CA1339082C - Directly compressible sustained release excipient - Google Patents

Directly compressible sustained release excipient

Info

Publication number
CA1339082C
CA1339082C CA000611700A CA611700A CA1339082C CA 1339082 C CA1339082 C CA 1339082C CA 000611700 A CA000611700 A CA 000611700A CA 611700 A CA611700 A CA 611700A CA 1339082 C CA1339082 C CA 1339082C
Authority
CA
Canada
Prior art keywords
gum
granulation
therapeutically active
percent
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000611700A
Other languages
French (fr)
Inventor
Anand R. Baichwal
John N. Staniforth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penwest Pharmaceuticals Co
Original Assignee
Mendell Edward Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22930376&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA1339082(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mendell Edward Co Inc filed Critical Mendell Edward Co Inc
Application granted granted Critical
Publication of CA1339082C publication Critical patent/CA1339082C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates

Abstract

A free-flowing directly compressible granulation useful as a slow release pharmaceutical excipient is disclosed. The excipient includes a hydrodrophilic matrix which includes a heteropolysaccharide and a polysaccharide material capable of cross-linking the heteropolysaccharide, and an inert diluent.

Description

~339082 8U8TAT~n ~T~E EXCIPIENT
FIE~D OF THE l~.v~..ION
The present invention relates to a free flowing, directly compressible granulation forming a sustained release pharmaceutical excipient product which can be blended with a wide range of therapeutically active medicaments and tableted.
RAC~ROUND OF T~E l~.V ~.,lON
Many attempts have been made in the pharmaceutical art to provide a method by which therapeutically active medicaments can be directly tableted or mixed with a direct compression vehicle and thereafter directly tableted.
Very few therapeutically active medicaments can be directly tableted due to unacceptable flow characteristics and compressibility factors of the crystalline or powdered medicament, and also due to the small amounts of medicament needed to provide the desired effect. Therefore, it is a common practice to 13~9082 use an inert ingredient, i.e., excipients, diluents, fillers, binders and the like, such that the combination of the same with the medicament provides a material which can be directly compressed into tablets. In order to provide a directly compressible product, these excipients must have certain physical properties, including flowability, sufficient particle size distribution , binding ability, acceptable bulk and tap densities, and acceptable dissolution properties in order to release the medicament upon oral administration.
U.S. Patent No. 3,639,169 (Broeg et al.) discloses one such direct compression vehicle for a therapeutically active medicament which consists of an insoluble or soluble diluent such as lactose dispersed in a matrix of a hydrophilic hydratable high polymer such as hydrophilic polysaccharides, hydrocolloids or proteinaceous materials. The polymer, diluent and water are mixed and the resulting dispersion is dried, forming a film. The cooled film is fragmented, ground to the desired particle size and then blended with a desired medicament.
In another method disclosed in U.S. 3,079,303 (Raff et al.), a granular excipient for making tablets is prepared by spray drying a slurry of 50-98% filler, 1-50% disintegrant, and 1-50% binder. A medicament is then added to the excipient and the finished product is tableted.
It has become desirable to provide pharmaceutical formulations which utilize slow release profiles, an ~ 1339082 objective not contemplated in Broeg et al., Raff et al.
or other similar prior art. The advantages of slow release products are well known in the pharmaceutical field and include the ability to maintain a desired blood level over a longer period of time while increasing patient compliance by reducing the number of administrations necessary to achieve the same.
Slow release excipients have been developed which attain their goals by a wide variety of methods. For instance, U.S. Patent No. 3,629,393 (Nakamoto) utilizes a three-component system to provide slow release tablets in which granules of an active ingredient with a hydrophobic salt of a fatty acid and a polymer are combined with granules of a hydrocolloid and a carrier and granules of a carrier and an active or a buffering agent and then directly compressed into tablets. U.S.
Patent No. 3,728,445 (Bardani) discloses slow release tablets formed by mixing an active ingredient with a solid sugar excipient, granulating the same by moistening with a cellulose acetate phthalate solution, evaporating the solvent, recovering the granules and compressing under high pressure. These disclosures concentrate their attention to the type and combination of polymers and/or gums used, and processes for mixing the same, and therefore have not provided a directly compressible form of gums/polymers and adjuvants which can be used for a wide range of medicaments.
Other slow release excipients are disclosed in the prior art which are directed to particular therapeutically active medicaments.

In one such disclosure, U.S. Patent No, 3,456,049 (Hotko et al.), a slow release benzothiadiazine diuretic tablets are prepared by mixing a fatty substance such as hydrogenated vegetable oil, alginic acid, a granulating liquid, a potassium salt and the benzothiadiazine. The wet mass is screened, dried, and then compressed into tablets. Similarly, U.S. Patent No. 4,692,337 (Ukigaya et al.) provides a slow release excipient for theophylline which utilizes 5-200 parts of ethyl cellulose for each 100 parts theophylline, and optionally contains a filler such as lactose or a lubricant. The ingredients are mixed and compression molded into tablets. In yet another example, U.S.
Patent No. 4,308,251 (Dunn et al.), a sustained release aspirin formulation in which 0.8-1.6 percent of a release controlling agent (cellulose acetate phthalate) and 1.0-7.5 percent of an erosion-promoting agent (corn starch) by weight per tablet. A wet granular mass is formed, dried, reduced in particle size and compressed into tablets.

~ 1339082 More recently, a great deal of attention in the pharmaceutical field has turned to the use of various hydrocolloid materials such as hydroxypropylmethyl cellulose in providing a slow release matrix for a variety of medicaments.
For example, U.S. Patent No. 4,389.393 (Schor et al.) describes a slow release carrier base material of one or more hydroxypropylmethyl celluloses and up to 30%
by weight of a mixture of methylcellulose, sodium carboxymethylcellulose and/or cellulose either which can be mixed with a medicament and other needed ingredients such as binders, lubricants, etc. and then tableted. At least one of the hydroxypropylmethyl celluloses must have a methoxy content of 16-24% by weight, a hydroxypropyl content of 4-32% by weight, and a number average molecular weight of at least 50,000. The carrier base constitutes less than about one third of the weight of the solid unit dosage form.
It is acknowledged in Schor et al. that in order to make tablets using this carrier base, other ingredients which are conventional in tablet making must necessarily be included, such as binders, fillers, disintegrating agents and the like. Only the completed mixture, which includes these additional ingredients, possess sufficient properties to produce tablets having the necessary hardness and low level of friability. Thus, the carrier base of the Schor et al. disclosure is not directed to the tableting aspects.
U.S. Patent No. 4,704,285 (Alderman) discloses solid slow release tablets containing 5-90%

133!3082 hydroxypropyl cellulose ether, 5-75% of an optional additional hydrophilic colloid such as hydroxypropylmethyl cellulose, an effective amount of an active medicament, and optional binders, lubricants, glidants, fillers, etc. The hydroxypropyl cellulose ether is in the form of a finely sized powder and provides a longer release pattern than identical compositions having coarser particles. However, Alderman acknowledges the necessity of the additional excipients in order to form an acceptable solid tablet, (i.e. fillers, binders, lubricants and glidants). In preferred embodiments, these excipients comprise from 63.5-94% of the tablet.
The carrier bases which provide the slow release profiles in these disclosures can only be compressed into a tablet or a solid dosage form with the aid of other conventional tableting adjuvants such as binders and the like, and therefore contribute only to the slow release aspect of the final solid unit dosage form and not to the tableting aspects. In other words, in each of these disclosures it is necessary for to first determine the physical properties of the active medicament to be tableted and thereafter proceed through a series of trial and error experiments in order to determine the optimal amount of gums/polymers and other adjuvants to produce the right formulation which is free flowing and which can be compressed to a slow release solid dosage unit. This procedure is time intensive and costly.
Similarly, slow release excipients disclosed to date which incorporate virtually any synthetic polymer such as hydroxypropylmethylcellulose, methyl cellulose, polyvinylpyrollidone, and any natural gum such as accacia, tragacanth, alginates, chitosan, xanthan, pectin and others to date have been mainly directed to the slow release aspect and do not satisfactorily address the tableting aspect. This is because these materials are not available in the necessary physical form that is essential for forming a solid unit dosage form.
The failure of slow release excipients such of the above to be regarded as to their tableting properties is due, for instance, to their necessarily very fine particle size, which property does not lend itself well to flowability. Also, hydroxypropylmethyl cellulose polymers and the like are not particularly good binding agents, a problem which is amplified when other poorly binding excipients or medicaments are included in a formulation. Thus, at higher percentages of such polymers in the final mixture, it becomes difficult if not impossible to provide a good flowing tablet formulation for direct compression without the use of further excipients, and experimentation.
The tableting aspect has been addressed, albeit unsatisfactorily, in U.S. Patent No. 4,590,06~ (Jang).
Jang discloses a dry direct compressed slow release tablet containing from o.o1 to 95 parts by weight of an active ingredient combined with a matrix blend of 1-96 parts of a hydrophobic carbohydrate polymer and 4-99 parts of a wax, and a fatty acid material or neutral ~339082 - llpid. The tablets can be made by dry blendlng the active lngredlent wlth the matrix blend and compresslng. However, whlle thls comblnatlon of lngredlents can provlde a dlrectly compress-lble tablet, the formulator ls stlll required to perform a great deal of experlmentatlon to provlde the correct release proflle for the chosen medlcament, glven the wlde range of wax (used for lts blndlng and compactlng propertles) whlch can be lncluded.
It ls therefore an ob~ect of the present lnventlon to provlde a free-flowlng dlrectly compresslble slow release exclp-lent whlch can be used for a wlde varlety of therapeutlcally actlve medlcaments.
It ls another ob~ect of the present lnventlon to provlde an exclplent havlng the propertles set forth above whlch can be used wlth both relatlvely soluble and relatlvely lnsoluble therapeutlcally actlve medlcaments.
It ls a further ob~ect of the present lnventlon to provlde a free-flowlng dlrectly compresslble slow release exclplent whlch ls relatlvely lnexpenslve to manufacture due to the lack of coatlngs and expenslve equlpment.
SUMMARY OF TH~ INVFNTION
In accordance wlth the above-mentloned ob~ectlves, the present lnventlon provldes a dlrectly compressible, free-flowlng controlled release granulatlon for use as a pharmaceutlcal exclplent comprlslng from about 20 to about 60 percent or more by welght of a hydrophilic materlal comprlslng a heteropolysaccharlde and a polysaccharide materlal capable of cross-llnklng the heteropolysaccharlde ln the presence of aqueous ~- solutlons, and from about 40 to about 80 percent by welght of an lnert pharmaceutlcal flller. Thls exclplent can be mlxed wlth a wlde range of therapeutlcally actlve medlcaments and then dlrectly compressed lnto solld dosage forms such as tablets. The tablets thus formed slowly release the medlcament when lngested and exposed to gastrlc flulds. By varylng the amount of exclplent relatlve to the medlcament, a slow release proflle can be attalned.
The heteropolysaccharlde comprlses from about 10 to about 90 percent, preferably 20 to about 80 percent and the polysaccharide materlal comprlses from about 90 to about 10 percent, preferably 80 to about 20 percent by welght of the hydrophlllc matrlx. Preferably, the ratlo of heteropolysaccharlde to polysaccharlde materlal ls about 1:1.
In preferred embodlments, the heteropolysaccharide comprises xanthan gum or a derlvatlve thereof.
In another preferred embodlment, the polysaccharlde materlal comprlses one or more galactomannans. Most preferably, the polysaccharide material comprlses locust bean gum.
In yet another preferred embodlment, the lnert pharma-ceutlcal flller comprlses a monosaccharlde, a dlsaccharlde, a polyhydrlc alcohol or mlxtures thereof. Preferably the pharmaceutlcal filler comprlses lactose, dextrose, sucrose, sorbltol, xylltol, fructose, mlcrocrystalllne cellulose or mixtures thereof.
The present lnventlon also provldes a controlled release granulation for use as a dlrectly compresslble pharmaceutlcal g ~ 68968-8 ~339082 - exclplent, comprlslng a heteropolysaccharlde or a gum havlng slmllar propertles and a polysaccharlde materlal capable of cross-llnklng the heteropolysaccharlde ln the presence of water, the ratlo of the heteropolysaccharlde to the polysaccharlde materlal belng from about 1 1 to about 4:1, preferably.
In a preferred embodlment a therapeutlcally effectlve lngredlent ls added and the resultlng mlxture ls encapsulated.
Also preferably a therapeutlcally actlve lngredient is added and the resulting mlxture provides a zero order controlled release when provided as a solid dosage form.
The lnventlon provldes a free-flowlng controlled release granulatlon for use as a dlrectly compresslble pharmaceutical excipient, comprislng a heteropolysaccharlde and an effectlve amount of a polysaccharlde cross-llnklng agent capable of cross-llnklng sald heteropolysaccharlde ln aqueous solutlons.
The present lnventlon also provldes a slow release tablet for oral admlnlstratlon comprlslng (I) a hydrophlllc material comprlslng (a) a heteropolysaccharide; or (b) a heteropolysaccharide and a polysaccharide cross-llnking agent capable of cross-llnklng sald heteropolysaccharlde; or (c) a mlxture of (a), (b) and a polysaccharlde gum; and (II) an lnert pharmaceutlcal flller comprlslng up to about 80 percent by welght of the tablet; and (III) an effectlve amount of a therapeutically active lngredlent.
In addltlon, the present lnvention provldes a method for provldlng a unlversal tabletlng exclpient for controlled release of therapeutlcally actlve medlcaments havlng varled solubllitles ln water, comprlslng determlnlng the solublllty of a therapeutlcally actlve medlcament whlch ls to be tableted; mixlng an effectlve amount of sald therapeutlcally actlve medlcament wlth a premanufactured granulated slow-release exclplent comprlslng from about 30 to about 50 percent by welght of a hydrophlllc materlal comprlslng a heteropolysaccharlde and a polysaccharlde capable of cross-llnklng sald heteropolysaccharlde ln the presence of aqueous solutlons such as gastrlc ~ulce, and up to 80 percent by welght (preferably about 50 to about 70 percent by welght) of an lnert pharmaceutlcal flller; providlng a flnal mixed product having a ratio of said therapeutlcally actlve medlcament to sald hydrophlllc materlal of about 1:3-7 depending upon the relative solubility of the medicament, amount of medlcament needed (dose), the desired total welght of the tablet, the compression - lOa -~339082 force used, etc.; and thereafter dlrectly compressing the resultlng blend to form a tablet. Generally, the more soluble the medlcament, the greater the amount of hydrophlllc materlal needed to produce a slow release of the medlcament.
The present lnventlon also provldes a method of uslng a hydrophlllc gum matrlx to obtaln a controlled-release oral solld dosage form comprlslng: preparlng a hydrophlllc gum matrlx comprlslng a xanthan gum and a galactomannan gum capa~le of cross-llnklng sald xanthan gum when exposed to gastrlc fluld, the ratlo of sald xanthan gum to sald galactomannan gum belng from about 1:3 to about 3:1; mlxlng sald hydrophlllc gum matrlx wlth an lnert dlluent selected from the group conslstlng of a monosaccharlde, a dlsaccharlde, a polyhydrlc alcohol, and mlxtures thereof, ln a ratlo of sald lnert dlluent to sald hydrophlllc gum matrlx from about 4:1 to about 0.67:1; comblnlng the mlxture of hydrophlllc gum matrlx and lnert dlluent wlth an effectlve amount of a medlc-ament to render a deslred therapeutlc effect vla dry granulatlon, wet granulatlon or a com~lnatlon of dry and wet granulatlon such that the ratlo of sald medlcament to sald hydrophlllc gum matrlx ls from about 1:3 to a~out 1:7, and compresslng the resultant mlxture to form solld tablets.
The present lnventlon further provldes a method for preparlng a controlled release solld dosage form, comprlslng:
mlxlng a sufflclent amount of a therapeutlcally actlve medlcament to render a deslred therapeutlc effect wlth a granulated slow release exclplent comprlslng from about 30 to about 50 percent by welght a heteropolysaccharlde comprlslng from about 90 to about 10 percent by welght xanthan gum and from about 10 to about 90 ,, ~' ..
lla percent by weight locust bean gum, with from about 50 to about 70 percent by weight of an inert pharmaceutical filler, and preparing a final mixed solid product which, when exposed to gastric fluid, requires at least 3.5 hours to release about 50 percent of said therapeutically active medicament.
The invention further provides a slow release tablet for oral adminstration of a therapeutically active ingredient in the gastrointestlnal tract comprlsing:
from 20 to 60 percent by weight of a hydrophilic material including a controlled release exclpient comprising a hydrophilic gum matrix, which includes a xanthan gum and a galactomannan gum capable of cross-linking said xanthan gum when exposed to gastric fluid, the ratio of said xanthan gum to said galactomannan gum being from 3:1 to 1:3, and an inert pharmaceutical filler, the ratio of said inert pharmaceutical filler to said hydrophilic matrix being from 4:1 to 0.67:1, and an effective amount of a therapeutically active ingredient, the ratio of said therapeutically active ingredient to said hydrophilic gum matrix being 1:10 or less.
The present lnvention yet also provides a controlled release pharmaceutical excipient for use in oral solid dosage forms comprising a heteropolysaccharlde lncludlng xanthan gum, an effective amount of a cross-linking agent capable of cross-linking sald heteropolysaccharlde in aqueous solutions, said cross-linking agent comprlslng locust bean gum, and an inert pharmaceutical filler selected from the group consisting of a ~ ~, 13~9082 ilb monosaccharide, a dlsaccharlde, a polyhydrlc alcohol, and mlxtures th~reof, the ratlo of said inert pharmaceutical filler to said hydrophllic materlal belng from 4 1 to 0.67 1.
Commerclal packages comprlslng ~ranulatlons or exclplents of the lnventlon ln assoclatlon wlth therapeutlcally actlve ln~redlents and instructlons for use in controlled release of the actlve lngredlent comprise another aspect of the inventlon.
BRIEF DESCRIPTION OF THE DRAWINGS
The following drawings are lllustrative of embodiments of the lnvention and are not meant to llmlt the scope of the lnventlon as encompassed by the claims.
FIGURE 1 ls a graphlcal representatlon of the dlssolutlon curves provided by Examples 3-6;
FIGURE 2 is a graphlcal representatlon of the dlssolution curves provided by Examples 16-19;
FIGURE 3 is a graphical representation of the dissolution curves provided by Examples 18, 20 and 28;
FIGURE 4 is a graphical representatlon of the dlssolutlon curve provlded by Example 18 as compared to Comparatlve Example C;
FIGURE 5 ls a graphical representation of the dlssolutlon curve provided by Examples 29-31 (ln dlfferent pH's); and FIGURE 6 is a graphical representation of the viscosltles of Examples 32-36.

llc DETAILED ~ESCRIPTION
The exclpients of the present inventlon have been preoptlmlzed by provldlng an exclplent product which may be mlxed wlth a wlde range of medlcaments and dlrectly compressed lnto solld dosage forms, wlthout the ald of the usual pharmaceutical dry or wet binders, fillers, disintegrants, glidants etc. which must be added in prior art compositions to obtain an acceptable solid dosage form. Thus, the excipients of the present invention substantially overcome the need for conducting further experimentation needed to optimize release characteristics and tableting properties for a particular therapeutically active medicament.
In other words, the present invention provides a novel slow release excipient product which contains a combination of ingredients in preselected proportions to each other which provides a desired slow release profile for a wide variety of drugs. Thus, once the excipient product is admixed with an active medicament (and optional lubricant) in a ratio to the hydrophilic matrix in accordance with the present invention, the resulting mixture may be directly compressed into solid dosage forms.
Xanthan gum, the preferred heteropolysaccharide, is produced by microorganisms, for instance, by fermentation with the organism xanthomonas compestris.
Most preferred is xanthan gum which is a high molecular weight ( 106) heteropolysaccharide. Xanthan gum contains D-glucose, D-mannose, D-glucuronate in the molar ratio of 2.8:2.0:2.0, and is partially acetylated with about 4.7% acetyl. Xanthan gum also includes about 3% pyruvate, which is attached to a single unit D-glucopyromosyl side chain as a ketal. It dissolves in hot or cold water and the viscosity of aqueous solutions of xanthan gum is only slightly affected by changes in ~~ the pH of a solutlon between 1 and 11.
Other preferred heteropolysaccharldes lnclude derlvatlves of xanthan gum, such as deacylated xanthan gum, the carboxymethyl ether, and the propylene glycol ester.
The polysaccharlde materlals used ln the present lnventlon whlch are capable of cross-llnklng wlth the heteropolysaccharlde lnclude the galactomannans, l.e., polysaccharldes whlch are composed solely of mannose and galactose. A possible mechanlsm for the lnteractlon between the galactomannan and the heteropolysaccharlde lnvolves the lnteractlon between the hellcal reglons of the heteropolysaccharlde and the unsubstltuted mannose reglons of the galactomannan. Galactomannans whlch have higher proportlons of unsubstltuted mannose reglons have been found to achleve more lnteractlon wlth the heteropolysaccharlde. Hence, locust bean gum, whlch has a hlgher ratlo of mannose to galactose, ls especlally preferred as compared to other galactomannans such as guar and hydroxypropyl guar.
Other polysaccharlde gums may also be added to the hydrophlllc materlal ln addltlon to the above-mentloned lngredlents. These addltlonal lngredlents comprlse other polysaccharlde gums whlch may or may not cross-llnk wlth the heteropolysaccharldes such as the alglnates, tragacanth, accacla, karaya, agar, pectlns, carrageenan, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyvlnyl pyrrolldone, mixtures thereof, and the llke.
Two steps whlch are generally requlred for gelatlon ~339 082 are the fast hydration of the macromolecules which comprise the hydrophilic material and thereafter the association of the molecules to form gels. Thus, two important properties of a hydrophilic gel matrix which are needed for application in a slow release system are the fast hydration of the system and a matrix having a high gel strength. These two important properties which are necessary to achieve a slow release hydrophilic matrix are r~X;r; zed in the present invention by the particular combination of materials. In particular, heteropolysaccharides such as xanthan gum have excellent water wicking properties which provide fast hydration.
On the other hand, the combination of xanthan gum with polysaccharides materials and the like which are capable of cross-linking the rigid helical ordered structure of the xanthan gum (i.e. with unsubstituted mannose regions in galactomannans) thereby act synergistically to provide a higher than expected viscosity (i.e., high gel strength) of the matrix.
Certain other polysaccharide gums, including alginic acid derivatives, hydrocolloids, etc. also are believed to act synergistically with xanthan gum to produce matrices having high gel strength. The combination of xanthan gum with locust bean gum with or without the other polysaccharide gums is especially preferred. However, the combination of any polysaccharide gums known to produce a synergistic effect when exposed to aqueous solutions may be used in accordance with the present invention. By synergistic effect it is meant that the combination of two or more 133gO8~

polysaccharide gums produce a higher viscosity and/or faster hydration than that which would be expected by either of the gums alone. One example of a combination of polysaccharide gums which has been reported to exhibit such synergism in food products is kappa carrageenan and a galactomannan such as guar gum and/or locust bean gum. Additionally, the combination of propylene glycol alginate and sodium carboxymethylcellulose has also been reported to exhibit a synergistic effect as a stabilizer in fruit juices in U.S. Patent No. 4,433,000. This list is not meant to be exclusive, and many other synergistic combinations will be readily apparent to those skilled in the art.
Mixtures of xanthan gum and locust bean gum in a ratio from about 20:1 to about 1:10 are disclosed in U.S. Patent No. 3,726,690 (Schuppner) as being useful to minimize serum separation in amounts of 0.2 - 0.6% by weight of acidified food products. In addition, mixtures of xanthan gum/locust bean gum are commercially available as Lygomme H96 from Satia and are recommended for uses such as syrup thickening, suspension of active components and emulsion stabilization. However, there has been no recognition in the art that granulations of xanthan gum, locust bean gum and an inert diluent can be mixed with an active medicament and thereafter directly compressed to form slow release tablets.
In the present invention it has been discovered that the slow release properties of the tablets are optimized when the ratio of xanthan gum to polysaccharide material (i.e., locust bean gum, etc.) is about 1:1, although xanthan gum in an amount of from about 20 to about 80 percent or more by weight of the hydrophilic material provides an acceptable slow release product.
Upon oral ingestion and contact with gastric fluid, the slow release tablets prepared according to the present invention swell and gel to form a hydrophilic gel matrix from which the drug is released. The swelling of the matrix causes a reduction in the bulk density of the tablet and provides the buoyancy necessary to allow the gel mass to float on the stomach contents to provide a slow delivery of the medicament.
The matrix, the size of which is dependent upon the size of the original tablet, can swell considerably and become obstructed near the opening to the pylorus.
Since the medicament is dispersed throughout the tablet (and consequently throughout the gel matrix), a constant amount of drug can be released per unit time in vivo by dispersion or erosion of the outer portions of the matrix. This phenomenon is commonly referred to as a zero order release profile or zero order kinetics. The process continues, with the matrix remaining buoyant in the stomach, until substantially all of the medicament is released. The chemistry of certain of the ingredients comprising the excipients of the present invention such as xanthan gum is such that the excipients are considered to be self-buffering agents which are substantially insensitive to the solubility of the medicament and likewise insensitive to the pH
changes along the length of the gastrointestinal tract.

",~ 1339~82 Moreover, the chemistry of the ingredients comprising the excipients of the present invention is believed to be similar to certain known muco adhesive substances such as polycarbophil. Muco adhesive properties are desirable for buccal delivery systems. Thus, it may be possible that the gel system could potentially loosely interact with the mucin in the gastrointestinal tract and thereby provide another mode by which a constant rate of delivery of the medicament is achieved. The above hypothesis is included for discussion purposes only and is not intended to limit the scope of the present invention.
These two phenomenons, i.e., buoyancy of the gel matrix and the mucoadhesive properties discussed above, are possible mechanisms by which the gel matrix of the present invention could interact with the mucin and fluids of the gastrointestinal tract and provide a constant rate of delivery of the medicament. Other mechanisms are possible and therefore this hypothesis is not meant to limit the scope of the present invention.
Any generally accepted soluble or insoluble inert pharmaceutical filler (diluent) material can be used, including sucrose, dextrose, lactose, microcrystalline cellulose, xylitol, fructose, sorbitol, mixtures thereof and the like. However, it is preferred that a soluble pharmaceutical filler such as lactose, dextrose, sucrose, or mixtures thereof be used.
An effective amount of any generally accepted pharmaceutical lubricant, including the calcium or magnesium soaps may be added to the above-mentioned ingredients of the excipient be added at the time the medicament is added, or in any event prior to compression into a solid dosage form. Most preferred is magnesium stearate in an amount of about 0.5-3% by weight of the solid dosage form.
The combination of the hydrophilic material (i.e., a mixture of xanthan gum and locust bean gum) with the inert diluent provides a ready to use product in which a formulator need only blend the desired active medicament and an optional lubricant with the excipient and then compress the mixture to form slow release tablets. The excipient may comprise a physical admix of the gums along with a soluble excipient such as compressible sucrose, lactose or dextrose, although it is preferred to granulate or agglomerate the gums with plain (i.e, crystalline) sucrose, lactose, dextrose, etc. to form an excipient. The granulate form has certain advantages including the fact that it can be optimized for flow and compressibility; it can be tableted, formulated in a capsule, extruded and spheronized with an active medicament to form pellets, etc.
The pharmaceutical excipients prepared in accordance with the present invention are preferably subjected to wet granulation before the medicament is added, although the ingredients of the present excipient can be held together by any agglomeration technique to yield an acceptable excipient product. In this technique, the desired amounts of the heteropolysaccharide, the polysaccharide material, and the inert filler are mixed together and thereafter a molstenlng agent such as water, propylene glycol, glycerol, alcohol or the llke ls added to prepare a molstened mass. Next, the moistened mass ls dryed. The drled mass ls then mllled wlth conventlonal equlpment lnto granules.
Thereafter, the exclplent product ls ready to use. The exclplent ls mlxed ln the deslred proportlon wlth a therapeutlcally actlve medlcament and optlonal lubrlcant. The complete mlxture, ln an amount sufflclent to make a unlform batch of tablets, ls then sub~ected to tabletlng ln a conventlonal production scale tabletlng machlne at normal compresslon pressures, l.e. about 2000-16000 lbs/sq. ln. However, the mlxture should not be compressed to such a degree that there ls subsequent dlfflculty ln lts hydratlon when exposed to gastrlc fluld.
The average partlcle slze of the granulated exclplent of the present lnventlon ranges from about 50 mlcrons to about 400 mlcrons and preferably from about 185 mlcrons to about 250 mlcrons, preferably 265 mlcrons. The partlcle slze of the granulatlon ls not narrowly crltlcal, the lmportant parameter belng that the average partlcle slze of the granules, must permlt the formatlon of a dlrectly compresslble exclplent whlch forms pharmaceutlcally acceptable tablets. The deslred tap and bulk densltles of the granulatlon of the present lnventlon are normally between from about 0.3 to about 0.8 g/ml, wlth an average denslty of from about 0.5 to about 0.7 g/ml. For best results, the tablets formed from the granulatlons of the present lnventlon are from about 6 to about 8 kg hardness. The average flow of the granulations prepared in accordance with the present invention are from about 25 to about 40 g/sec.
The ratio of medicament to the hydrophilic material is based in part upon the relatively solubility of the medicament and the desired rate of release. For instance, the ratio of medicament to hydrophilic material can be adjusted to yield a product wherein 50 percent of the medicament will dissolve in distilled water within about 3.5-5 hours if a 6-8 hour dosing preparation is desired. This is accomplished by providing a ratio of medicament to hydrophilic material of about 1:3-7 for a wide range of medicaments of varying solubilities. However, it would be obvious to one skilled in the art that by varying this proportion and/or the total weight of the tablet, etc., one can achieve different slow release profiles, and may extend the dissolution of some medicaments to about 24 hours.
If the medicament is relatively insoluble, the ratio of medicament to hydrophilic material tends to be smaller, while if the medicament is relatively soluble, the ratio tends to be toward the greater end. By "relatively insoluble", it is meant that the medicament exhibits a solubility which is defined in the United States Pharmacopeia (USP) XXI, page 7 as requiring about 10-30 parts solvent for 1 part solute (described therein as "soluble"). An example of a medicament which is considered relatively insoluble for the purposes of the present invention is propranol hydrochloride, which has a solubility of about 1 gram in 20ml of water or alcohol. By "relatively soluble", it is meant that the medicament exhibits a solubility which is defined in the USP XXI, page 7 as requiring from about 1-10 parts solvent per 1 part solute (described therein as "freely soluble"). An example of a medicament which is considered relatively soluble for the purposes of the present invention is chlorpheniramine maleate, which has a solubility of lg in 4ml of water or lOml of alcohol.
These examples have been chosen because they represent the "extremes" in solubilities of many of the medicaments contemplated for use in the present invention. Examples of other medicaments which have solubilities falling within these approximate parameters may be determined from any number of sources such as the Solubility Reference Table found in the USP XXI, pages 1484-9.
The excipient product of the present invention is also contemplated for use in conjunction with insoluble medicaments. By "insoluble", it is meant that the medicament exhibits a solubility which is defined in the USP XXI, page 7 as requiring from about 30-1000 parts solvent per 1 part solute (described) therein as "sparingly soluble" and "slightly soluble"). In such circumstances, the excipient product will be acting to control the release of the medicament rather than necessarily slowing its release. An example of such an insoluble medicament is theophylline.
As previously mentioned, the excipient product of the present invention can be used in conjunction with a wide range of medicaments. Since precise dosing is not ~ 1339082 very critical in medicaments having a wide therapeutic window, the present invention is especially well-suited for the same. The therapeutic window is commonly defined as the difference between the minimum effective blood concentration and the maximum effective blood concentration and the toxic concentration of the medicament.
Examples of such medicaments which can be used in accordance with the present invention include analgesics, antihistamines decongestants, laxatives, antacids, vitamins, anti-infectives, anti-inflammatories, antibiotics, vasocenstrictors, vasodilators, psychotropics, stimulants including appetite suppressants, diuretics, anti-asthmatics, diuretics, anti-spasmodics, antidiarrheals, expectorants, mucolytics, cough suppressants, hypnotics, psychotropics, sedatives and others.

The following examples illustrate various aspects of the present invention. They are not to be construed to limit the claims in any manner whatsoever.

Example 1 A slow release excipient according to the present invention is prepared as follows. First, 600g of sucrose and 300g of a mixture of xanthan gum and locust bean gum in approximately a 1:1 ratio, all in powder form having an average particle size of less than about 50 microns, are blended for two minutes in a granulator (i.e., a high speed mixer having a combination chopper/impeller). About 125 ml of water is added to the mixture until there is a sharp rise in the power consumed (about 2-3 minutes). The mixed product, which is now in the form of granules, is removed from the granulator and dried in a convection air-oven for 24 hours at a temperature of about 40-60~C. The dried granulation is then passed through a 20 mesh screen.
The product is now ready to be used as a slow release excipient which is suitable for direct compression with any active medicament to form a slow release tablet.
Example 2 Slow release tablets according to the present invention are prepared as follows. The excipient of Example 1 is first blended with chlorpheniramine maleate for 10 minutes in a V-blender. Magnesium stearate is then added as a lubricant and the mixture is blended for an additional 5 minutes. The final composition of the mixture is about 87.5% of the excipient of Example 1, - 12% chlorpheniramine maleate, and 0.5% magnesium stearate by weight.

- . 1339082 The mixture is then compressed on a Stokes RB-2 rotary tablet press with sixteen stations, the target weight of the tablets being 100 mg and the crushing strength about 6-8 kgs.
Example 3-15 Slow release chlorpheniramine maleate tablets are prepared according to the procedures set forth in Examples 1 and 2, except that the excipient formulation is varied such that the amount of hydrophilic material (for purposes of the present examples referred to as "gums") relative to the total amount of excipient is varied from 20 - 50%. In each of Examples 3-15, the gums are xanthan gum/locust bean gum in approximately a 1:1 ratio. In Examples 3-8, the inert diluent is dextrose. In Examples 9-11, the inert diluent is sucrose. The inert diluent in Examples 12 and 13 is lactose, while in Examples 14 and 15 the inert diluent is a 50/50 mixture of lactose and dextrose. In each of Examples 3-15, the total weight of the tablets is lOOmg.
The amount of chlorpheniramine maleate in each of these Examples is 12mg except for Example 8, in which only 8mg of the drug were incorporated.
In addition, comparative examples A and B are prepared. Example A is provided with an excipient comprising 30% hydroxypropylmethyl cellulose (grade K15M, available from Dow Chemical) and 70% dextrose.
Example B as provided with an excipient comprising 30%
hydroxypropylmethyl cellulose (grade K4M, available from Dow Chemical) and 70% dextrose. Comparative Examples A
and B include 12mg chlorpheniramine maleate in 100 mg tablets.
The granules are tested for tap and bulk density.
In addition, the average particle size of the granulations is determined. The results are set forth in Table 1. Thereafter, the tablets produced in Examples 3-15 and comparative examples A and B are tested for dissolution in distilled water in an automated USP dissolution apparatus. The data is represented as the percentage of chlorpheniramine maleate released versus time. The results are provided in Table 2.
As can be seen from the dissolution data provided in Table 2, Examples 4-6, 11, 13 and 15 provide dissolution profiles whereby 50% of the drug dissolves in from about 3.5 - 5.5 hours. Examples 3, 8, 9, 10 and 14, on the other hand, produced dissolution profiles in which 50% of the drug dissolved within 3 hours. The difference in dissolution rates is related to the ratio of drug to the gums (in addition to other criteria, such as the total amount of gums in the tablet, etc.). In particular, dissolution of 50% of the drug in 3.5 - 5.5 hours is accomplished with drug/gums ratios of 1:2.2 -3.8, while the shorter dissolution times are accomplished with a drug/gums ratios of 1:1.5 - 2.2.
The slight overlap is due to the choice of inert diluents. Comparative Examples A and B ~which included only a hydrocolloid as the gum and which did not include the heteropolysaccharide and cross-linking agent of the present invention) only provide a T50 of 1-1.5 hours when utilizing comparable amounts of gum.

Figure 1 is a graphical representation of the dissolution curves of Examples 3-6. As can be seen from the graph, the dissolution curves of Examples 4-6 in which the hydrophilic material (i.e., the gums) comprise from 30-50% of the tablet, are similar, while Example 2 (20% gum) shows a much faster dissolution rate. The dissolution curves obtained when other diluents are used and the percentage of gums in the tablet changed also reflected this result.

~ ~D 0 0 ~ ~ O ~ In ~ ~D ~ O ~D 0 r ~ t~ r ~ 0 ~ ~ ~ m In E~~~~~ .......... .
~1 ~ ~ ~ ~ ~ ~ ~ ~ O ~ ~ o o o o o o o~ 0 ~ ~n ~ r~
m ~ - - - ...........
~1~~ooooooooooooo t) , P~ ~ ~ r ~ 0 ~ r ~ ~ ~
~1 ~ ~ 0 0 0 0 ~ ~ O r~ 0 ~ ~ ~ r~

~ ~ a) 1~ o N

U Ul O ~ . ~ ~ ~ 0 ~ ~ ~
..............................
J~ ~ Ul a) x a a~ ~ , 0,O O\o O\o 0,O O\o O\o O\o O\o O\o O\o O\o O\o 0\~ O\o 0,O
~oooo~oooooooooa) 0\o ~ O
L

r~ ~ O

X
- V.
a) a) a) a) a) a) ~ a) o 1 Vl Vl Vl Vl Vl Vl a) ~ ~ a~ a) vl vl u~ ~ a ~ O O O O O Vl Vl Vl V! V ) ) ~
a ~ o ~ ~ C~ c~ - ~ o n -~ 1 a) 1 ~ L L) ~ ~ ~

Vl Vl Vl a) a) a O '~
a n ~D r 0 ~ o ~ ~ ~ ~ ~7 ~ m X

Chlorpheniramine Maleate Tablets (lOOmq) Dissolution Data (Distilled Water) Example 2hr 4hr 8hr T504 T9o5 3 63.63 85.69 100 1-1.5 3.5-4 4 34.37 51.69 82.61 3.5-4 9-9.5 27.05 43.05 72.74 4.5-510.5-11 6 26.68 40.85 69.16 5-5.510.5-11 7 35.31 52.84 75.43 3-4 10-11 8 39.29 61.64 92.21 2-3 7-8 9 55.87 76.61 96.96 1.5-2 6-6.5 40.15 59.32 84.59 2.5-3 8.5-9 11 26.18 42.52 68.10 4-4.511-11.5 12 41.08 54.56 79.03 3-3.5 9-9.5 13 30.68 45.74 73.26 4.5-510-10.5 14 43.77 68.11 100 2-2.5 6-6.5 27.17 42.10 70.34 5.5 10.5-11 A 59.55 82.44 95.44 1-1.5 5.5-6 B 69.44 95.22 100 1-1.5 2.5-3 4 denotes the time needed for 50~ of the medicament to be released.
5 denotes the time needed for 90~ of the medicament to be released.
Examples 16-19 Slow release propranolol hydrochloride tablets are prepared according to the procedures set forth in Examples 1 and 2, except that the excipient formulation is varied such that the amount of hydrophilic material (referred to as "gums") relative to the total amount of X

~339082 excipient is varied between 40 and 50% and the total weight of the tablets varied from 200-350mg. In each of Examples 16-19, the gums are xanthan gum/locust bean gum in approximately a 1:1 ratio and the amount of propranol hydrochloride is 2Omg. In Example 16, the inert diluent is lactose. In Example 17, the inert diluent is a 50/50 mixture of lactose and dextrose. Finally, in Examples 18 and 19, the inert diluent is dextrose and sucrose, respectively.
The granulations which are produced are tested for tap and bulk density. In addition, the average particle size of the granulations are determined. The results are set forth in Table 3. Thereafter, the tablets produced are tested for dissolution in distilled water in a USP dissolution apparatus which is automated. The data is represented as the percentage of propranol hydrochloride released versus time. The results are provided in Table 4.
As can be seen by the dissolution data provided in Table 4, each of Examples 16-19 provided a dissolution profile in which 50% of the drug is released in 8.5 to 10 hours. Once again, the dissolution rates are related ~339082 -- -~ , tJ .. .. .. ..
, o .
~ s~
a 4~ ~ ~
o ~ V ~

O ~ -~ In ~ ~ ~
OD ~ O O
v ~ a ~ ~, J ~ ~ a) N
O ~
~) V
a) u~
a) 4~ ~
Q ~J

(r a ~ ~ ~ ~ ~ ~ ~
In In ~ O
O~ E~
o 4 ~ O
.,, ~:
~Q o ~ ~ o ~ ~ ~q ~ o\o o\o o\o o\o 3 ,1 o ~ ~ o o o o ' 3 ~ V ~
o\~ ,~
, C~ P~
O
J-a o - ~
o ~ CJ ~ X , o ~1 ~ ,~
o .~ ~ .
~ ~ , o ~1 O ~ ~ ~ ~D
o ~ ~ X

X

-Propranolol HYdrochloride Tablets Dissolution Data (Distilled Water) Example 2hr 4hr 8hr T50 Tgo 16 11.35 19.55 37.55 10 15-15.5 17 13.40 22.05 47.40 8.50 16 18 14.10 22.29 43.12 9-9.5 15-15.5 19 18.40 27.67 45.88 9 15 Figure 2 is a graphical representation of the dissolution curve obtained with Examples 16-19.
Examples 20-28 Slow release propranolol tablets are prepared according to the procedures set forth in examples 1 and 2 which illustrate various aspects of the present invention, including the addition of additional polysaccharide gums to the xanthan/locust bean gum mixture, and variances in the ratio of xanthan gum to locust bean gum. In examples 20-22, the relative percentages of xanthan gum to locust bean gum are about 0/100, 25/75 and 75/25, respectively. In examples 23 and 24, 50% of the hydrophilic matrix is propylene glycol alginate (PGA) and 50% is xanthan gum/locust bean gum in a 1:1 ratio. Examples 25 and 26 are similar to Example 23, except that the propylene glycol alginate is replaced with hydroxypropylmethyl cellulose 15M and lOOM, respectively (both grades commercially available from Dow Chemical). Example 27 is also similar to Example 23, except that the propylene glycol alginate is replaced with sodium alginate. In Example 28, the excipient includes only xanthan gum. In each of Examples 20-28, the inert diluent is dextrose. To the excipient mixture, 2Omg propranolol hydrochloride is added. The tablets produced in each of Examples 20-27 weigh 35Omg.
In Comparative Example C, the excipient is 30%
hydroxypropylmethyl cellulose and 70% dextrose by weight. The tablets of Comparative Example C also weighs 350mg and includes 20mg of propranolol hydrochloride. Table 5 sets forth the gums used in Examples 20-28 and Comparative Example C.
The dissolution of the tablets of Examples 20-28 and Comparative Example C is then tested in distilled _33_ 1 3 39 082 water in an automated USP dissolution apparatus. The results are provided in Table 6.

% Gums in Hydrophilic Material Locust 10Bean Na Example Xanthan Gum PGA HPMC Alginate 23 25 25 50%
24 25 25 50%
- 50%
26 25 25 - 50%
20 27 25 25 - - 50%
28 100%
C - - - 100%

~ ~ o Q ~ O
~ ~ o ~ ~ ~ ~ ~ E~ ') I ~

O 00 ~D N ~ ~1 In a:) ~ ~1 > Ul .IJ ---I V J
~ O
U~L) N
1~ o\~ ,~
> O

0 IJ~ O a) X ,~
C N Q P3 ~ ~1 ~
, a) o a) ~ ~1 o .Y -, O ~ o ~:
~) ~OISl O t~ O OD COU) O E~
~1 ~ ~ O ~ ~1 0 OD 0 0 OD U (~ J_) O ~ ~ ~
. . . . .. ~ O ~ ~ U. X rl ~ ~ Q
0 N 1~0 In ~L ) ~ r~ ~n ~ -~ ~ E I (~ ~
-~ ~ ~ ~ r ~ ~ m u~ O
~ ~ O Q ~) V
c a o ~ ~ ~ -~ a r~ LS~ L~l ~ ~ (J~ 0 0 IS) ~ ~
~ ~ ~1~ ~ ~ ~ ~ ~ t ~ o 0 ~ >
~OO N ~ N O r~ ~ r~ ~ ~ Nr-l -I
~~ r~F ~ a~
C o ~ O~ s~
N t~d~ N ~ r~ N 0Ln I ~U~
~1 ~LOa~ ~)~1 Is) ~ ~I r~) N ~~ X -~
~r U~ N N N N t~ O t~ N~11 [~ NU~ ~ E~ L) a' ~N r~ (~1N IY~~) N ~I Lf) 1) ~~1 ~ ~
U~ 1~ ~ o ~ V
o ~ ~ ~ ~ r~
Oc~ ~ ~- ~- ~- ~- ~- ~- ~- ~- ~- ~- v I Q~
C ~ J r~r~ r~ r~r~ ~1 ~I r~ r~ r~ Q
X L) V ~ ~ U~
~ O 0\o O ~ O ~' O O
U~ r~ ~1 ~ ~1 ,~ ~ U~ C
~1 0 ~1(1 cq.~ O\oO\o0\oO\oO\oO\oO\o O\o O\o0\o ~ N
~:~ O O O O O O O O O 0 ~ U~~1 o I ~1 3 ~ ~ ~
a) o o\O~, ~ 0 ~,y O
-~J ~ X ~ -~
0 r~
r~
u~ a O
X ~ a~
p, ~ ~ u~ 3 Or~ N (~ ~ 0 NN N N N N N N N ~ U~
3 ~1 ~

gum/locust bean gum provides an excipient which both wets quickly and has a high gel strength. The T50 provided by Example 18 is longer than either Example 20 or 28. The Tgo of Example 18 also reflects the improved gel strength obtained by the combination of the gums over xanthan gum alone.
Figure 4 is another graphical representation showing the dissolution curve of Example 18 as compared to Comparative Example C (gum is hydroxypropylmethyl cellulose). This graph shows the synergistic effect of the combination of xanthan gum/locust bean gum as compared to a prior art hydrophilic gel matrix forming agent. One possible explanation for this phenomenon is that hydroxypropylmethyl cellulose does not wet as quickly nor form a gel matrix which is as strong as the gums used in Example 18, and therefore does not provide a sufficient slow release profile.
Examples 29-31 Propranolol hydrochloride tablets are prepared according to the procedures set forth in Examples 1 and 2. The tablets of Examples 29-31 have a total weight of 350mg, of which 20mg is the drug. The excipient -36- 1.~3~ 082 comprises 40% gums (xanthan gum/locust bean gum in a 1:1 ratio) and 60% of an inert diluent (lactose). The drug/gums ratio is about 1:6.5.
In Example 29, the dissolution of the tablets was measured in an aqueous solution having a pH of 6.8. In Example 30, the dissolution of the tablets was measured in distilled water (pH=7). In Example 31, the dissolution of the tablets was measured in an acidic solution having a pH of 2.
The tablets of Examples 29-31 are then tested to determine their dissolution rates in environments having varied pH's (distilled water, pH 2, pH 6.8). The results are shown in Figure 5 which is a graphical representation of the percentage of dissolved drug over time.
As can be seen from Figure 5, the dissolution times of the tablets in pH 6.8 and pH 2 are fairly close, while the dissolution time in unbuffered distilled water does not provide a similar profile.
From the graphical representation, it may be concluded that the dissolution of the medicament (in this case propranolol) does not vary greatly in ionic solutions, _37_ 1 3 39 082 even when the pH varies greatly, due to the relative insensitivity to pH of the excipients of the present invention.

Examples 32-36 Slow release excipients are prepared according to procedures set forth in Example 1. The excipients of Examples 32-36 each include dextrose and xanthan gumtlocust bean gum in a 1:1 ratio. The percentage of gums as compared to the total weight of the excipient in Examples 32-36 are 30%, 40%, 50%, 60% and 70%, respectively. The viscosities of the excipients are then determined at four different RPM's using a #2 spindle on a Brookfield viscometer. The results are shown in Figure 6. As can be seen from the graph, the viscosity increases as the percentage of gum included in the excipient increases.
The preceding theories are offered solely by way of explanation and it is not intended that the invention be limited to this theory.
The examples provided above are not meant to be exclusive. Many other variations of the present invention would be obvious to those skilled in the art, and are contemplated to be within the scope of the appended claims.

Claims (49)

1. A free-flowing, directly compressible controlled release granulation for use as a pharmaceutical excipient, comprising:
from about 20 to about 60 percent by weight of a hydrophilic material comprising a heteropolysaccharide and a polysaccharide material capable of cross-linking said heteropolysaccharide in the presence of aqueous solutions, and from about 40 to about 80 percent by weight of an inert pharmaceutical filler.
2. A free-flowing, directly compressible slow release granulation for use as a pharmaceutical excipient, comprising from about 20 to about 60 percent by weight of a hydrophilic material comprising a heteropolysaccharide and a polysaccharide gum capable of cross-linking said heteropolysaccharide in the presence of aqueous solutions, and from about 40 to about 80 percent by weight of an inert pharmaceutical filler selected from the group consisting of a monosaccharide, a disaccharide, a polyhydric alcohol, and mixtures thereof, the ratio of said inert pharmaceutical filler to said hydrophilic material being from about 4:1 to about 0.67:1.
3. The granulation of claim 1 or 2, wherein said heteropolysaccharide comprises from about 10 to about 90 percent by weight and said polysaccharide material comprises from about 90 to about 10 percent by weight, of said hydrophilic material.
4. The granulation of any one of claims 1 to 3, wherein said heteropolysaccharide comprises xanthan gum or derivatives thereof.
5. The granulation of any one of claims 1 to 3, wherein said polysaccharide material comprises a galactomannan.
6. The granulation of any one of claims 1 to 3, wherein the ratio of said heterpolysaccharide to said polysaccharide gum is about 1:1.
7. The granulation of claim 5, wherein the ratio of said xanthan gum to said galactomannan is about 1:1.
8. The granulation of claim 5, wherein said galactomannan comprises locust bean gum.
9. The granulation of claim 8, wherein said inert pharmaceutical filler comprises a monosaccharide, a disaccharide, a polyhydric alcohol, or mixtures thereof.
10. The granulation of claim 9, wherein said inert pharmaceutical filler comprises lactose, dextrose, sucrose, fructose, microcrystalline cellulose, xylitol, sorbitol or mixtures thereof.
11. The granulation of any one of claims 1 to 10 to which an effective amount of a therapeutically active ingredient is added.
12. The granulation according to any one of claims 1 to 10, wherein a therapeutically active ingredient is added and the resulting mixtures provides a zero order controlled release when provided as a solid dosage form, the ratio of said ingredient to said hydrophilic material being from about 1:3 to about 1:7.
13. The granulation of claim 10, wherein a therapeutically active ingredient is added and the resultant mixture is compressed to form solid tablets, the ratio of said ingredient to said hydrophilic material being from about 1:3 to about 1:7.
14. The granulation of claim 13, wherein at least 3.5 hours are required to release 50 percent of said therapeutically active ingredient.
15. The granulation of claim 1, wherein an effective amount of a therapeutically active ingredient is added and the resultant mixture is compressed to form solid tablets.
16. The granulation of claim 15, wherein at least 3.5 hours are required to release 50 percent of said therapeutically active ingredient.
17. The granulation of claim 12 or 16, wherein the average particle size of said granules is from about 185 to about 250 microns.
18. The granulation according to any one of claims 1 to 10, wherein said hydrophilic material further comprises a second polysaccharide gum.
19. The granulation according to claim 18, wherein said second polysaccharide gum is selected from the group consisting of tragacanth, acacia, karaya, alginates, agar, pectin, guar, hydroxypropyl guar, carrageenan, hydroxy-propylmethyl cellulose, hydroxypropyl cellulose, methyl-cellulose, carboxymethyl cellulose, polyvinyl pyrrolidone, and mixtures of any of the foregoing.
20. The granulation according to claim 18, wherein said second polysaccharide gum comprises propylene glycol alginate.
21. The granulation according to claim 18, wherein said second polysaccharide gum comprises a hydrocolloid, said hydrocolloid comprising up to about 50% by weight of said hydrophilic material.
22. The granulation according to any one of claims 1 to 10, wherein an effective amount of a therapeutically active ingredient is added and the resulting mixture is encapsulated.
23. The granulation according to any one of claims 1 to 10, wherein a therapeutically active ingredient is added and the resulting mixture is encapsulated, the ratio of said ingredient to said hydrophilic material being from about 1:3 to about 1:7.
24. The granulation according to any one of claims 1 to 10, wherein an effective amount of a therapeutically active ingredient is added and the resulting mixture provides a zero order controlled release when provided as a solid dosage form.
25. A free-flowing controlled release granulation for use as a directly compressible pharmaceutical excipient, comprising a heteropolysaccharide and an effective amount of a polysaccharide cross-linking agent capable of cross-linking said heteropolysaccharide in aqueous solutions.
26. The granulation according to claim 25, wherein said heteropolysaccharide comprises xanthan gum and said cross-linking agent comprises locust bean gum in a ratio of about 1:1.
27. The granulation according to claim 25, further comprising an inert pharmaceutical filler.
28. The granulation according to claim 27, wherein an effective amount of a therapeutically active ingredient is added and the resulting mixture provides a zero order controlled release when provided as a solid dosage form.
29. A controlled release tablet for oral administration comprising a directly compressible free-flowing granulation comprising:
(I) from about 20 to about 60 percent by weight of a hydrophilic material comprising:
(a) a heteropolysaccharide; or (b) a heteropolysaccharide and a polysaccharide cross-linking agent capable of cross-linking said heteropolysacchride in the presence of aqueous solutions; or (c) a mixture of (a), (b) and a polysaccharide gum;
and (II) up to about 80 percent of an inert pharmaceutical filler; and (III) an effective amount of a therapeutically active ingredient.
30. The tablet according to claim 29, wherein said heteropolysaccharide comprises xanthan gum, said cross-linking agent comprises a galactomannan, and the ratio of xanthan gum to locust bean gum is about 1:1.
31. The tablet according to claim 29, wherein said polysaccharide gum comprises tragacanth, acacia, karaya, alginates, agar, pectin, guar, hydropropyl guar, carrageenan, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, methylcellulose, carboxymethyl cellulose, polyvinyl pyrrolidone, mixtures of any of the foregoing, or the like.
32. The tablet according to claim 29, wherein the ratio of said active ingredient to said hydrophilic material is from about 1:3 to about 1:7
33. A method for providing a universal tableting granulated excipient which is free-flowing and directly compressible for a controlled release of a relatively soluble or insoluble therapeutically active medicament comprising determining the solubility of a therapeutically active medicament which is to be tableted;
mixing an effective amount of said therapeutically active medicament with a premanufactured granulated slow release excipient comprising from about 30 to about 50 percent by weight of a hydrophilic material comprising a heteropolysaccharide and a polysaccharide capable of cross-linking said heteropolysaccharide in the presence of gastric fluid and from about 50 to about 70 percent by weight of an inert pharmaceutical filler;
providing a final mixed product having a ratio of said therapeutically active medicament to said hydrophilic material of about 1:3-7 and a sufficient amount of said hydrophilic material such that a gel matrix is created when said tablet is exposed to gastric fluid and such that at least 3.5 hours are required for 50 percent of said therapeutically active medicament to be released following exposure to gastric fluid, and thereafter directly compressing the resulting blend to form a tablet.
34. A method for providing a universal tableting granulated excipient which is free-flowing and directly compressible for a controlled release of a relatively soluble or insoluble therapeutically active medicament comprising determining the solubility of a therapeutically active medicament which is to be tableted;
mixing an effective amount of said therapeutically active medicament to render a desired therapeutic effect with a premanufactured granulated slow release excipient comprising from about 30 to about 50 percent by weight of a hydrophilic material comprising from about 90 to about 10 percent by weight of a heteropolysaccharide and from about 10 to about 90 percent by weight of a cross-linking agent capable of cross-linking said heteropolysaccharide in the presence of gastric fluid and from about 50 to about 70 percent by weight of an inert pharmaceutical filler, providing a final mixed product having a ratio of said therapeutically active medicament to said hydrophilic material of about 1:3-7 and a sufficient amount of said hydrophilic material such that a gel matrix is created when said tablet is exposed to gastric fluid and such that at least 3.5 hours are required for 50 percent of said therapeutically active medicament to be released following exposure to gastric fluid, and thereafter directly compressing the resulting blend to form a tablet.
35. The method according to claim 33 or 34, wherein said heteropolysaccharide is xanthan gum and said polysaccharide is locust bean gum in a 1:1 ratio.
36. The method according to claim 35, further comprising providing a tablet wherein said hydrophilic material constitutes at least 20 percent by weight of said tablet.
37. A method of using a hydrophilic gum matrix to obtain a controlled-release oral solid dosage form comprising:

preparing a hydrophilic gum matrix comprising a xanthan gum and a galactomannan gum capable of cross-linking said xanthan gum when exposed to gastric fluid, the ratio of said xanthan gum to said galactomannan gum being from about 1:3 to about 3:1;
mixing said hydrophilic gum matrix with an inert diluent selected from the group consisting of a monosaccharide, a disaccharide, a polyhydric alcohol, and mixtures thereof, in a ratio of said inert diluent to said hydrophilic gum matrix from about 4:1 to about 0.67:1;
combining the mixture of hydrophilic gum matrix and inert diluent with an effective amount of a medicament to render a desired therapeutic effect via dry granulation, wet granulation or a combination of dry and wet granulation such that the ratio of said medicament to said hydrophilic gum matrix is from about 1:3 to about 1:7, and compressing the resultant mixture to form solid tablets.
38. A method for preparing a controlled release solid dosage form, comprising:
mixing a sufficient amount of a therapeutically active medicament to render a desired therapeutic effect with a granulated slow release exclplent comprising from about 30 to about 50 percent by weight a heteropolysaccharide comprising from about 90 to about 10 percent by weight xanthan gum and from about 10 to about 90 percent by weight locust bean gum, with from about 50 to about 70 percent by weight of an inert pharmaceutical filler, and preparing a final mixed solid product which, when exposed to gastric fluid, requires at least 3.5 hours to release about 50 percent of said therapeutically active medicament.
39. The method of claim 38, wherein the ratio of xanthan gum to locust bean gum is from about 1:3 to about 3:1.
40. The method of claim 38, further comprising compressing the final mixed solid product to form solid tablets.
41. A controlled release pharmaceutical explant for use in oral solid dosage forms comprising a heteropolysaccharide including xanthan gum, an effective amount of a cross-linking agent capable of cross-linking said heteropolysaccharide in aqueous solutions, said cross-linking agent, comprising locust bean gum, and an inert pharmaceutical filler selected from the group consisting of a monosaccharide, a disaccharide, a polyhydric alcohol, and mixtures thereof, the ratio of said inert pharmaceutical filler to said hydrophilic material being from 4:1 to 0.67:1.
42. A controlled release pharmaceutical excipient according to claim 41, wherein said heteropolysaccharide comprises xanthan gum and said cross-linking agent comprises locust bean gum in a ratio of about 1:1.
43. A controlled release pharmaceutical excipient according to claim 42, wherein an effective amount of a therapeutically active ingredient is added and the resulting mixture provides a zero order controlled release when provided as a solid dosage form.
44. A slow release tablet for oral administration of a therapeutically active ingredient in the gastrointestinal tract comprising:
from 20 to 60 percent by weight of a hydrophilic material including a controlled release excipient comprising a hydrophilic gum matrix, which includes a xanthan gum and a galactomannan gum capable of cross-linking said xanthan gum when exposed to gastric fluid, the ratio of said xanthan gum to said galactomannan gum being from 3:1 to 1:3, and an inert pharmaceutical filler, the ratio of said inert pharmaceutical filler to said hydrophilic matrix being from 4:1 to 0.67 1, and an effective amount of a therapeutically active ingredient, the ratio of said therapeutically active ingredient to said hydrophilic gum matrix being 1:10 or less.
45. The tablet according to claim 44, wherein said cross-linking agent comprises a galactomannan, and the ratio of xanthan gum to locust bean gum is about 1:1.
46. The tablet according to claim 44, wherein said galactomannan gum comprises locust bean gum with or without an additional galactomannan gum selected from the group consisting of tragacanth, acacia, karaya, alginates, agar, pectin, guar, hydroxpropyl guar, carrageenan, hydroxypropylmethyl cellulose, hydroxpropyl cellulose, methylcellulose, carboxymethyl cellulose, polyvinyl pyrrolidone, and mixtures of any of the foregoing.
47. The tablet according to claim 44, wherein the ratio of said active ingredient to said hydrophilic material is from 1:3 to 1:7.
48. A commercial package comprising a pharmaceutically effective amount of a free-flowing controlled release granulation according to any one of claims 11 to 17, 22 to 24 and 28 together with instructions for use in controlled release of said therapeutically active ingredient.
49. A commercial package comprising a pharmaceutically effective amount of a controlled release pharmaceutical excipient according to claim 43 together with instructions for use in controlled release of said therapeutically active ingredient.
CA000611700A 1988-09-19 1989-09-18 Directly compressible sustained release excipient Expired - Lifetime CA1339082C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/246,368 US4994276A (en) 1988-09-19 1988-09-19 Directly compressible sustained release excipient
US246,368 1988-09-19

Publications (1)

Publication Number Publication Date
CA1339082C true CA1339082C (en) 1997-07-29

Family

ID=22930376

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000611700A Expired - Lifetime CA1339082C (en) 1988-09-19 1989-09-18 Directly compressible sustained release excipient

Country Status (10)

Country Link
US (1) US4994276A (en)
EP (1) EP0360562B2 (en)
JP (1) JPH0625073B2 (en)
AT (1) ATE91887T1 (en)
AU (1) AU623182B2 (en)
CA (1) CA1339082C (en)
DE (1) DE68907835T3 (en)
ES (1) ES2059778T5 (en)
IE (1) IE65170B1 (en)
WO (1) WO1990003165A1 (en)

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8601204D0 (en) * 1986-01-18 1986-02-19 Boots Co Plc Therapeutic agents
US5215752A (en) * 1988-03-17 1993-06-01 Vectorpharma International S.P.A. Pharmaceutical tablets and capsule granulates of scleroglucan and active substance
JP2683391B2 (en) * 1988-11-30 1997-11-26 日清製粉株式会社 Sustained release composition based on hemicellulose from wheat bran
US5206168A (en) * 1991-02-28 1993-04-27 Gregory Boyle Method for small system wastewater denitrification
US5478577A (en) * 1993-11-23 1995-12-26 Euroceltique, S.A. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
HU209251B (en) * 1992-03-13 1994-04-28 Synepos Ag Process for producing stable, peroral solution drug forms with controlled release of active ingredient and comprising beta-blocking pharmacons
US5472711A (en) * 1992-07-30 1995-12-05 Edward Mendell Co., Inc. Agglomerated hydrophilic complexes with multi-phasic release characteristics
AU5745394A (en) * 1992-12-30 1994-08-15 Fmc Corporation Readily available konjac glucomannan sustained release excipient
US5330761A (en) * 1993-01-29 1994-07-19 Edward Mendell Co. Inc. Bioadhesive tablet for non-systemic use products
US5993860A (en) * 1993-06-17 1999-11-30 Venture Lending NSADI delivery employing a powdered hydrocolloid gum obtainable from higher plants
US5662933A (en) * 1993-09-09 1997-09-02 Edward Mendell Co., Inc. Controlled release formulation (albuterol)
US5455046A (en) * 1993-09-09 1995-10-03 Edward Mendell Co., Inc. Sustained release heterodisperse hydrogel systems for insoluble drugs
US5773025A (en) 1993-09-09 1998-06-30 Edward Mendell Co., Inc. Sustained release heterodisperse hydrogel systems--amorphous drugs
US6726930B1 (en) * 1993-09-09 2004-04-27 Penwest Pharmaceuticals Co. Sustained release heterodisperse hydrogel systems for insoluble drugs
US6746691B2 (en) 1993-09-20 2004-06-08 Kos Pharmaceuticals, Inc. Intermediate release nicotinic acid compositions for treating hyperlipidemia having unique biopharmaceutical characteristics
US6129930A (en) 1993-09-20 2000-10-10 Bova; David J. Methods and sustained release nicotinic acid compositions for treating hyperlipidemia at night
US6676967B1 (en) * 1993-09-20 2004-01-13 Kos Pharmaceuticals, Inc. Methods for reducing flushing in individuals being treated with nicotinic acid for hyperlipidemia
US20060263428A1 (en) * 1993-09-20 2006-11-23 Eugenio Cefali Methods for treating hyperlipidemia with intermediate release nicotinic acid compositions having unique biopharmaceutical characteristics
US6818229B1 (en) 1993-09-20 2004-11-16 Kos Pharmaceuticals, Inc. Intermediate release nicotinic acid compositions for treating hyperlipidemia
US6080428A (en) 1993-09-20 2000-06-27 Bova; David J. Nicotinic acid compositions for treating hyperlipidemia and related methods therefor
US5399358A (en) * 1993-11-12 1995-03-21 Edward Mendell Co., Inc. Sustained release formulations for 24 hour release of metroprolol
JP3279318B2 (en) * 1994-04-25 2002-04-30 ペンウェスト ファーマシューティカルズ カンパニー Sustained release excipients
US5399362A (en) * 1994-04-25 1995-03-21 Edward Mendell Co., Inc. Once-a-day metoprolol oral dosage form
JP2656727B2 (en) * 1994-05-17 1997-09-24 財団法人工業技術研究院 Moisture-proof Chinese herbal granules
EP0689834A3 (en) * 1994-07-01 1996-06-05 Willem Jacob Serfontein Sustained release food or feed supplement containing vitamins and minerals
GB9422154D0 (en) 1994-11-03 1994-12-21 Euro Celtique Sa Pharmaceutical compositions and method of producing the same
FR2729857B1 (en) * 1995-01-27 1997-04-04 Rhone Poulenc Chimie PHARMACEUTICAL COMPOSITIONS IN THE FORM OF SUSTAINED-RELEASE TABLETS BASED ON GRANULES OF HIGH MOLECULAR POLYSACCHARIDES
BE1009380A3 (en) * 1995-03-14 1997-03-04 Universiteit Gent Lab Voor Far Stabilizing COMPOSITION FOR SUSPENSION.
US5612053A (en) * 1995-04-07 1997-03-18 Edward Mendell Co., Inc. Controlled release insufflation carrier for medicaments
US5656284A (en) * 1995-04-24 1997-08-12 Balkin; Michael S. Oral transmucosal delivery tablet and method of making it
US5912268A (en) * 1995-05-22 1999-06-15 Alza Corporation Dosage form and method for treating incontinence
US6262115B1 (en) * 1995-05-22 2001-07-17 Alza Coporation Method for the management of incontinence
US5811388A (en) * 1995-06-07 1998-09-22 Cibus Pharmaceutical, Inc. Delivery of drugs to the lower GI tract
US5656294A (en) * 1995-06-07 1997-08-12 Cibus Pharmaceutical, Inc. Colonic delivery of drugs
US6132768A (en) * 1995-07-05 2000-10-17 Byk Gulden Lomberg Chemische Fabrik Gmbh Oral pharmaceutical composition with delayed release of active ingredient for reversible proton pump inhibitors
AU2068797A (en) * 1996-01-29 1997-08-20 Edward Mendell Co. Inc. Sustained release excipient
WO1998001117A1 (en) * 1996-07-08 1998-01-15 Edward Mendell Co., Inc. Sustained release matrix for high-dose insoluble drugs
CA2216215A1 (en) 1997-04-05 1998-10-05 Isa Odidi Controlled release formulations using intelligent polymers having opposing wettability characteristics of hydrophobicity and hydrophilicity
US6210710B1 (en) 1997-04-28 2001-04-03 Hercules Incorporated Sustained release polymer blend for pharmaceutical applications
US6197331B1 (en) 1997-07-24 2001-03-06 Perio Products Ltd. Pharmaceutical oral patch for controlled release of pharmaceutical agents in the oral cavity
IN186245B (en) 1997-09-19 2001-07-14 Ranbaxy Lab Ltd
US6056977A (en) 1997-10-15 2000-05-02 Edward Mendell Co., Inc. Once-a-day controlled release sulfonylurea formulation
US6416786B1 (en) 1998-12-11 2002-07-09 Nostrum Pharmaceuticals, Inc. Sustained release tablet containing hydrocolloid and cellulose ether
ES2243229T3 (en) * 1999-02-03 2005-12-01 Powderject Res Ltd FORMULATIONS OF HYDROGEL PARTICLES.
US6432448B1 (en) 1999-02-08 2002-08-13 Fmc Corporation Edible coating composition
US6723342B1 (en) 1999-02-08 2004-04-20 Fmc Corporation Edible coating composition
AU762291B2 (en) 1999-09-30 2003-06-19 Penwest Pharmaceutical Co. Sustained release matrix systems for highly soluble drugs
US6500462B1 (en) * 1999-10-29 2002-12-31 Fmc Corporation Edible MCC/PGA coating composition
US6936275B2 (en) 1999-12-20 2005-08-30 Scolr, Inc. Amino acid modulated extended release dosage form
WO2003024427A1 (en) 1999-12-20 2003-03-27 Temple University Of The Commonwealth System Of Higher Education Tableted oral extended release dosage form
US7985420B2 (en) * 2000-04-28 2011-07-26 Reckitt Benckiser Inc. Sustained release of guaifenesin combination drugs
US6955821B2 (en) * 2000-04-28 2005-10-18 Adams Laboratories, Inc. Sustained release formulations of guaifenesin and additional drug ingredients
US6372252B1 (en) 2000-04-28 2002-04-16 Adams Laboratories, Inc. Guaifenesin sustained release formulation and tablets
US8012504B2 (en) * 2000-04-28 2011-09-06 Reckitt Benckiser Inc. Sustained release of guaifenesin combination drugs
US7838032B2 (en) * 2000-04-28 2010-11-23 Reckitt Benckiser Inc. Sustained release of guaifenesin
US7056531B1 (en) 2000-05-04 2006-06-06 Nature's Way Products, Inc. Sustained release compositions for orally administered substances and methods
US7130822B1 (en) * 2000-07-31 2006-10-31 Cognos Incorporated Budget planning
JP2004513091A (en) * 2000-10-03 2004-04-30 ペンウェスト ファーマシューティカルズ カンパニー Delivery systems for multiple pharmaceutically active ingredients at different rates
WO2002043694A2 (en) 2000-11-28 2002-06-06 Fmc Corporation Edible pga(propylene glycol alginate) coating composition
US6932861B2 (en) 2000-11-28 2005-08-23 Fmc Corporation Edible PGA coating composition
JP2004513975A (en) 2000-12-05 2004-05-13 マクグレゴール アレキサンダー Hydrostatic delivery system for controlled release of active substance
CA2440588C (en) * 2001-03-13 2010-02-09 Penwest Pharmaceuticals Co. Chronotherapeutic dosage forms
US8329216B2 (en) * 2001-07-06 2012-12-11 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
EP2311460A1 (en) 2001-07-06 2011-04-20 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
EP1404331B1 (en) * 2001-07-06 2007-10-31 Penwest Pharmaceuticals Co. Sustained release formulations of oxymorphone
US20050191361A1 (en) * 2001-08-03 2005-09-01 Powederject Research Ltd. Hydrogel particle formation
CA2459976A1 (en) * 2001-09-26 2003-04-03 Penwest Pharmaceuticals Company Opioid formulations having reduced potential for abuse
MXPA04009701A (en) * 2002-04-05 2005-05-27 Penwest Pharmaceuticals Co Sustained release metoprolol formulations.
WO2004012715A1 (en) 2002-08-02 2004-02-12 Penwest Pharmaceuticals Company Sustained release formulations of metformin
US8992980B2 (en) * 2002-10-25 2015-03-31 Boehringer Ingelheim Vetmedica Gmbh Water-soluble meloxicam granules
US20040091544A1 (en) * 2002-11-08 2004-05-13 Ruff Michael D. Coated dibasic calcium phosphate
DE60319982T2 (en) * 2003-09-01 2009-04-16 Jpm - The Jordanian Pharmaceutical Manufacturing Co. Ltd. Universal composition for controlled release of active substance containing xanthan gum and sodium alginate
US20050118267A1 (en) * 2003-09-19 2005-06-02 Penwest Pharmaceuticals Co. Chronotherapeutic dosage forms
WO2005027878A1 (en) * 2003-09-19 2005-03-31 Penwest Pharmaceuticals Co. Delayed released dosage forms
US20060105044A1 (en) 2004-05-20 2006-05-18 Singh Bramah N Sustained release formulations of sotalol
CA2586611A1 (en) 2004-11-02 2006-05-11 Gangagen Life Sciences Inc. Encapsulated bacteriophage formulation
US20060228413A1 (en) * 2005-02-28 2006-10-12 Penwest Pharmaceuticals Co. Controlled release venlafaxine formulations
WO2007009683A2 (en) * 2005-07-15 2007-01-25 Laboratorios Del Dr.Esteve, S.A. Pharmaceutical formulations of substituted pyrazoline compounds
EP1743638A1 (en) * 2005-07-15 2007-01-17 Laboratorios Del Dr. Esteve, S.A. Pharmaceutical formulations of substituted pyrazoline compounds
US20070212414A1 (en) * 2006-03-08 2007-09-13 Penwest Pharmaceuticals Co. Ethanol-resistant sustained release formulations
WO2007137216A2 (en) * 2006-05-22 2007-11-29 Janssen Pharmaceutica, N.V. Gastroretentive sustained release formulations
EP2067475A4 (en) * 2006-09-26 2010-12-15 Astellas Pharma Inc Tacrolimus sustained-release preparation
US20080085305A1 (en) * 2006-10-10 2008-04-10 Penwest Pharmaceuticals Co. Robust sustained release formulations of oxymorphone
US20080085304A1 (en) * 2006-10-10 2008-04-10 Penwest Pharmaceuticals Co. Robust sustained release formulations
CN101578096A (en) * 2006-10-10 2009-11-11 潘威斯脱药物公司 Robust sustained release formulations
US20080085303A1 (en) * 2006-10-10 2008-04-10 Penwest Pharmaceuticals Co. Robust sustained release formulations of oxymorphone and methods of use thereof
CN101621931A (en) 2006-11-27 2010-01-06 H.隆德贝克有限公司 Heteroaryl amide derivatives
WO2008084698A1 (en) 2006-12-28 2008-07-17 Astellas Pharma Inc. Tacrolimus sustained release pharmaceutical composition
US20090042795A1 (en) * 2007-06-05 2009-02-12 Pasan Fernando Cardiac stem cell proliferation proteins, fragments thereof and methods of modulating stem cell proliferation and differentiation
US20080318994A1 (en) 2007-06-21 2008-12-25 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instruction on Dosing for Renal Impairment
US20090124650A1 (en) * 2007-06-21 2009-05-14 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instructions on Effects of Alcohol
JP5463537B2 (en) * 2008-02-22 2014-04-09 HOYA Technosurgical株式会社 Separation method
US7928189B2 (en) * 2008-05-05 2011-04-19 Ottawa Health Research Institute PCSK9 polypeptide fragment
EP2400950B1 (en) 2009-02-26 2019-05-22 Glaxo Group Limited Pharmaceutical formulations comprising 4-{(1 r)-2-[(6-{2-[(2,6-dichlorobenzyl)oxy]ethoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol
GB0921075D0 (en) 2009-12-01 2010-01-13 Glaxo Group Ltd Novel combination of the therapeutic agents
TR201802207T4 (en) 2010-03-29 2018-03-21 Astellas Pharma Inc Controlled Release Pharmaceutical Composition.
EP2827839B1 (en) 2012-03-20 2019-02-27 Particle Dynamics International, LLC Gelling agent-based dosage form
FR3020571B1 (en) 2014-05-05 2017-08-25 Soc D'exploitation De Produits Pour Les Ind Chimiques Seppic CO-GRANULES OF XANTHAN GUM AND ACACIA GUM
EP3288570A4 (en) 2015-04-29 2018-11-21 Fred Hutchinson Cancer Research Center Modified stem cells and uses thereof
US10166185B2 (en) 2015-06-09 2019-01-01 J. Rettenmaier & Söhne Gmbh + Co Kg Excipient and oral solid dosage forms for oily drugs
US11278506B2 (en) 2015-10-09 2022-03-22 Rb Health (Us) Llc Pharmaceutical formulation
GB201607518D0 (en) * 2016-04-29 2016-06-15 Andalay Technologies Ltd Mouthwash composition

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2993836A (en) * 1958-02-20 1961-07-25 Dow Chemical Co Sustained release tablets
US3079303A (en) * 1958-12-11 1963-02-26 Smith Kline French Lab Basic tablet granulation and process of using same
NL128902C (en) * 1960-06-06
US3133863A (en) * 1961-03-10 1964-05-19 Strong Cobb Arner Inc Sustained release therapeutic tablet compositions comprising organic solvent-gelled gums
US3147187A (en) * 1962-09-10 1964-09-01 Don Hall Lab Sustained release pharmaceutical
US3388041A (en) * 1964-01-27 1968-06-11 Richardson Merrell Inc High dosage sustained release tablet
GB1097207A (en) * 1964-08-24 1967-12-29 Collett & Co As Process for the preparation of sustained action tablets
US3456049A (en) * 1965-05-25 1969-07-15 Ciba Geigy Corp Gradual-release tablet
US3726690A (en) * 1965-10-22 1973-04-10 Kelco Co Acidified food products containing xanthomonas colloid
US3864469A (en) * 1967-12-16 1975-02-04 Hoechst Ag Xanthines in pharmaceutical preparations and for stabilization of vitamins
US3639169A (en) * 1969-04-29 1972-02-01 Sucrest Corp Direct compression vehicles and method therefor
US3627583A (en) * 1969-04-29 1971-12-14 Sucrest Corp Direct compression vehicles
US3629393A (en) * 1969-09-11 1971-12-21 Nikken Chemicals Co Ltd Release-sustaining-tablet
GB1359643A (en) * 1970-09-28 1974-07-10 Controlled Medications Controlled release medicament
US4072535A (en) * 1970-12-28 1978-02-07 A. E. Staley Manufacturing Company Precompacted-starch binder-disintegrant-filler material for direct compression tablets and dry dosage capsules
US3773920A (en) * 1971-07-14 1973-11-20 Nikken Chemicals Co Ltd Sustained release medicinal composition
US3836618A (en) * 1971-12-23 1974-09-17 American Home Prod Process for the uniform distribution of a drug on a granulated base
FR2183546B1 (en) * 1972-05-10 1975-06-20 Servier Lab
US3963832A (en) * 1973-01-24 1976-06-15 Teijin Limited Liquid or pasty dentifrice and process for its preparation
US4013820A (en) * 1974-11-07 1977-03-22 Abbott Laboratories Universally useable tableting ingredients
US4167558A (en) * 1976-02-13 1979-09-11 Hoffmann-La Roche Inc. Novel sustained release tablet formulations
HU179474B (en) * 1978-02-24 1982-10-28 Laszlo Gyarmati Process for preparing solid oral pharmaceutical compositons with increased length of activity and with a regulated release of the active material
US4361545A (en) * 1979-05-21 1982-11-30 Rowell Laboratories, Inc. Solid pharmaceutical formulations for slow, zero order release via controlled surface erosion
US4259314A (en) * 1979-12-10 1981-03-31 Hans Lowey Method and composition for the preparation of controlled long-acting pharmaceuticals
US4308251A (en) * 1980-01-11 1981-12-29 Boots Pharmaceuticals, Inc. Controlled release formulations of orally-active medicaments
US4439453A (en) * 1980-12-22 1984-03-27 Monsanto Company Directly compressible acetaminophen granulation
DE3127237A1 (en) * 1981-07-10 1983-01-20 Hoechst Ag, 6000 Frankfurt STOMACHICABLE MEDICINAL FORMS OF XANTHINE DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF
US4424235A (en) * 1981-09-14 1984-01-03 Hoffmann-La Roche Inc. Hydrodynamically balanced controlled release compositions containing L-dopa and a decarboxylase inhibitor
US4525345A (en) * 1981-12-24 1985-06-25 Verex Laboratories, Inc. Constant order release, solid dosage indomethacin formulation and method of treating arthritis and other inflammatory conditions
US4389393A (en) * 1982-03-26 1983-06-21 Forest Laboratories, Inc. Sustained release therapeutic compositions based on high molecular weight hydroxypropylmethylcellulose
US4556678A (en) * 1982-06-24 1985-12-03 Key Pharmaceuticals, Inc. Sustained release propranolol tablet
US4698264A (en) * 1982-08-02 1987-10-06 Durkee Industrial Foods, Corp. Particulate composition and process for making same
US4698101A (en) * 1982-08-30 1987-10-06 Suomen Sokeri Oy (Finnish Sugar Company Ltd.) Binder-diluent composition and method
DE3435325A1 (en) * 1983-04-09 1986-04-17 Nikken Chemicals Co., Ltd., Tokio/Tokyo LONG-TERM THEOPHYLLIN TABLET AND METHOD FOR THE PRODUCTION THEREOF
US4717713A (en) * 1983-10-31 1988-01-05 Research Corporation Controlled release liquid pharmaceutical
US4590062A (en) * 1984-04-16 1986-05-20 Tech Trade Corp. Dry direct compression compositions for controlled release dosage forms
JPS6124516A (en) * 1984-07-12 1986-02-03 Fujisawa Pharmaceut Co Ltd Long active tablet
GB8426152D0 (en) * 1984-10-16 1984-11-21 Reckitt & Colmann Prod Ltd Medicinal compositions
DE3440288A1 (en) * 1984-11-05 1986-05-07 Gergely, Gerhard, Dr.-Ing., Wien PHARMACEUTICAL PREPARATION WITH A CONTENT OF AT LEAST ONE Mucous-irritating SUBSTANCE OR THE LIKE, PARTICULARLY PROFESSIONALS, AND METHOD FOR THE PRODUCTION THEREOF
EP0227814A1 (en) * 1985-07-02 1987-07-08 The Upjohn Company Therapeutic formulations with bimodal release characteristics
GB8518927D0 (en) * 1985-07-26 1985-09-04 Vincent Processes Ltd Tablets
GB8522453D0 (en) * 1985-09-11 1985-10-16 Lilly Industries Ltd Chewable capsules
US4704285A (en) * 1985-11-18 1987-11-03 The Dow Chemical Company Sustained release compositions comprising hydroxypropyl cellulose ethers
GB8601204D0 (en) * 1986-01-18 1986-02-19 Boots Co Plc Therapeutic agents
IT1191674B (en) * 1986-03-07 1988-03-23 Eurand Spa FORMULATIONS FOR THE PREPARATION OF PROLONGED-RELEASE DRUGS SUITABLE FOR ORAL ADMINISTRATION
US4855143A (en) * 1986-04-04 1989-08-08 Hans Lowey Method of preparing controlled long-acting pharmaceutical formulations in unit dosage form having uniform and comparable bioavailability characteristics
GB8608818D0 (en) * 1986-04-11 1986-05-14 Reckitt & Colmann Prod Ltd Pharmaceutical compositions
GB8613689D0 (en) * 1986-06-05 1986-07-09 Euro Celtique Sa Pharmaceutical composition
JPH0826346B2 (en) * 1986-07-10 1996-03-13 株式会社林原生物化学研究所 Manufacturing method of solid oil-soluble substance
US4792452A (en) * 1987-07-28 1988-12-20 E. R. Squibb & Sons, Inc. Controlled release formulation

Also Published As

Publication number Publication date
IE892968L (en) 1990-03-19
AU623182B2 (en) 1992-05-07
EP0360562B2 (en) 2002-12-11
DE68907835T2 (en) 1993-11-11
JPH04501713A (en) 1992-03-26
IE65170B1 (en) 1995-10-04
US4994276A (en) 1991-02-19
JPH0625073B2 (en) 1994-04-06
DE68907835D1 (en) 1993-09-02
ATE91887T1 (en) 1993-08-15
EP0360562B1 (en) 1993-07-28
DE68907835T3 (en) 2003-09-18
EP0360562A3 (en) 1990-11-22
ES2059778T5 (en) 2003-07-16
EP0360562A2 (en) 1990-03-28
WO1990003165A1 (en) 1990-04-05
ES2059778T3 (en) 1994-11-16
AU4305789A (en) 1990-04-18

Similar Documents

Publication Publication Date Title
CA1339082C (en) Directly compressible sustained release excipient
US5135757A (en) Compressible sustained release solid dosage forms
US5128143A (en) Sustained release excipient and tablet formulation
US5169639A (en) Controlled release verapamil tablets
US5399362A (en) Once-a-day metoprolol oral dosage form
US5399358A (en) Sustained release formulations for 24 hour release of metroprolol
CA2354057C (en) Sustained release tablet containing hydrocolloid and cellulose ether
CA2164513C (en) Sustained release excipient
MXPA96000024A (en) Form of oral dosing of metoprolol one time
MXPA94008792A (en) Sustained release formulations for 24 hours of metopro release

Legal Events

Date Code Title Description
MKEX Expiry

Effective date: 20140729