CA1335253C - Multi-layer plastic film and package - Google Patents

Multi-layer plastic film and package

Info

Publication number
CA1335253C
CA1335253C CA000531873A CA531873A CA1335253C CA 1335253 C CA1335253 C CA 1335253C CA 000531873 A CA000531873 A CA 000531873A CA 531873 A CA531873 A CA 531873A CA 1335253 C CA1335253 C CA 1335253C
Authority
CA
Canada
Prior art keywords
based resin
layer
ethylene
density polyethylene
vinyl acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000531873A
Other languages
French (fr)
Inventor
Keiji Sugimoto
Takeo Hayashi
Masahiro Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26398077&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA1335253(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP61057070A external-priority patent/JPS62214948A/en
Priority claimed from JP61307805A external-priority patent/JPS63160826A/en
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Application granted granted Critical
Publication of CA1335253C publication Critical patent/CA1335253C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/62Boxes, cartons, cases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • Y10T428/2826Synthetic resin or polymer

Abstract

The first invention provides a multi-layer film com-prising (A) a low density polyethylene-based resin layer, (B) a polyolefin-based resin expanded layer and (C) a high density polyethylene-based resin layer.
The second invention provides a package comprising (I) an article to be packaged, (II) the multi-layer film of the first invention, said multi-layer film being used in packag-ing the article in such a manner that the low density poly-ethylene-based resin layer is in contact with the article, and (III) a buffering material being used to fix the article.
The multi-layer film of the first invention is excel-lent in buffering properties, tensile strength, tear strength, impact strength and stiffness, and further has good frictional characteristics and good pearl-like appearance.
With the package of the second invention, an article can be efficiently protected during its storage and trans-portation, and thus an easily scratchable article can be effectively protected.

Description

MULTI-LAYER FILM AND PACKAGE

The present invention relates to a multi-layer film and a package.
As a multi-layer film, a low density polyethylene shrinkable film which is produced by the multi-layer co-extrusion method and in which a polyethylene layer having a thickness corresponding to 10 to 90~ by weight of the film is expanded to 1.5 to 5 times the original volume is known as described in Japanese Patent Application Laid-Open No. 20345/1982 The above film is suitable for shrink packaging, but has disadvantages in that the strength and stiffness are low. Furthermore, the frictional characteristics of the film surface are not sufficiently satisfactory. Thus the film has not been able to find applications other than shrink packaging; that is, it is limited in its use.
Moreover the film has a problem that when used in packaging of articles such as appliances television sets and audio sets, it cannot sufficiently protect the articles.

Articles such as appliances, television sets and audio sets, and other articles such as business instruments, precision instruments and furniture have heretofore been packed in a packaging case such as a resin expanded material, a cardboard and a wooden case in order to protect 1 them against scratching or breakage during the storage or transportation thereof. In this case, in order to protect the articles against humidity or to prevent the attachment of stains derived from rubbish or dust, the article is previ-ously packed with, for example, a low density polyethylenefilm and, thereafter, it is fixed with, for example, a card board case, a wooden case and a band through a buffer material such as a foamed plastic and a card board.
The above method, however, has a problem in that the product value is reduced by scratching of the surface and peeling apart of the paint or plated layer due to the friction between the packaging film and the article at the time of the transportation and handing of the article although, at the beginning, it can protect the article against humidity and prevent the attachment of dust and so on. In order to overcome the above problem, (1) a method in which an article is packed with a heat-shrinkable film, which is then shrinked by heating, and thereafter the article is placed in an outer case through a buffering material and (2) a method in which a multi-layer sheet produced by laminating an expanded polyolefin sheet and a high density polyethylene film is used have been proposed and have now been put into practical use. The former method (1), however, has disadvantages in that not only a heat-shrinkable film but also a heat tunnel for shrinkage areneeded and thus the equipment, equipment space and amount of electricity used are increased, leading to an increase 1 in the total packaging cost.
The latter method (2) also has disadvantages in that the production cost of the multi-layer film is increased by the lamination step and the sheet thickness, the thickness of the expanded sheet is usually 500 to 600 microns and becomes bulky in the production, storage and transportation of the multi-layer sheet, and accordingly the total packag-ing cost is increased unsatisfactorily particularly in these years where the international trading is increased.
Thus it has been desired to overcome the above problems.
As a result of extensive investigations to overcome the above prior art problems, it has been found that an package which is effective in protecting an article, has a sufficiently high strength even if the thickness is small, is excellent in appearance and is inexpensive can be ob-tained using the multi-layer film of the first invention and buffering material. Based on these findings, the second invention has been completed.

SUMMARY OF THE INVENTION
An object of the first invention is to provide a multi-layer film which is free from the above problems, is excellent in strength and stiffness, has good surface printing properties, has such good appearance that the - surface has good pearl-like appearance and feels like Japanese paper, and further which can be used as, for example, a bag, a hanging bag, a book cover or a table cloth.

-1 An object of the second invention is to provide the package which is effective in protecting an article, has a sufficiently high strength even if the thickness is small, is excellent in appearance and is inexpensive.

That is, the first invention provides a multi-layer film comprising (A) a low density polyethylene-based resin layer, (B) a polyolefin-based resin expanded layer and (C) a high density polyethylene-based resin layer.

The second invention provides a package comprising (I) an article to be packaged, (II) a multi-layer film comprising (A) a low density polyethylene-based resin layer, (B) a polyolefin-based resin expanded layer and (C) a high density polyethylene-based resin layer packaged on the article, said multi-layer film being used in packaging the article in such a manner that the low density polyethylene-based resin layer is in contact with the article, and (III) a buffering material being used to fix the article.

2n Accordingly, in one aspect the invention resides in a multi-layer film comprising (A) an ethylene-vinyl acetate copolymer-based resin layer, (B) a polyethylene-based resin expanded layer and (C) a high density polyethylene-based resin layer.

1 , ~..' ~_ 1 335253 In a further aspect the invention resides in a package comprising an article to be packaged, a multi-layer film comprising (A) an ethylene-vinyl acetate copolymer-based resin layer, (B) a polyethylene-based resin expanded layer and (C) a high density polyethylene-based resin layer packaged on the article, said multi-layer film being used in packaging the article in such a manner that the low density polyethylene-based resin layer is in contact with the article and a buffering material being used to fix the article.

In another aspect the invention resides in a multi-layer film for use in packaging an article such as appliances, television sets, audio sets, business instruments, precision instruments and furniture, said multi-layer film comprising (A) an ethylene-vinyl acetate copolymer-based resin layer, said ethylene-vinyl acetate copolymer-based resin layer selected from the group consisting of an ethylene-vinyl acetate copolymer and a mixture of an ethylene-vinyl acetate copolymer and up to 50 wt % of other resins, (B) a polyethylene-based resin expanded layer, and (C) a high density polyethylene-based resin layer, said multi-layer film being used in packaging the article in such a manner that the ethylene-vinyl acetate copolymer-based resin layer is in contact with the article.

- 4a -In another aspect the invention resides in a package for packaging an article such as appliances, television sets, audio sets, business instruments, precision instruments and furniture, said package comprising a co-extruded multi-layer film comprising (A) an ethylene-vinyl acetate copolymer-based resin layer, (B) a polyethylene-based resin expanded layer of low density polyethylene with a density of 0.910 to 0.930 g/cm3 and (C) a high density polyethylene based resin layer, said multi-layer film being used in packaging the article in such a manner that the ethylene-vinyl acetate copolymer-based resin layer is in contact with the article; and a buffering material is used to fix the article.

BRIEF DESCRIPTION OF THE DRAWINGS

The Figure is a perspective view illustrating an embodiment of the package of the present invention.

1 .. Package, 2 .. Multi-layer film, 3 .. Article to be packaged, 4 .. Buffering material, 5 .. Outer case DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the present invention, a multi-layer film which - 4b -1 comprises (A) a low density polyethylene-based resin layer, (B) a polyolefin-based resin expanded layer and (C) a high density polyethylene-based resin layer, in which the outer and inner surfaces are different in physical properties such as a coefficient of friction, and which includes an intermediate expanded layer.
As the low density polyethylene-based resin to form the layer (A), a resin having a density of 0.900 to 0.940 g/cm3, preferably 0.905 to 0.935 g/cm3 and particularly preferably 0.910 to 0.930 g/cm3, and a melt index (MI) of 0.1 to 50 g/10 min, preferably 0.2 to 30 g/10 min, and particularly preferably 0.3 to 20 g/10 min is used. Low density polyethylene-based resins which can be used include high pressure low density polyethylene (LDPE), copolymers of ethylene and ~-olefins having 3 to 12 carbon atoms, such as propylene, butene-l, 4-methylpentene-1 and octene-l as produced by the moderate or low pressure process, so-called linear low density polyethylene (LLDPE), copolymers of ethylene and polar vinyl monomers, and so on, and their mixtures. Examples of the above polar vinyl monomers are vinyl acetate, acrylic acid, methacrylic acid, acrylic acid esters, methacrylic acid esters, and various metal salts of acrylic acids. Examples of the copolymers of ethylene and polar vinyl monomers are an ethylene-vinyl acetate copolymer, an ethylene-methyl acrylate or methyl methacrylate copolymer, an ethylene-ethyl acrylate or ethyl methacrylate copolymer, an ethylene-acrylic acid or methacrylic acid, and their 1 partial metal salts (ionomers). Of these polymers, an ethylene-vinyl acetate copolymer, or mixtures of an ethylene-vinyl acetate copolymer and not more than 50% by weight of LDPE, LLDPE, ionomers and so on are particularly preferred to improve the frictional characteristics of both the layers of the multi-layer film. In connection with the ethylene-vinyl acetate copolymer (EVA), it is preferred to use an ethylene-vinyl acetate copolymer having a vinyl acetate content of 5 to 35% by weight, preferably 7 to 1030~ by weight, a density of 0.920 to 0.940 g/cm3 and a melt index of 0.5 to 20 g/10 min. When the ethylene-vinyl acetate copolymer is used, easily scratchable articles such as transparent resin parts of audio sets can be suf-ficiently protected.
15To the low density polyethylene-based resin can be compounded, if necessary, a low crystalline or non-crystalline ethylene-propylene copolymer having a density of 0.850 to 0.895 g/cm3, an ethylene-butene-l copolymer, a petroleum resin, or a terpene-phenol resins in an amount of not more than 30~ by weight.
The low density polyethylene-based resin layer imparts anti-slipperiness and flexibility to the multi-layer film.
That is, when the multi-layer film is used as a table cloth or a wrapping bag, the low density polyethylene-based resin layer prevents sliding and facilitates itsuse and handling. When the multi-layer film is used in packaging of appliances and so forth, the low density 1 polyethylene-based resin layer is used in such a manner as to be in contact with an article to be packaged and plays an important role in protecting the article to be packaged.
Furthermore, the low density polyethylene-based resin layer accelerates expansion of the intermediate layer and improves film moldability, particularly inflation film moldability. The coefficient of static friction of the low density polyethylene-based resin layer surface is usually not less than 0.4, preferably not less than 0.5 and more preferably not less than 0.6. The above coefficient of static friction indicates a coefficient of static friction between low density polyethylene-based resin layer surfaces (measured according to ASTM D-1894).
The layer (B), i.e., the intermediate layer of the multi-layer film is a polyolefin-based resin expanded layer.
As the polyolefin resin, as well as polyethylene-based resins such as high density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density polyethylene (LLDPE), copolymer of ethylene and polar vinyl monomer and copolymer of ethylene and unsaturated carboxylic acid, polypropylene, polybutene and copolymers of ~-olefins and other ~-olefins, and their mixtures can be used. Of these polymers, as the polyolefin-based resin, a polyethylene-based resin is preferred, and low density polyethylene and linear low density polyethylene are particularly preferred.
The above linear low density polyethylene includes copolymers of ethylene and ~-olefins having 3 to 12 carbon atoms, such 1 as propylene, butene-l, 4-methylpentene-1 and octene-l.
For the low density polyethylene and the linear low density polyethylene, the density is 0.900 to 0.940 g/cm3 and preferably 0.910 to 0.930 g/cm3, and melt index (MI) is 0.1 to 50 g/10 min and preferably 0.2 to 20 g/10 min. To these polyolefin-based resins can be compounded not more than 50% by weight of an elastomer or other resins. If necessary, not more than 50% by weight of an inorganic filler, such as calcium carbonate, talc, clay, kaolin, titanium oxide and zeolite can be compounded.
Foaming agents which can be used in expanding the above polyolefin-based resin expanded layer can be divided into two groups, chemical foaming agents and physical foaming agents, depending on the mechanism of expansion.
Examples of such chemical foaming agents are azodicarbonamide, metal salts of azodicarbonamide, hydrazodicarbonamide, p-toluenesulfonylhydrazide, dinitropentamethylenetetramine and azobisisobutyronitrile. Examples of the physical foaming agents are butane, heptane, hexane, dichlorodifluoro-methane, nitrogen, and carbon dioxide gas.
In the polyolefin-based resin expanded layer, the compounding ratio of the polyolefin-based resin as the feed resin to the foaming agent is not critical and varies with the type of the foaming agent and so forth. It suffices that the compounding ratio is determined so that the expansion ratio is 1.2 to 5 times and usually 1.5 to 3 times. For the polyolefin-based resin expanded layer, it 1 is preferred that the diameter of cell be small. To the polyolefin-based resin expanded layer, if necessary, inorganic fine powder and metal salts of higher fatty acids can be appropriately added as cell nucleating agents.
Examples of the higher fatty acid metal salts are sodium stearate, calcium stearate and magnesium stearate.
Expansion can be uniformly accomplished by adding the nucleating agent in an amount of 0.03 to 1% by weight.
The polyolefin-based resin expanded layer has not only an action of making the multi-layer film opaque so that it gets a pearl-like appearance, but also an action of imparting buffering properties to the multi-layer film.
As the high density polyethylene-based resin to form the layer (C), a resin having a density of 0.945 to 0.975 g/cm3, preferably 0.947 to 0.970 g/cm3 and MI of 0.01 to 5 g/10 min, preferably 0.02 to 2 g/10 min. High density polyethylene-based resins which can be used include ethylene homopolymers and copolymers of ethylene and other ~-olefins such as propylene and butene-l. To the high density polyethylene-based resin, low density polyethylene and low crystalline or noncrystalline ethylene-propylene copolymer or ethylene-butene-l copolymer having a density of 0.850 to 0.895 g/cm3 can be added in an amount of 50% by weight or less within the range that the slipperiness of the present invention is not deteriorated.
The high density polyethylene-based resin layer imparts slipperiness, strength and stiffness to the 1 multi-layer film and when the multi-layer is used as a bag, improves the opening properties of the bag and makes it easy to taken out or put in an article in the multi-layer film. In enclosing the article, the multi-layer film is used in such a manner that the high density polyethylene-based resin layer is exposed outside. Thus, when the packaged article is vibrated, the vibration is absorbed by the sliding between the film outer surface and the buffer-ing material. Thus the high density polyethylene-based resin layer prevents the article from being directly rubbed by the buffering material and acts to protect the article. Accordingly the coefficient of static friction of the high density polyethylene-based resin layer is usually not more than 0.35 and preferably not more than 0.3.
Furthermore the high density polyethylene-based resin layer accelerates the expansion of the intermediate layer and improves the moldability of the multi-layer film.
It may be considered that in place of the high density polyethylene-based resin, an intermediate or low density polyethylene with a slipping agent added is used. In fact, however, the slipping agent transfers into the intermediate expanded layer and thus an easily sliding surface cannot be obtained. To each resin layer of the multi-layer film of the present invention, if necessary, various additives such as a thermal stability, an ultraviolet absorber, an anti-static agent, an flame retardant, an antirust agent and a coloring agent can be added.

`- 1 335253 1 The multi-layer film of the first invention is composed of three layers as described above. The thickness of the multi-layer film is usually 30 to 300 ~ and particularly preferably 40 to 200 ~. In connection with the layer thickness ratio, the layer (A): the layer (B): the layer (C)=5 to 60:
10 to 90: 5 to 70 and particularly preferably 10 to 40: 20 to 80: 10 to 50. In this case, since the thickness of the expanded layer is difficult to measure, the layer thickness ratio is determined based on the weight ratio of feed resins used prior to the expansion of the intermediate layer.
The multi-layer film of the present invention can be produced by, for example, blown film co-extrusion or T-die coextrusion. In the case of blown film co-extrusion, the above feed resins are sufficiently melt kneaded in the respective extruders and then coextruded by the use of in-die or a out-die adhesion type circular die in such a manner that the low density polyethylene-based resin layer becomes an outer layer to produce a coextruded tubular film.
This coextruded tubular film can be slit to produce a flat film. In this case, the die temperature is usually 130 to 180C, the die lip clearance is 0.5 to 2.0 mm and the blow ratio is 1.5 to SØ This blown film coextrusion is particularly preferred for the production of the multi-layer film of the present invention in that since thefoaming agent-containing resin layer is completed covered by the resin layers (A) and (C), expansion is satisfactorily 1 achieved, problems such as deposits which is produced by decomposition product of foaming agents to die do not occur, and thus the multi-layer film can be produced in a stabilized manner for a long time.
In the case of the T-die coextrusion, it is preferred to use a surrounding type die with which the polyolefin-based resin expanded layer as the intermediate layer is surrounded with the layers (A) and (C). The thus-produced multi-layer film is, if necessary after printing or engraving with an embossing roll, fabricated into a flat bag or a sqaure bottomed bag. Alternatively it is cut or melt-fused to produce products such as a table cloth and a book cover.
The Package of the present invention is produced using the above multi-layer film of the first invention, and packs an article to be enclosed in such a manner that the low density polyethylene-based resin layer of the multi-layer film faces inside and fixed with a buffering material.
There are no special limitation to the type of the article to be packaged. Articles particularly prefered to be packaged with the multi-layer film are appliances, television sets, audio sets, business instruments, precision instruments, furniture and so forth which are desired to be protected against scratching and breakage. In enclosing the article, it suffices that the as the multi-layer film, a bag-shaped film is used, or the article is packaged with a flat film.

` 1 335253 1 Buffering materials to be used in fixing after the enclosing include resin expanded materials such as expanded polystyrene and expanded polyolefin, card board and so forth.
Fig. 1 is a perspective view of the packages of the second invention.
The packages 1 of the second invention comprises the multi-layer film 2, the article 3 to be packaged and a buffering material 4 which is used to fix the article.
The package 1 may be placed in an outer case 5 such as a card board box, or fixed with a wooden case or an adhesive tape, for example.
The multi-layer film of the present invention is excellent in buffering properties, tensile strength, tear strength, impact strength and stiffness, and further has good frictional characteristics and printing properties.
Thus the thickness of the multi-layer film can be decreased.
This leads to a reduction in packaging cost and also to energy and resources saving.
The multi-layer film of the first invention has a high expansion efficiency because the expanded resin layer is included as an intermediate layer, and furthermore has advantages that the formation of deposits derived from the foaming agent and additives can be reduced, and thus the continuous production of the multi-layer film can be performed continuously for a long time and the production costs can be decreased.

1 The multi-layer film of the first invention has a beautiful appearance that the appearance is pearl-like, and that provides Japanese paper feeling. Thus the multi-layer film of the first invention can be utilized in various applications such as a mat, a table cloth, a book coves, a bag and a shopping bag.
With the package of the second invention, an article can be efficiently protected during its storage and trans-portation, and thus an easily scratchable article can be effectively protected.
In the package of the second invention, since a layer having a greater coefficient of static friction than the layer (C) is used as the layer (A), the article to be packaged less slips over the packaging film while on the other hand the buffering material easily splips over the packaging film. Accordingly the article to be packaged which is usually made of hard material is not rubbed with the packaging film; rather, the packaging film and the article to be packaged are fixed and the buffering material 20 which is made of very soft material easily slips over the packaging film. Therefore there is no danger of the film being damaged. The scratching of the article to be packaged and the peeling apart of the paint due to the friction between the film and the article to be packaged 25 can be prevented. Accordingly the article to be packaged can be effectively protected.

1 In the packages of the second invention, the thickness of the multi-layer film used can be decreased. Even with a thin multi-layer film having a thickness of 50 to 100 ~, sufficiently high strength and protection performance can be obtained even as compared with the conventional multi-layer expanded laminate sheet having a thickness of about 500 ~. Accordingly the workability is steadily increased, the film is not bulky at the time of storage and transportation, the total packaging cost can be decreased, and the natural resources can be saved.
Furthermore a special apparatus required for the conventional shrink packaging is not needed, and the packaging operation can be greatly simplified.
The multi-layer film used in the second invention has good printing properties, and its appearance has pearl-like luster and provides a Japanese paper feeling. Thus it can be used as a beautiful package.
The multi-layer film in the packages of the second invention can be easily obtained in any desired size and is not limited by the size and shape of the article.
Accordingly the packages of the second invention can be effectively utilized as a packages for various articles such as appliances television sets, audio sets, business instruments, precision instruments, furniture and so forth.
The present invention is described in greater detail with reference to the following examples although it is not intended to be limited thereto.

Resins shown in Table 1 were melt kneaded with three extruders, introduced in an in-die adhesion type circular die and performed the blown film co-extrusion at a blow ratio of 3 to produce a three layer tubular film in which the intermediate layer (B) was expanded. In the inter-mediate layer (B), 4 parts by weight of an azodicarbonamide-based foaming agent master batch was added. The ratio in thickness of the layers in the film was calculated from the weights of the resins used under the condition that the intermediate layer (B) was in an unexpanded state, and is shown in Table 1. The film thickness calculated in the same manner as above provided that the intermediate layer (B) was in an unexpanded state was 60 ~. In the intermediate expanded layer of the above obtained multi-layer film, the expansion ratio was 1.8-2.2 and the total thickness was about 80 ~. Physical properties of the film are shown in Table 1. The thus-produced film was fabricated into a shopping bag. This bag had good opening properties.
The above film was cut and opened. Using this film, an audio set (with a transparent polycarbonate plate) was enclosed in such a manner that the low density polyethylene layer as the outer layer (A) was in contact with the audio set. The audio set was fixed with a buffer material and placed in a cardboard box, and then vibrated with a vibration testing machine (F-800 manufactured by Shin Nippon Sokki Co., Ltd.) for 15 minutes under vibration * *Trade Mark l conditions of 30 Hz and 7 G. Then, scrateches formed in the transparent polycarbonate plate were examined and rated as follows.
~: No scratch was formed.
O: Almost no scratch was formed.
~: Many scratches in a dot form were formed.
~: Many scratches in a big dot form were formed.
The results of the above vibration test are shown in Table l.

The procedure of Example 1 was repeated with the ex-ception that a low density polyethylene resin with a slipping agent incorporated therein was used as the inner layer resin.
The results are shown in Table 1.

COMPARATIVE EXP~IPLE 2 The procedure of Example l was repeated with the ex-ception that no expanding agent was incorporated in the intermediate layer.
The results are shown in Table l.

REFERENCE EXAMPLE
A commercially available laminate film (a laminate film consisting of a 500 ~ thick low density polyethylene expanded film and a 13 ~ thick high density polyethylene) was measured 1 for physical properties and was subjected to the same vibration test as above.
The results are shown in Table 1.

Table 1 Resins *h Layer Coefficient of Type of Parentheses Ratio Static Friction Layerindicate (Starting Inner Layer/ Outer Layer/
Mixing RatiOs Material) Inner Layer Outer Layer Inner Layer HDPE 4 Example 1 Layer LDPE-A 4 0.25 2.1 Outer Layer EVA 2 Inner Layer HDPE 4 Example 2 Intermediate LDPE-A 4 0.25 2.1 Layer Outer Layer EVA(80). 2 LDPE(20) Inner Layer HDPE 4 Example 3 Intermediate LLDPE-I 4 0.25 2.0 Layer Outer Layer EVA 2 Inner Layer HLPLDEpEO)(20) 4 Example 4 Intermediate LDPE-A 4 0.25 1.6 Outer Layer EVA 2 Inner Layer HDPE 4 Example 5 Layer LDPE-A 4 0.26 0.65 Outer Layer LDPE-B 2 Inner Layer HDPE 4 Example 6 Intermediate LDPE-A 4 0.26 0.75 Layer Outer Layer LLDPE-II 2 Inner Layer LDPE-C 2 Comparative Intermediate LDPE-A 5 0.83 0.72 Example 1 Layer Outer Layer LDPE-A 3 Inner Layer HDPE 4 Comparative Intermediate LDPE-A 4 0.25 2.0 Example 2 Layer Outer ~ayer EVA 2 Reference Commercially Avairable Film 0.80 0.20 Example Table 1 (continued) Loat at Elemendorf Tear Film Impact Tensile BreakStrength Strength Vibration [MD/TD] [MD/TD] kg-cm Test kg/cm g Example 11.9/1.5 100/360 8.5 ~3 Example 21.8/1.2 80/350 7.0 0 Example 32.0/1.8 110/390 7.3 ~3 Example 41.6/1.3 76/330 9.4 ~3 Example 51.6/1.1 75/600 7.6 Example 61.8/1.4 105/400 8.2 O

Comparative0.8/0.6 50/200 3.5 Example 1 Comparative2.2/1.9 120/410 10.0 X
Example 2 Reference1.0/0.6 22/200 6.0 ~3 Example -_ I 335253 / * Type of Resin HDPE: Idemitsu Polyethylene 640 UF ~manufactured by Idemitsu Petrochemical Co., Ltd.; density: 0.950 g/cm3; MI:
0.03 g/10 min) LDPE-A: PETOROSEN 205 (manufactured by Toyo Soda Kogyo Co., Ltd.; density: 0.924 g/cm3; MI: 3 g/10 min~
LDPE-B: PETOROSEN 175 (manufactured by Toyo Soda Kogyo Co., Ltd.; density: 0.921 g/cm3; MI: 0.6 g/10 min) LLDPE-I: MORETEC 0138 manufactured by Idemitsu Petrochemical ~O Co., Ltd.; density: 0.920 g/cm3; MI: 1 g/10 min) LLDPE-II: IDEMITSU POLYETHYLENE-L 0134L (manufactured by Idemitsu Petrochemical Co., Ltd.; density: 0.920 g/cm3;
MI: 1 g/10 min) LDPE-C: LDPE-A with a slipping agent (2 wt% erucic acid amide) added.
EVA: ULTRASEN 540 (manufactured by Toyo Soda Kogyo Co., Ltd.; density: 0.927 g/cm3; MI: 3 g/10 min; vinyl acetate content: 10 wt%) **Trade Mark

Claims (32)

1. A multi-layer film for use in packaging an article such as appliances, television sets, audio sets, business instruments, precision instruments and furniture, said multi-layer film comprising (A) an ethylene-vinyl acetate copolymer-based resin layer, said ethylene-vinyl acetate copolymer-based resin layer selected from the group consisting of an ethylene-vinyl acetate copolymer and a mixture of an ethylene-vinyl acetate copolymer and up to 50 wt % of other resins, (B) a polyethylene-based resin expanded layer, and (C) a high density polyethylene-based resin layer, said multi-layer film being used in packaging the article in such a manner that the ethylene-vinyl acetate copolymer-based resin layer is in contact with the article.
2. The multi-layer film as claimed in claim 1, wherein the ethylene-vinyl acetate copolymer-based resin has a density of 0.900 to 0.940 g/cm3 and a melt index of 0.1 to 50 g/10 min.
3. The multi-layer film as claimed in claim 2, wherein the ethylene-vinyl acetate copolymer-based resin is an ethylene-acetate copolymer having a vinyl acetate content of 5 to 35% by weight, a density of 0.920 to 0.940 g/cm3 and a melt index of 0.5 to 20 g/10 min.
4. The multi-layer film as claimed in claim 1, wherein the polyethylene-based resin expanded layer is a low density polyethylene-based resin expanded layer.
5. The multi-layer film as claimed in claim 4, wherein the low density polyethylene-based resin is a linear low density polyethylene.
6. The multi-layer film as claimed in claim 1, wherein the high density polyethylene-based resin has a density of 0.945 to 0.975 g/cm3 and a melt index of 0.01 to 5 g/10 min.
7. The multi-layer film as claimed in any one of claims 1 to 6 wherein said other resins are selected from the group consisting of high pressure low density polyethylene, linear low density polyethylene and ionomers.
8. A package for use in packaging an article such as appliances, television sets, audio sets, business instruments, precision instruments and furniture, said package comprising an article to be packaged, a multi-layer film comprising (A) an ethylene-vinyl acetate copolymer-based resin layer, said ethylene-vinyl acetate copolymer-based resin layer selected from the group consisting of an ethylene-vinyl acetate copolymer and a mixture of an ethylene-vinyl acetate copolymer and up to 50 wt % of other resins, (B) a polyethylene-based resin expanded layer and (C) a high density polyethylene-based resin layer packaged on the article, said multi-layer film being used in packaging the article in such a manner that the ethylene-vinyl acetate copolymer-based resin layer is in contact with the article and a buffering material being used to fix the article.
9. The package as claimed in claim 8, wherein the ethylene-vinyl acetate copolymer-based resin has a density of 0.900 to 0.940 g/cm3 and a melt index of 0.1 to 50 g/10 min.
10. The package as claimed in claim 9, wherein the ethylene-vinyl acetate copolymer-based resin is an ethylene-acetate copolymer having a vinyl acetate content of 5 to 35% by weight, a density of 0.920 to 0.940 g/cm3 and a melt index of 0.5 to 20 g/10 min.
11. The package as claimed in claim 8, wherein the polyethylene-based resin expanded layer is a low density polyethylene-based resin expanded layer.
12. The package as claimed in claim 11, wherein the low density polyethylene-based resin is a linear low density polyethylene.
13. The package as claimed in claim 8,wherein the high density polyethylene-based resin has a density of 0.945 to 0.975 g/cm3 and a melt index of 0.01 to 5 g/10 min.
14. The multi-layer film as claimed in any one of claims 1 to 6, wherein said multi-layer film has a thickness of 30 to 300 um.
15. The package as claimed in any one of claims 8 to 13, wherein said multi-layer film has a thickness of 30 to 300 um.
16. The multi-layer film as claimed in any one of claims 1 to 6, wherein said polyethylene-based resin expanded layer is intermediate said ethylene vinyl acetate copolymer-based resin layer and said high density polyethylene-based resin layer.
17. The package as claimed in any one of claims 8 to 13, wherein said polyethylene-based resin expanded layer is intermediate said ethylene vinyl acetate copolymer-based resin layer and said high density polyethylene-based resin layer.
18. The multi-layer film as claimed in any one of the claims 8 to 13 wherein said other resins are selected from the group consisting of high pressure low density polyethylene, linear low density polyethylene and ionomers.
19. A package for packaging an article such as appliances, television sets, audio sets, business instruments, precision instruments and furniture, said package comprising a co-extruded multi-layer film comprising (A) an ethylene-vinyl acetate copolymer-based resin layer, (B) a polyethylene-based resin expanded layer of low density polyethylene with a density of 0.910 to 0.930 g/cm3 and (C) a high density polyethylene based resin layer, said multi-layer film being used in packaging the article in such a manner that the ethylene-vinyl acetate copolymer-based resin layer is in contact with the article; and a buffering material is used to fix the article.
20. The package as claimed in claim 19, wherein the ethylene-vinyl acetate-based resin has density of 0.900 to 0.940 g/cm3 and a melt index of 0.1 to 50 g/10 min.
21. The package as claimed in claim 19, wherein the ethylene-vinyl acetate copolymer has a vinyl acetate content of 5 to 35% by weight, a density of 0.920 to 0.940 g/cm3 and a melt index of 0.5 to 20 g/10 min.
22. The package as claimed in claim 19, wherein the low density polyethylene-based resin is a linear low density polyethylene.
23. The package as claimed in claim 19, wherein the high density polyethylene-based resin has a density of 0.945 to 0.975 g/cm3 and a melt index of 0.01 to 5 g/10 min.
24. The package as claimed in claim 19, wherein the ethylene-vinyl acetate copolymer-based resin further contains low density polyethylene or linear low density polyethylene or a mixture thereof present in an amount of up to 50%.
25. The package as claimed in claim 19, wherein the multi player film has a thickness of 30 to 300 microns.
26. The package as claimed in claim 23, wherein within the high-density polyethylene-based resin is an ethylene homopolymer; or a copolymer of ethylene and propylene or butene-1.
27. A film for use in packaging an article such as appliances, television sets, audio sets, business instruments, precision instruments and furniture, and which is a coextruded multi-layer film comprising (A) an ethylene-vinyl acetate copolymer-based resin layer, (B) a polyethylene-based resin expanded layer of low density polyethylene with a density of 0.910 to 0.0930 g/cm3 and (C) a high density polyethylene-based resin layer, said multi-layer film being used in packaging the article in such a manner that the ethylene-vinyl acetate copolymer-based resin layer is in contact with the article.
28. The film as claimed in claim 27, wherein the ethylene-vinyl acetate-based resin has a density of 0.900 to 0.940 g/cm3 and a melt index of 0.1 to 50 g/10 min.
29. The film as claimed in claim 27 wherein the ethylene-vinyl acetate copolymer-based resin further contains low density polyethylene or linear low density polyethylene or a mixture thereof present in an amount of up to 50%.
30. The film as claimed in claim 27 wherein the multi-layer film has a thickness of 30 to 300 microns.
31. The film as claimed in claim 27 wherein the high density polyethylene-based resin has a density of 0.945 to 0.973 g/cm3 and a melt index of 0.01 to 5 g/10 min.
32. The film as claimed in claim 31 wherein within the high-density polyethylene-based resin is an ethylene homopolymer; or a copolymer of ethylene and propylene or butene-1.
CA000531873A 1986-03-17 1987-03-12 Multi-layer plastic film and package Expired - Fee Related CA1335253C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP057070/1986 1986-03-17
JP61057070A JPS62214948A (en) 1986-03-17 1986-03-17 Multilayer film
JP61307805A JPS63160826A (en) 1986-12-25 1986-12-25 Multilayer film
JP307805/1986 1986-12-25

Publications (1)

Publication Number Publication Date
CA1335253C true CA1335253C (en) 1995-04-18

Family

ID=26398077

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000531873A Expired - Fee Related CA1335253C (en) 1986-03-17 1987-03-12 Multi-layer plastic film and package

Country Status (5)

Country Link
US (1) US4856656A (en)
EP (1) EP0237977B1 (en)
KR (1) KR900003808B1 (en)
CA (1) CA1335253C (en)
DE (1) DE3779344D1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356576A3 (en) * 1988-08-30 1991-01-30 Mbm Maschinenbau Mühldorf Gmbh Layer structure and container with such a layer structurs
US5000992A (en) * 1989-06-01 1991-03-19 The Dow Chemical Company Coextruded multilayer foamed film for plastic container closures and process for manufacture
FR2667296B1 (en) * 1990-09-27 1992-11-06 Bull Sa PROTECTIVE COVER FOR THE PACKAGING OF WEIGHTED PRODUCTS AND PACKAGING METHOD USING SUCH A COVER.
US5178263A (en) * 1991-11-27 1993-01-12 International Paper Company Modular track section for an endless conveyor
AU681888B2 (en) * 1993-08-06 1997-09-11 Gromark Packaging Pty Ltd Coextruded plastics packaging for bales
US5426153A (en) * 1994-04-06 1995-06-20 Quantum Chemical Corporation High impact strength film grade polymeric composition
US5484063A (en) * 1994-04-13 1996-01-16 Maxtor Corporation HDD carrying case
US7623754B1 (en) 1995-02-23 2009-11-24 Avid Technology, Inc. Motion picture recording device using digital, computer-readable non-linear media
US6977673B1 (en) 1995-02-23 2005-12-20 Avid Technology, Inc. Portable moving picture recording device including switching control for multiple data flow configurations
US5999406A (en) * 1995-02-23 1999-12-07 Avid Technology, Inc. Dockable electronic equipment container
US7532807B2 (en) * 1995-04-07 2009-05-12 Avid Technology, Inc. Combined editing system and digital moving picture recording system
DE29615956U1 (en) * 1996-08-28 1996-11-21 Auch Dietmar Multi-layer decorative film made of plastic lacquer film, almost like a stiff cloth
US6017615A (en) * 1997-08-25 2000-01-25 Huntsman Polymers Corporation Film product comprising novel polyolefins
FR2777501B1 (en) * 1998-04-15 2000-06-09 Ceisa HIGHLY CLEAR, EASY OPENABLE HEAT SHRINKABLE POLYETHYLENE FILM FOR PACKAGING OF PRODUCT GROUPS
US5984101A (en) * 1998-08-26 1999-11-16 Carrier Corporation Shipping protector
US6624979B1 (en) 2000-06-09 2003-09-23 Iomega Corporation Method and apparatus for parking and releasing a magnetic head
US6633445B1 (en) 2000-06-09 2003-10-14 Iomega Corporation Method and apparatus for electrically coupling components in a removable cartridge
US6628474B1 (en) 2000-06-09 2003-09-30 Iomega Corporation Method and apparatus for electrostatic discharge protection in a removable cartridge
US6717762B1 (en) 2000-06-09 2004-04-06 Iomega Corporation Method and apparatus for making a drive compatible with a removable cartridge
US6781782B2 (en) 2000-12-21 2004-08-24 Iomega Corporation Method and apparatus for saving calibration parameters for a removable cartridge
US6840372B2 (en) * 2001-05-11 2005-01-11 Hoamfoam Alliance, Inc. Uniform interlocking foam packing material/building material apparatus and method
US6496362B2 (en) 2001-05-14 2002-12-17 Iomega Corporation Method and apparatus for protecting a hard disk drive from shock
US6779067B2 (en) 2001-05-14 2004-08-17 Iomega Corporation Method and apparatus for providing extended functionality for a bus
US6901525B2 (en) 2001-05-25 2005-05-31 Iomega Corporation Method and apparatus for managing power consumption on a bus
US20040255313A1 (en) * 2003-06-10 2004-12-16 Kaczeus Steven L. Protecting a data storage device
EP1827825A1 (en) * 2004-12-21 2007-09-05 Basell Poliolefine Italia S.r.l. Heat-sealable polyolefin films
US7211620B2 (en) * 2005-01-25 2007-05-01 Plasticos, Flexibles S.A. Foldable polyolefin films
KR101262699B1 (en) * 2006-02-28 2013-05-08 삼성전자주식회사 Multilayered package film, package bag
US20080054619A1 (en) * 2006-08-29 2008-03-06 Barth Kimberly A Book jacket with window
MX2016005837A (en) * 2013-11-08 2016-10-14 Dow Global Technologies Llc A storage device.
ES2586155T3 (en) 2014-09-02 2016-10-11 Mondi Consumer Packaging Technologies Gmbh Multilayer plastic sheet
EP2815879A3 (en) 2014-09-02 2015-04-29 Mondi Consumer Packaging Technologies GmbH Polyethylene coextrusion film
CN107150433A (en) * 2017-05-15 2017-09-12 浙江豪升塑料科技有限公司 The multilayer colored diaphragm of processing die head and case and bag of the multilayer colored diaphragm of case and bag

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547754A (en) * 1965-10-01 1970-12-15 Crown Zellerbach Corp Thermoplastic packaging films having a difference in slip characteristics between their two outer surfaces
US3695421A (en) * 1970-09-08 1972-10-03 Harry G Wood Package assembly and cushion therefor
US3817821A (en) * 1972-11-08 1974-06-18 Du Pont Laminar packaging film
JPS5328177B2 (en) * 1974-06-11 1978-08-12
DE2513705A1 (en) * 1975-03-27 1976-10-07 Dynamit Nobel Ag HOOD LINING FOR MOTOR VEHICLES
US4252846A (en) * 1975-09-22 1981-02-24 The Dow Chemical Company Packages embodying a controlled peel seal and method of preparing same
DE2721532A1 (en) * 1977-04-27 1978-11-09 Basf Ag PROCESS FOR MANUFACTURING FOAM COMPOSITE MATERIALS
CA1131512A (en) * 1978-11-15 1982-09-14 Alan D. Stall Breathable fabric and sack
JPS5720345A (en) 1980-07-14 1982-02-02 Takigawa Kagaku Kogyo Kk Foaming polyethylene contractive film
GB2103449B (en) * 1981-06-29 1985-05-30 Nippon Telegraph & Telephone Method and apparatus for gray level signal processing
GB8300074D0 (en) * 1983-01-04 1983-02-09 Du Pont Canada Blends of polyethylene and polybutenes
US4546882A (en) * 1983-02-07 1985-10-15 American Can Company Package having oil-containing product
US4565720A (en) * 1983-07-27 1986-01-21 Idemitsu Petrochemical Co., Ltd. Packaging bag
US4533578A (en) * 1983-08-30 1985-08-06 Mobil Oil Corporation Sandwich foam coextrusion for high performance polyolefin trash bags
JPS60196335A (en) * 1984-03-21 1985-10-04 富士写真フイルム株式会社 Laminated film
IT1183613B (en) * 1985-05-13 1987-10-22 Anibiotici Cristallizzati Ster COMPOSITE CONTAINER FOR SOLID STERILE PRODUCTS
JPS62161692U (en) * 1986-04-03 1987-10-14

Also Published As

Publication number Publication date
DE3779344D1 (en) 1992-07-02
EP0237977A2 (en) 1987-09-23
US4856656A (en) 1989-08-15
KR900003808B1 (en) 1990-05-31
KR870008691A (en) 1987-10-20
EP0237977B1 (en) 1992-05-27
EP0237977A3 (en) 1988-11-02

Similar Documents

Publication Publication Date Title
CA1335253C (en) Multi-layer plastic film and package
USRE38694E1 (en) Low shrink force shrink film
US4194039A (en) Multi-layer polyolefin shrink film
EP0044544B1 (en) Adhesive tape
US5376437A (en) Laminated three-layer film
CA2106258A1 (en) Moisture barrier film
CA2191090A1 (en) Film containing alpha-olefin/vinyl aromatic copolymer
CA2110093A1 (en) Multilayer coextruded linear low density polyethylene stretch wrap films
EP0178061B1 (en) Packaging film or sheet
EP0454333B1 (en) Heat-shrinkable polypropylene film with improved printability
AU593483B2 (en) Heat-shrinkable sheet
ES2092952A1 (en) Multi-layer protection film
JP4157310B2 (en) Antistatic polypropylene-based resin laminated foam sheet and molded article for packaging
JPH0311987B2 (en)
JPH09169072A (en) Low foamed ethylene polymer resin laminated antistatic sheet
JPH07329260A (en) Heat sealable stretched laminated film
JP3112553B2 (en) Multi-layer stretch shrink film
JPH0331346B2 (en)
JPS5911252A (en) Laminated film
JP3119676B2 (en) Stretch shrink wrapping film
JPH0885192A (en) Laminated sheet
JPS6153222B2 (en)
JPS6143536A (en) Polyethylene label
JP4084686B2 (en) Method for producing polyolefin resin laminated foam sheet
JP3093469B2 (en) Multi-layer stretch shrink film

Legal Events

Date Code Title Description
MKLA Lapsed