en) * 1988-07-25 1990-09-04 Abbott Laboratories Hydrodynamic clot flushing
US4955375A (en) * 1989-01-23 1990-09-11 Ricardo Martinez Endotracheal tube with channel for delivering drugs
US4973321A (en) * 1989-03-17 1990-11-27 Michelson Gary K Cannula for an arthroscope

Also Published As

Publication number Publication date
DE4034143A1 (en) 1991-05-23
FR2654608A3 (en) 1991-05-24
DE4034143C2 (en) 2000-11-30
JPH0373157U (en) 1991-07-23
JP2514174Y2 (en) 1996-10-16
FR2654608B3 (en) 1991-10-11
US5037386A (en) 1991-08-06
CA2027683A1 (en) 1991-05-18

Similar Documents

Publication Publication Date Title
CA2027683C (en) Pressure sensing scope cannula
CA1308619C (en) Gas insufflation needle with instrument port
US7329233B2 (en) Surgical system for laparoscopic surgery
EP0820319B1 (en) Veress needle and cannula assembly
US4538594A (en) Rectoscope
US6086542A (en) Pressure sensing input/output scope sheath
EP1707136B1 (en) Angled connection between an obturator tip and an obturator shaft
CA2107309C (en) Percutaneous catheter introducer
US5383859A (en) Rotatable laparoscopic puncturing instrument
CN110840528B (en) Multi-lumen tube set for gas circulation system
US20170156755A1 (en) Devices, systems, and methods for performing endoscopic surgical procedures
US20030050603A1 (en) Cannula that provides bi-directional fluid flow that is regulated by a single valve
US5573504A (en) Composite irrigation and suction probe and valve
US20150196722A1 (en) System having multiple pneumatically sealed trocars
CA2196581A1 (en) Multiluminal endoscopic portal
WO1996001132A1 (en) High flow insufflation instrument for laparoscopic surgery
EP1707137B1 (en) Two part obturator assembly
US20100324486A1 (en) Surgical apparatus with annular penetrator
EP1799284B1 (en) Surgical system for laparoscopic surgery

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry