CA1315083C - Fiber with reversible enhanced thermal storage properties and fabrics made therefrom - Google Patents

Fiber with reversible enhanced thermal storage properties and fabrics made therefrom

Info

Publication number
CA1315083C
CA1315083C CA000574393A CA574393A CA1315083C CA 1315083 C CA1315083 C CA 1315083C CA 000574393 A CA000574393 A CA 000574393A CA 574393 A CA574393 A CA 574393A CA 1315083 C CA1315083 C CA 1315083C
Authority
CA
Canada
Prior art keywords
fiber
storage properties
thermal storage
fabric
microcapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000574393A
Other languages
French (fr)
Inventor
Yvonne G. Bryant
David P. Colvin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Triangle Research and Development Corp
Original Assignee
Triangle Research and Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Triangle Research and Development Corp filed Critical Triangle Research and Development Corp
Application granted granted Critical
Publication of CA1315083C publication Critical patent/CA1315083C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]
    • Y10T428/249995Constituent is in liquid form
    • Y10T428/249997Encapsulated liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Abstract

FIBER WITH REVERSIBLE ENCHANCED THERMAL STORAGE
PROPERTIES AND FABRICS MADE THEREFROM

Abstract of the Disclosure A fiber with integral microspheres filled with phase change material or plastic crystals has enhanced thermal properties at predetermined temperatures. The fibers may be woven to form a fabric having the enhanced thermal storage properties and articles of manufacture may be formed therefrom.

Description

FIBER WITH REVERSIF~T.F~ ENHAN~D THERMA~ STORAGE
-` PROPERTIES AND FABRICS MADE THEREFROM 1315 0 8 3 Field of the Invention This invention relates generally to the field of synthetic fibers impregnated with microcapsules and more particularly to fibers containing leak resistant microcapsules which are filled with an energy absorbing phase change material or a plastic crystal material which enables articles of manufacture made therefro~ to exhibit extended or enhanced heat retention or s age properties.
Backqround of the Invention The treatment of textiles and/or fibers with various substances in order to change the properties thereof is well known. For example, it is known that textiles may be waterproofed by coating them with natural or synthetic rubber.
Substances have been d0veloped which when sprayed onto fabrics introduce the property of stain re~istance. In addition, it is known that fragrance delivery systems can be incorporated into fabrics. One such fragrance delivery system uses breakable fragrance filled microcapsules which are attaohed to the surface of a fabric or fiber and upon the introduction of an external force, the microcapsules break releasing the fragrance over an extended time perlod.
Fabrics have been given enhanced thermal properties by coating the fiber8 and the inter8titial 8pace8 between fibers with phase change materials and with plastic crystals ~see , qP

,. ,, , - .
-;

.'~" ' - -- 131~083 Fabrics given enhanced thermal properties, October 20, 1986;
Chemical and Engineering News, Pages 15 and 16). The thermal properties of fabric are enhanced as it is impregnated with these microcapsules. More specifically, materials such as water, undergo phase changes from solid to liquid to gas at well known temperatures. Similarly, other materials such as paraffin wax undergo phase change from a solid to a liquid (fusion). At the phase change temperature, a characteristic of the material during the heating cycle is to absorb and hold a large quantity of thermal energy at a constant temperature before changing to the next phase. Thus, the material can be used as an absorber to protect an object from additional heat as a quantity of thermal energy will be absor~ed by the phase change material before its temperature can rise. The phase change material may also be preheated and used as a barrier to cold, as a larger quantity of heat must be removed from the phase change material before its temperature can begin to drop.
However, the aforementioned surface mounted phase change materials are not without their deficiencies. For example, it was found that while somewhat effective, the phase change material was not durably bound to the fibers and laundering removed most of the material. Thus, the fabric lacked repeatability of thermal response as each laundering removed a portion of the phase change material, thus causing the fabric to exhibit a corresponding change in thermal properties which limited its usefulness. AS a re ult, further work was undbrtakcn .

.

, , to perfect a serie~ of process steps for binding the phase change 8 3 material to the fabric in order to extend the useful life of the enhanced thermal properties. Furthermore, as far as is known to the inventors, the usefulness of these fibers and fabrics has 5 been applied to a broader temperature range which limits the thermal absorption or release at a ~pecific temperature range.
It is, therefore, an abject of the present invention to provide a fiber with enhanced thermal retention properties.
It is another abject of the present invention to 10 provide a fiber which will maintain its enhanced thermal properties over an extended period of time.
It is a further object of the invention to provide a fiber having enhanced thermal properties which can be produced with a minimum of process steps.
It is a stîll further abject of the invention to provide a fiber having enhanced thermal properties which can be woven into a fabric from which articles of clothing and the like can be manufactured. ~
It is a still further abject of the present invention to provide a fiber whlch dl~plays enhanced thermal properties o~er a ~peclfled temperature range.

SummarY of the Invention The foregoing abjects are accomplished by providing a fiber with reversible thermal storag~ properties oomprising a base material and a plurality of microcapsules. The ' ' ,, ' , .

.. . . .
~' .

' :
.

~31~
microcapsules are integral with and are dlspersed throughout the base material and contain a temperature stabilizing means such as a phase change material or plastic crystals. The fiber exhibits enhanced thermal stability when subjected to heat or cold. The microcapsules are resistant to leakage or rupture and may be subjected to repeated external mechanical stresses with minimum changes in the thermal characteristics of the fiber.
Additionally, the fiber may also include microcapsules containing different preselected phase change materials which increase the range of temperature stability of the fiber. The fiber may also be woven mto a temperature adaptable fabric.

Detailed Déscri~tion of the Preferred Embodiments While the present invention will be described more lS fully hereinafter, it is to be understood at the outset that persons of skill in the art may modify the invention herein described while still achieving the favorable results of this invention. Accordingly, the description which follows is to be understood as being a broad teaching disclosure directed to persons of skill in the appropriate arts, and not as limlting upon the present invention.
The fiber with reversible thermal storage properties c~mprises a base material and a plurality of microcapsules dispersed throughout the base material. The base material is preferably a synthetic polymer such as polyester, nylon, acrylic or mDdacrylic and the like.

, Th~ microcapsule~ can range in size rrom about one to 13 i 5 0 8 3 ab~ut 10 microns and are formed according to the methods described in any one of the following texts to which the reader is referred for an explanation on how to fabrlcate microcapsules:
S Books on Microencapsulation:
1. Vandergaer, J.E., Ed: Microencapsulation: Processes and Applications. Plenum Press, New York, 1974.
2. Gutcho, M.H.: Microcapsules and Microencapsulation Techniques. Noyes Data Corp., Park Ridge, New Jersey, 1976.
3. Ranney, M.W.: Microencapsulation Technology. Noyes Development Corp., Park Ridge, New Jersey, 1969.
4. Kondo, A.: Microcapsule Processing and Technology.
Marcel Dekker, Inc., New York, 1979.
5. Nixon, J.R.: Microencapsulation. Marcel Dekker, Inc., New York, 1976.
Articles on MicroencaPsulation:
1. Sparks, R.E.: "Microencapsulation", Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 15, 3rd Edition, John Wiley and Sons, Inc., 1981.
2. Thies, C.: NPhysicochemical Aspscts of Microencapsulation, n Polym. Plast. Technol. Eng., Vol. 5, 7 (1975). ---3. Thies, C.: "Microencapsulationn, MoGraw~Hill Yearkook of Science and Technology, 1979, pp. 13-21.
4. Herbig, J.A.: "Microencapsulationn, Encyclopedia of Polymer Science and Technology, Vol. B, 719 (1968).

ffl e microcap~ules contain a temperature stabilizing means or phase change material such as eicosane. Additionally, plastic crystals such as 2,2-dimethyl-1,3-propanediol (DMP) and 2-hydroxymethyl-2-methyl-1,3-propanediol (H M) and the like may be ::
., ~ .
~,:
~ :
-~-:

used as the ~emperature stablllzlng mean~. h,len plastlc cry~tal8 13 ~ ~ 0 8 3 absorb thermal energy, the molecular structure is temporarily modified without changing the phase of the material. In another aspect of the invention, the composition of the phase change material may be modified to obtain optimum thermal properties for a given temperature range. For example, the melting point of a homologous serie~ of pæaffinic hydrocarbons is ~lrectly related to the number of carbon atoms as shown in the following table: Compound Number of Melting ~oint NameCarbon Atoms Degrees Centigrade n~Octacosane 28 61.4 n-Heptacosane 27 59.0 n-Hexacosane 26 56.4 n-Pentacosane 25 53.7 n'Tetracosane 24 50.9 n'Tricosane 23 47.6 n-Docosane 22 44.4 n-Heneicosane 21 40.5 n-Eicosane 20 36.8 n-Nonadecane 19 32.1 n-Octadecane 18 28.2 n-Heptadecane 17 22.0 n-Hexadecane 16 18.2 n-Pentadecane 15 10.0 n~Tetradecane 14 5.9 n'Tridecan~ 13 -5.5 Each of the above materials can be separately encapsulated and i8 most effective near the melting point indicated. It will be seen from the foregoing that the effective temperature range of the fiber can, therefore, be tailored to a specific environment by selecting the phase change materials required for the corresponding temperature and adding microcapsules containing the material to the fiber.

In addition, the fiber can be designed to have enhanced .. ,,, . . . :
' . . -:

' -thermal chal~cteristics over a wide range ~ temperature or at 131~ 0 8 3discrete temperature ranges through proper selection of phase change material.
In fabricating the fiber, the desired microencapsulated phase change materials are added to the liquid polymer, polymer solution, or base material and the fiber is then expanded according to conventional methods such as dry or wet ~pinmng of polymer solutions and extrusion of polymer melts. Embedding the microcapsules directly within the fiber adds durability as the phase change material is protected by a dual wall, the first being the wall of the microcapsule and the second being the surrounding fiber itself. Thus, the phase change material i5 less likely to leak from the fiber during its liquid phase, thus enhancing its life and repeatability of thermal response.
lS In another important aspect of the invention, a fabric can be formed from the fibers described above by conventional weaving, knitting or nonwoven methods. For example, in a w~ven fabric any combination of the warp and weft with or without microcapsules can be used in order to obtain the desired texture and durability. This fabric may then be used to fabricate temperature adaptable clothing and other thermal barriers. For example, protective gloves can be l~de from the fabric. By choosing an appropriate phase change material, the gloves can be adapted for cold weather use. The gloves can be placed in a heating chamber prior to use to liquify the phase change material. When it iB desired to use the gloves, they are removed ... ... . . . . .. .. .
. ~.. ,. ............... -~ ' .

from the chamher and they will remain warm for an extended period 131~ 0 8 of time. Substantial cooling will not occur until the liquid phase ~hange material has solified. Conversely, by selecting the appropriate phase change materlal, the gloves can be used to S handle hot objects. In this situation the gloves are cooled and a phase change material is solified. When the gloves are exposed to a hot surface, the user will remain comfortable as he will perceive that they are remaining cool. This continues until the phase change material has liquified. The reader will note that this concept can be applied to numerous applications including items of clothing such as shoes, environmental suits as well as other applications which require shielding of individuals or machdnery from the hot and cold.
The foregoing embcdleents and examples are to be considered illustrative, rather than restrictive of the invention, and those modification which come within the meaning and range of equivalence of the claims are bo be included .,~., ~
therein.

.

~; ' ' " ' ~

.

' ' ~, .
- : -' -

Claims (15)

1. A fiber with reversible thermal storage properties comprising:
a base material, and a plurality of microcapsules integral with and dispersed throughout said base material, said microcapsules containing a temperature stabilizing means whereby the fiber exhibits enhanced thermal stability when subjected to heat or cold.
2. A fiber with reversible thermal storage properties according to claim 1 wherein said microcapsules are leak resistant, whereby the fiber may be subjected to repeated external mechanical stresses with minimum changes in the thermal characteristics of the fiber.
3. A fiber with reversible thermal storage properties according to claim 1 wherein said temperature stabilizing means comprises a phase change material.
4. A fiber with reversible thermal storage properties according to claim 1 wherein said temperature stabilizing means comprises a material selected from the group of paraffinic hydrocarbons.
5. A fiber with reversible thermal storage properties according to claim 1 wherein said temperature stabilizing means comprises a plastic crystal.
6. A fiber With reversible thermal storage properties according to claim 1 wherein said microcapsules range m diameter from about 1.0 micron to about 10 microns.
7. A fiber with reversible thermal storage properties according to claim 1 wherein the fiber includes at least two types of separately encapsulated temperature stabilizing means.
8. A fiber with reversible thermal storage properties comprising:
a synthetic polymer base material, and a plurality of leak resistant microcapsules integral with and dispersed throughout said synthetic polymer base material, said microcapsules containing a paraffinic hydrocarbon and ranging in diameter from about 1.0 micron to 10.0 microns.
9. A fabric with reversible thermal storage properties comprising:
a plurality of fibers and a plurality of microcapsules integral with and dispersed throughout the base material forming least some of said fibers, said microcapsules containing a temperature stabilizing means whereby the fibers form a fabric that exhibits enhanced thermal stability when subjected to heat or cold.
10. A fabric with reversible thermal storage properties according to claim 9 wherein said microcapsules are leak resistant, whereby the fabric may be subjected to repeated external mechanical stresses with minimum changes in the thermal characteristics of the fabric.
11. A fabric with reversible thermal. storage properties according to claim 9 wherein said temperature stabilizing means comprises a phase change material.
12. A fabric with reversible thermal storage properties according to claim 9 wherein said temperature stabilizing means comprises a material selected from the group of paraffinic hydrocarbons.
13. A fabric with reversible thermal storage properties according to claim 9 wherein said microcapsules range in diameter from about 1.0 microns to about 10 microns.
14. A fabric with reversible thermal storage properties according to claim 9 wherein said fibers include at least two types of separately encapsulated temperature stabilizing means whereby the fabric exhibits enhanced thermal properties over a predetermined temperature range.
15. A fabric with reversible thermal storage properties according to claim 9 wherein said temperature stabilizing means comprises a plastic crystal material.
CA000574393A 1987-08-31 1988-08-11 Fiber with reversible enhanced thermal storage properties and fabrics made therefrom Expired - Lifetime CA1315083C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US091,550 1979-11-05
US07/091,550 US4756958A (en) 1987-08-31 1987-08-31 Fiber with reversible enhanced thermal storage properties and fabrics made therefrom

Publications (1)

Publication Number Publication Date
CA1315083C true CA1315083C (en) 1993-03-30

Family

ID=22228366

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000574393A Expired - Lifetime CA1315083C (en) 1987-08-31 1988-08-11 Fiber with reversible enhanced thermal storage properties and fabrics made therefrom

Country Status (5)

Country Link
US (1) US4756958A (en)
EP (1) EP0306202B1 (en)
JP (1) JPS6485374A (en)
CA (1) CA1315083C (en)
DE (1) DE3854106T2 (en)

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756958A (en) * 1987-08-31 1988-07-12 Triangle Research And Development Corporation Fiber with reversible enhanced thermal storage properties and fabrics made therefrom
US5498478A (en) 1989-03-20 1996-03-12 Weyerhaeuser Company Polyethylene glycol as a binder material for fibers
US5432000A (en) 1989-03-20 1995-07-11 Weyerhaeuser Company Binder coated discontinuous fibers with adhered particulate materials
US5230959A (en) 1989-03-20 1993-07-27 Weyerhaeuser Company Coated fiber product with adhered super absorbent particles
US5087508A (en) * 1990-05-30 1992-02-11 Minnesota Mining And Manufacturing Company Dew and frost resistant signs
US5008133A (en) * 1990-06-06 1991-04-16 Herbet Albert J Method of coating a web with a coating mixture including microcapsules crushed by a back-up member
US5637389A (en) * 1992-02-18 1997-06-10 Colvin; David P. Thermally enhanced foam insulation
ES2135469T3 (en) * 1992-02-18 1999-11-01 Delta Thermal Systems Inc MOLDABLE FOAM WITH IMPROVED AND REVERSIBLE THERMAL STORAGE PROPERTIES.
US5499460A (en) * 1992-02-18 1996-03-19 Bryant; Yvonne G. Moldable foam insole with reversible enhanced thermal storage properties
US5366801A (en) * 1992-05-29 1994-11-22 Triangle Research And Development Corporation Fabric with reversible enhanced thermal properties
US6319599B1 (en) * 1992-07-14 2001-11-20 Theresa M. Buckley Phase change thermal control materials, method and apparatus
US6004662A (en) * 1992-07-14 1999-12-21 Buckley; Theresa M. Flexible composite material with phase change thermal storage
US5435376A (en) * 1992-08-17 1995-07-25 Microtek Laboratories, Inc. Flame resistant microencapsulated phase change materials
US5424519A (en) * 1993-09-21 1995-06-13 Battelle Memorial Institute Microwaved-activated thermal storage material; and method
US5532039A (en) * 1994-04-25 1996-07-02 Gateway Technologies, Inc. Thermal barriers for buildings, appliances and textiles
JPH10502137A (en) 1994-06-14 1998-02-24 ゲイトウェイ・テクノロジーズ・インコーポレーテッド Energy absorbing fabric coating and method of manufacture
US6207738B1 (en) 1994-06-14 2001-03-27 Outlast Technologies, Inc. Fabric coating composition containing energy absorbing phase change material
US5647226A (en) * 1994-12-07 1997-07-15 Mainstream Engineering Corporation Phase change apparatus for animal parts, human body parts, body fluids and culture
US5597437A (en) * 1995-01-12 1997-01-28 Procter & Gamble Zero scrap absorbent core formation process
US5705013A (en) * 1995-02-10 1998-01-06 The Procter & Gamble Company Method for manufacturing extensible side panels for absorbent articles
US5677048A (en) * 1996-03-04 1997-10-14 Gateway Technologies, Inc. Coated skived foam and fabric article containing energy absorbing phase change material
US7125816B1 (en) 1996-11-12 2006-10-24 Solid Water Holdings Waterproof/breathable technical apparel
US20040200094A1 (en) * 1996-11-12 2004-10-14 Baychar Softboots and waterproof /breathable moisture transfer composite and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like
US6981341B2 (en) 1996-11-12 2006-01-03 Solid Water Holdings Waterproof/breathable moisture transfer composite capable of wicking moisture away from an individual's body and capable of regulating temperature
US7314840B2 (en) * 1996-11-12 2008-01-01 Solid Water Holdings Waterproof/breathable, moisture transfer, soft shell Alpine boots, and snowboard boots, insert liners and footbeds
US20050034330A1 (en) * 1996-11-12 2005-02-17 Baychar Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US8569190B2 (en) 1996-11-12 2013-10-29 Solid Water Holdings Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like
US6048810A (en) * 1996-11-12 2000-04-11 Baychar; Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like
US7147911B2 (en) * 1996-11-12 2006-12-12 Solidawater Holdings Waterproof/breathable technical apparel
US20050214501A1 (en) * 1996-11-12 2005-09-29 Waterproof/breathable technical apparel
IT1293380B1 (en) * 1997-07-08 1999-02-25 Benetton Sportsystem Spa IMPROVED COMFORT SHOE
US5945217A (en) * 1997-10-14 1999-08-31 Gore Enterprise Holdings, Inc. Thermally conductive polytrafluoroethylene article
US6077597A (en) 1997-11-14 2000-06-20 Outlast Technologies, Inc. Interactive thermal insulating system having a layer treated with a coating of energy absorbing phase change material adjacent a layer of fibers containing energy absorbing phase change material
DE19753601A1 (en) * 1997-12-03 1999-06-10 Behr Gmbh & Co Cold storage, in particular for a motor vehicle
US6179879B1 (en) 1999-03-24 2001-01-30 Acushnet Company Leather impregnated with temperature stabilizing material and method for producing such leather
US6408256B1 (en) 1999-10-01 2002-06-18 Colorado State University Research Foundation Apparatus and method for thermal evaluation of any thin material
US7537586B2 (en) 2000-02-15 2009-05-26 The Procter & Gamble Company Active change aids for external articles
CN1103385C (en) * 2000-04-10 2003-03-19 天津工业大学 Autoamtic temp-regulating fibre and its products
DE10018938A1 (en) * 2000-04-17 2001-10-18 Merck Patent Gmbh Storage media for latent heat storage
WO2001092010A1 (en) * 2000-05-31 2001-12-06 Idemitsu Technofine Co., Ltd. Heat-storing dotted sheet, heat-storing cotton wadding, heat-storing fiber structure, heat-storing laminate and heat-storing cloth product
US20040043212A1 (en) * 2000-08-05 2004-03-04 Peter Grynaeus Thermal control nonwoven material
AU2001285393B2 (en) * 2000-08-05 2008-04-10 Carl Freudenberg Kg Thermal control nonwoven material
EP1715088B1 (en) * 2000-09-21 2008-09-03 Outlast Technologies, Inc. Multi-component fibers having reversible thermal properties
US7244497B2 (en) 2001-09-21 2007-07-17 Outlast Technologies, Inc. Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
US6855422B2 (en) 2000-09-21 2005-02-15 Monte C. Magill Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof
DE60135691D1 (en) * 2000-09-21 2008-10-16 Outlast Technologies Inc Multi-component fibers with reversible thermal properties
US7579078B2 (en) * 2001-09-21 2009-08-25 Outlast Technologies, Inc. Temperature regulating cellulosic fibers and applications thereof
US6793856B2 (en) * 2000-09-21 2004-09-21 Outlast Technologies, Inc. Melt spinable concentrate pellets having enhanced reversible thermal properties
US7160612B2 (en) * 2000-09-21 2007-01-09 Outlast Technologies, Inc. Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof
US20050208286A1 (en) * 2000-09-21 2005-09-22 Hartmann Mark H Polymeric composites having enhanced reversible thermal properties and methods of forming thereof
AU2001294642A1 (en) * 2000-09-21 2002-04-02 Outlast Technologies, Inc. Stable phase change materials for use in temperature regulating synthetic fibers, fabrics and textiles
US6703127B2 (en) 2000-09-27 2004-03-09 Microtek Laboratories, Inc. Macrocapsules containing microencapsulated phase change materials
US6723967B2 (en) 2000-10-10 2004-04-20 Malden Mills Industries, Inc. Heating/warming textile articles with phase change components
FR2815868B1 (en) * 2000-10-27 2006-09-22 Oreal COSMETIC COMPOSITION CONTAINING THERMOSTABILIZING MICROCAPSULES
FR2815867B1 (en) * 2000-10-27 2006-09-22 Oreal COSMETIC OR PHARMACEUTICAL COMPOSITIONS CONTAINING THERMOSTABILIZING MICROCAPSULES
EP1201220A1 (en) * 2000-10-27 2002-05-02 L'oreal Cosmetic or pharmaceutical compositions containing thermostabilising microcapsules
FR2815869B1 (en) * 2000-10-27 2006-09-22 Oreal USE OF THERMOSTABILIZING MICROCAPSULES TO ENHANCE THE ACTIVITY OR PENETRATION OF COSMETIC OR PHARMACEUTICAL ACTIVE INGREDIENTS
EP1223243B1 (en) * 2001-01-11 2004-01-02 Cognis Iberia, S.L. Use of chitosan microcapsules
AU2002240106A1 (en) 2001-01-25 2002-08-06 Outlast Technologies, Inc. Coated articles having enhanced reversible thermal properties and exhibiting improved flexibility, softness, air permeability, or water vapor transport properties
WO2002092911A1 (en) * 2001-05-11 2002-11-21 Texon Uk Limited Paper or paperboard comprising thermal control material
GB0116005D0 (en) * 2001-06-29 2001-08-22 Thermotic Dev Ltd Packaging material
DE50212494D1 (en) * 2001-07-19 2008-08-28 Bock Healthcare Gmbh Material of a polyurethane gel, manufacturing process and uses
US9434869B2 (en) 2001-09-21 2016-09-06 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
US6517648B1 (en) * 2001-11-02 2003-02-11 Appleton Papers Inc. Process for preparing a non-woven fibrous web
FR2825631A1 (en) * 2001-12-04 2002-12-13 Oreal System for topical application, useful for imparting fresh feel to skin, includes a hydrogel containing microspheres of crystalline material with high enthalpy of melting
US7037582B2 (en) * 2002-05-28 2006-05-02 The Hong Kong Polytechnic University Method for encapsulating phase transitional paraffin compound that can undergo phase transition and microcapsule resulting therefrom
ITMI20021155A1 (en) * 2002-05-28 2003-11-28 Atex S R L PROCEDURE FOR THE PRODUCTION OF A NON-WOVEN FABRIC IN SYNTHETIC FIBER WITH PERFUMING MEDIA
US20080131648A1 (en) 2003-06-23 2008-06-05 Solid Water Holdings Waterproof/breathable, moisture transfer, soft shell alpine boots and snowboard boots, insert liners and footbeds
KR100457319B1 (en) * 2002-10-02 2004-11-16 벤텍스 주식회사 A self temperature control fiber
KR20040033762A (en) * 2002-10-15 2004-04-28 (주)휴먼텍 플러스 The Heat Dissipating Panel using MicroPCM (Phase Change Material)
FR2847586B1 (en) 2002-11-27 2005-01-14 Centre Nat Rech Scient COMPOSITE MATERIAL, ITS USE FOR THE MANAGEMENT OF THERMAL EFFECTS IN A PHYSICO-CHEMICAL PROCESS
KR100504674B1 (en) * 2002-12-06 2005-08-01 벤텍스 주식회사 A quick absorption & dry fabric having the self temperature control function
KR100486887B1 (en) * 2002-12-13 2005-05-03 벤텍스 주식회사 A fast dry 2 layer fiber having the self temperature control function
CN1325710C (en) * 2002-12-17 2007-07-11 苗晓光 Heat-storage bidirectional temperature-regulating cashmere product and preparing method thereof
US7442410B2 (en) * 2002-12-24 2008-10-28 Nano-Sports Technologies Ltd. Method for encapsulating phase transitional paraffin compounds using melamine-formaldehyde and microcapsule resulting therefrom
US20040148685A1 (en) * 2003-02-05 2004-08-05 Samuel Messinger Heat resistant pad
US6889755B2 (en) * 2003-02-18 2005-05-10 Thermal Corp. Heat pipe having a wick structure containing phase change materials
US6869441B2 (en) * 2003-03-21 2005-03-22 Kimberly-Clark Worldwide, Inc. Thermal therapy sleeve
US7056335B2 (en) * 2003-03-21 2006-06-06 Kimberly-Clark Worldwide, Inc. Thermal therapy sleeve
US6881219B1 (en) 2003-03-21 2005-04-19 Kimberly-Clark Worldwide, Inc. Method of extending the therapeutic duration of a thermal therapy product
KR20040099956A (en) * 2003-05-20 2004-12-02 고경찬 Puppet attatchable functional clothing comforter
US7892988B2 (en) 2003-07-21 2011-02-22 Barbara Hildegard Pause Membrane materials with thermo-regulating properties for fabric structures
PL1658395T3 (en) * 2003-08-30 2007-04-30 Thueringisches Inst Fuer Textil Und Kunststoff Forschung E V Method for producing moulded bodies exhibiting thermoregulation properties
DE10342416A1 (en) * 2003-09-13 2005-04-07 Outlast Technologies, Inc., Boulder filter material
US20050118908A1 (en) * 2003-12-02 2005-06-02 Rong-Fen Chen Rubber sheet with a clothed surface
US20050150049A1 (en) * 2004-01-12 2005-07-14 Schmidt Hans E. Sleeping devices comprising a combination of down filling and a temperature regulating material
US20070141940A1 (en) * 2005-10-28 2007-06-21 Lightweight, breathable, waterproof, soft shell composite apparel and technical alpine apparel
US20070281567A1 (en) * 2004-04-05 2007-12-06 Solid Water Holding Waterproof/breathable technical apparel
US20070294920A1 (en) * 2005-10-28 2007-12-27 Soft shell boots and waterproof /breathable moisture transfer composites and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like
US7632587B2 (en) 2004-05-04 2009-12-15 Angstrom Power Incorporated Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
US20050281979A1 (en) * 2004-06-17 2005-12-22 Toas Murray S Loose fill insulation product having phase change material therein
EP1774076A4 (en) 2004-06-24 2008-04-30 Mmi Ipco Llc Engineered fabric articles
ATE426574T1 (en) 2004-07-03 2009-04-15 Advansa Bv FULL MATERIAL, METHOD AND DEVICE FOR THE PRODUCTION THEREOF
CN100425750C (en) * 2004-11-11 2008-10-15 浙江华孚色纺有限公司 Blended color yarn spun by pure spinning or blended spinning of air-conditioning fiber and its production method
AT501252B1 (en) * 2004-12-23 2008-02-15 Chemiefaser Lenzing Ag CELLULOSIC FORM BODY AND METHOD FOR THE PRODUCTION THEREOF
DE102005002411A1 (en) * 2005-01-18 2006-07-27 Basf Ag Coarse-particled microcapsule preparation
DK176827B1 (en) 2005-05-19 2009-11-09 Quilts Of Denmark As Mattress comprising an active heat-absorbing / emitting layer in combination with a down layer
US7428772B2 (en) * 2005-05-19 2008-09-30 Mmi-Ipco, Llc Engineered fabric articles
DE102005030484B4 (en) * 2005-06-28 2007-11-15 Carl Freudenberg Kg Elastic nonwoven fabric, process for its preparation and its use
DE102005032769A1 (en) 2005-07-14 2007-01-18 Outlast Technologies, Inc., Boulder Hygiene products
DE202005011177U1 (en) * 2005-07-15 2006-11-23 J & M Analytische Mess- Und Regeltechnik Gmbh Device for analysis, in particular photometric or spectrophotometric analysis
US20070051018A1 (en) * 2005-09-06 2007-03-08 Columbia Insurance Company Bladder with improved construction
CN101292064A (en) * 2005-09-15 2008-10-22 纤维创新技术公司 Multicomponent fiber comprising a phase change material
CN1970862B (en) * 2005-11-23 2010-08-11 丹阳市丹盛纺织有限公司 Air-conditioning fiber fabric and process for producing same
US8404341B2 (en) 2006-01-26 2013-03-26 Outlast Technologies, LLC Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
US20100016513A1 (en) * 2008-07-16 2010-01-21 Outlast Technologies, Inc. Functional Polymeric Phase Change Materials and Methods of Manufacturing the Same
US20100012883A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Functional Polymeric Phase Change Materials
US9234059B2 (en) 2008-07-16 2016-01-12 Outlast Technologies, LLC Articles containing functional polymeric phase change materials and methods of manufacturing the same
US20070173154A1 (en) * 2006-01-26 2007-07-26 Outlast Technologies, Inc. Coated articles formed of microcapsules with reactive functional groups
CN101437854B (en) 2006-03-23 2012-02-01 卡斯蒂利亚-拉曼查大学 Micro-capsulation method of phase-change material and obtained microcapsule and uses thereof
CN100359055C (en) * 2006-05-26 2008-01-02 天津工业大学 Polyacrylonitrile temperature-regulating fiber, and its manufacturing method
IL176693A0 (en) * 2006-07-04 2006-10-31 Aharon Eyal Stable suspensions containing microcapsules and methods for the preparation thereof
US7735327B2 (en) 2006-07-19 2010-06-15 Neal Energy Management Llc Active thermal insulation system utilizing phase change material and a cool air source
US7797950B2 (en) 2006-07-19 2010-09-21 Neal Energy Management Llc Active thermal insulation system utilizing phase change material and a cool air source
US20080233368A1 (en) * 2007-03-20 2008-09-25 Outlast Technologies, Inc. Articles having enhanced reversible thermal properties and enhanced moisture wicking properties to control hot flashes
KR20100025015A (en) * 2007-07-03 2010-03-08 아디트야 비를라 사이언스 앤 테크놀로지 컴퍼니 리미티드 A lyocell fiber with modified property and a process for making therefor
EP2210302A4 (en) * 2007-09-25 2012-12-05 Bic Soc Fuel cell cover
JP5453274B2 (en) 2007-09-25 2014-03-26 ソシエテ ビック Fuel cell system including space-saving fluid plenum and method related thereto
US20090110656A1 (en) * 2007-10-31 2009-04-30 Lemke Sarah A Skin cooling composition
US20090157153A1 (en) * 2007-12-13 2009-06-18 Sarah Anne Lemke Skin cooling system
ES2404562T3 (en) 2008-01-17 2013-05-28 SOCIéTé BIC Covers for electrochemical cells and corresponding procedures
US7793372B2 (en) * 2008-05-23 2010-09-14 Latex Foam International Holdings, Inc. Latex foam bedding products including phase change microcapsules
US8221910B2 (en) 2008-07-16 2012-07-17 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing polymeric phase change materials
US20100015430A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Heat Regulating Article With Moisture Enhanced Temperature Control
WO2010042566A1 (en) * 2008-10-08 2010-04-15 Microtek Laboratories, Inc. Microencapsulation of a phase change meterial with enhanced flame resistance
US20110117353A1 (en) * 2009-11-17 2011-05-19 Outlast Technologies, Inc. Fibers and articles having combined fire resistance and enhanced reversible thermal properties
US20130196109A1 (en) 2009-11-24 2013-08-01 Mmi-Ipco, Llc Insulated Composite Fabric
US10113043B2 (en) 2010-02-26 2018-10-30 Twin Brook Capital Partners, Llc Polyurethane gel particles, methods and use in flexible foams
US8933140B2 (en) 2010-02-26 2015-01-13 Peterson Chemical Technology, Inc. Thermal storage gelatinous triblock copolymer elastomer particles in polyurethane flexible foams
US9534098B2 (en) 2010-02-26 2017-01-03 Peterson Chemical Technology, Llc. Enhanced thermally conductive cushioning foams by addition of metal materials
US8957133B2 (en) * 2010-07-20 2015-02-17 Basf Se Polyamide moldings comprising microencapsulated latent-heat-accumulator material
US8673448B2 (en) 2011-03-04 2014-03-18 Outlast Technologies Llc Articles containing precisely branched functional polymeric phase change materials
FR2974988B1 (en) * 2011-05-12 2013-06-14 Hill Rom Ind Sa DEVICE FOR REGULATING MOISTURE AND TEMPERATURE AT THE SURFACE OF A SUPPORT ELEMENT
US20120095605A1 (en) 2011-09-17 2012-04-19 Tran Bao Q Smart building systems and methods
US8359750B2 (en) 2011-12-28 2013-01-29 Tran Bao Q Smart building systems and methods
CN103590257A (en) * 2012-08-17 2014-02-19 青岛新美功能服装开发有限公司 Manufacturing method for invisible clothes
CN104120540A (en) * 2013-04-23 2014-10-29 上海帕兰朵纺织科技发展有限公司 Composite-function fiber knitted fabric with moisture absorption and heating functions and manufacturing method thereof
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
CN105696096A (en) * 2015-07-03 2016-06-22 怀宁县宝友工贸有限公司 Temperature adjustable fabric
US11130895B2 (en) 2016-09-20 2021-09-28 Aspen Aerogels, Inc. Aerogel composites having thermal storage capacity
CN106521689B (en) * 2016-10-20 2018-10-16 上海星松化纤股份有限公司 It can be used for the phase-change material master batch and its manufacturing method of terylene base air-conditioning fiber
USD911961S1 (en) 2017-04-03 2021-03-02 Latent Heat Solutions, Llc Battery container
US10962816B2 (en) 2017-06-16 2021-03-30 E Ink Corporation Flexible color-changing fibers and fabrics
US20190053632A1 (en) * 2017-08-17 2019-02-21 Serta Simmons Bedding, Llc Three dimensional polymeric fiber matrix layer for bedding products
US11643584B2 (en) * 2017-11-16 2023-05-09 Georgia Tech Research Corporation Incorporation of microencapsulated phase change materials into wet-spin dry jet polymeric fibers
US11635640B2 (en) 2018-10-01 2023-04-25 E Ink Corporation Switching fibers for textiles
US11656525B2 (en) 2018-10-01 2023-05-23 E Ink Corporation Electro-optic fiber and methods of making the same
US11761123B2 (en) 2019-08-07 2023-09-19 E Ink Corporation Switching ribbons for textiles
CN113529267A (en) * 2020-04-18 2021-10-22 广州盛色科技有限公司 Environment self-adaptive intelligent thermal insulation material
US11814566B2 (en) 2020-07-13 2023-11-14 L&P Property Management Company Thermally conductive nanomaterials in flexible foam
US11597862B2 (en) 2021-03-10 2023-03-07 L&P Property Management Company Thermally conductive nanomaterial coatings on flexible foam or fabrics
US11712086B1 (en) * 2022-11-18 2023-08-01 Ascent Snorting Innovations, Inc. Temperature regulating insole

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL3510C (en) *
NO78776C (en) * 1948-04-09 1900-01-01
US2694606A (en) * 1948-10-22 1954-11-16 Cefas Ag Lubricant pad for bearings
US3493460A (en) * 1966-11-21 1970-02-03 Dow Chemical Co Fire retardant laminate
JPS5022613B1 (en) * 1971-06-29 1975-08-01
JPS5240641A (en) * 1975-09-23 1977-03-29 Shibanai Ichiro Method of producing color varying yarn
AR222162A1 (en) * 1977-12-01 1981-04-30 Pietersen Anthonius H A FIRE WARNING MATERIAL
JPS5519723A (en) * 1978-07-27 1980-02-12 Mitsubishi Paper Mills Ltd Electric insulated sheet
US4226906A (en) * 1978-08-14 1980-10-07 John Brian Haworth Microporous coated fabrics from clustered microspheres
US4623583A (en) * 1979-04-18 1986-11-18 White Chemical Corporation Flame retardant textile fabrics
US4441508A (en) * 1979-06-04 1984-04-10 Vectra International Corporation Thermographic cholesteric coating compositions and plates
US4428998A (en) * 1979-12-21 1984-01-31 Rockwell International Corporation Laminated shield for missile structures and substructures
US4514461A (en) * 1981-08-10 1985-04-30 Woo Yen Kong Fragrance impregnated fabric
US4296174A (en) * 1980-08-08 1981-10-20 E. I. Du Pont De Nemours And Company Spandex filaments containing certain metallic soaps
US4659619A (en) * 1981-06-11 1987-04-21 Thalatta, Inc. Color changeable fabric
EP0087859B1 (en) * 1982-02-23 1986-04-30 Ciba Specialty Chemicals Water Treatments Limited Thermal energy storage compositions
SE452471B (en) * 1982-11-26 1987-11-30 Casco Nobel Ab PROCEDURE FOR EXPANDING THERMOPLASTIC MICROSPHERES
JPS59124956A (en) * 1982-12-29 1984-07-19 Sakata Shokai Ltd Thermal indicator for detecting heat history
US4528226A (en) * 1983-10-11 1985-07-09 Minnesota Mining And Manufacturing Co. Stretchable microfragrance delivery article
US4561981A (en) * 1984-01-27 1985-12-31 Characklis William G Treatment of fouling with microcapsules
US4609587A (en) * 1984-11-30 1986-09-02 Potters Industries, Inc. Retroreflective materials and use
US4572864A (en) * 1985-01-04 1986-02-25 The United States Of America As Represented By The United States Department Of Energy Composite materials for thermal energy storage
CA1240883A (en) * 1985-01-30 1988-08-23 Norikazu Nakasuji Thermochromic textile material
US4605586A (en) * 1985-07-01 1986-08-12 Globe International Inc. Fire resistant oil spill barrier
US4908166A (en) * 1985-11-22 1990-03-13 University Of Dayton Method for preparing polyolefin composites containing a phase change material
US4756958A (en) * 1987-08-31 1988-07-12 Triangle Research And Development Corporation Fiber with reversible enhanced thermal storage properties and fabrics made therefrom

Also Published As

Publication number Publication date
US4756958A (en) 1988-07-12
DE3854106D1 (en) 1995-08-10
DE3854106T2 (en) 1996-02-08
EP0306202B1 (en) 1995-07-05
JPH0555607B2 (en) 1993-08-17
EP0306202A3 (en) 1990-02-28
EP0306202A2 (en) 1989-03-08
JPS6485374A (en) 1989-03-30

Similar Documents

Publication Publication Date Title
CA1315083C (en) Fiber with reversible enhanced thermal storage properties and fabrics made therefrom
US5366801A (en) Fabric with reversible enhanced thermal properties
WO1993024241A9 (en) Fabric with reversible enhanced thermal properties
Iqbal et al. Phase change materials, their synthesis and application in textiles—a review
CA2398014C (en) Particulate compositions and their manufacture
US5290904A (en) Heat shield
US8449947B2 (en) Thermal control nonwoven material
CA2271242C (en) Interactive thermal insulating system having a layer treated with a coating of energy absorbing phase change material adjacent a layer of fibers containing energy absorbing phase change material
WO2002053370A1 (en) Microcapsule containing phase change material and article having same
US5435376A (en) Flame resistant microencapsulated phase change materials
EP1587977B1 (en) Thermal control nonwoven material
US7135424B2 (en) Coated articles having enhanced reversible thermal properties and exhibiting improved flexibility, softness, air permeability, or water vapor transport properties
EP2089149A2 (en) Microcapsules, their use and processes for their manufacture
Sánchez‐Silva et al. Preparation of coated thermo‐regulating textiles using Rubitherm‐RT31 microcapsules
US6373058B1 (en) Method of reducing infrared viewability of objects
EP0630195B1 (en) Moldable foam with reversible enhanced thermal storage properties
Bhatkhande Development of thermo-regulating fabric using phase change material (PCM)
Mondal Phase Change Fibers
Holman The use of microencapsulated phase-change materials to enhance the thermal performance of apparel
Wang et al. Fabrication of air‐conditioning tussah silk with capric–stearic eutectic mixture for effective energy storage and thermal‐regulatory applications
ZAHID NAEEM et al. Applications of Ultra Smart Textiles in Sportswear and Garments
Hira et al. Engineering of textiles with thermo-regulatory properties.

Legal Events

Date Code Title Description
MKEX Expiry