CA1312493C - High strength nonwoven fabric - Google Patents

High strength nonwoven fabric

Info

Publication number
CA1312493C
CA1312493C CA000577323A CA577323A CA1312493C CA 1312493 C CA1312493 C CA 1312493C CA 000577323 A CA000577323 A CA 000577323A CA 577323 A CA577323 A CA 577323A CA 1312493 C CA1312493 C CA 1312493C
Authority
CA
Canada
Prior art keywords
fibers
web
nonwoven fabric
continuous filament
fabric according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000577323A
Other languages
French (fr)
Inventor
Stuart P. Suskind
Joseph Israel
Susan L.K. Martucci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fiberweb North America Inc
Fort James Corp
Original Assignee
Fiberweb North America Inc
James River Corp of Virginia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiberweb North America Inc, James River Corp of Virginia filed Critical Fiberweb North America Inc
Application granted granted Critical
Publication of CA1312493C publication Critical patent/CA1312493C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/32Multi-ply with materials applied between the sheets
    • D21H27/34Continuous materials, e.g. filaments, sheets, nets
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/66Additional nonwoven fabric is a spun-bonded fabric
    • Y10T442/663Hydroentangled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/664Including a wood fiber containing layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/668Separate nonwoven fabric layers comprise chemically different strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/689Hydroentangled nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/697Containing at least two chemically different strand or fiber materials
    • Y10T442/698Containing polymeric and natural strand or fiber materials

Abstract

ABSTRACT

A strong, absorbent nonwoven fabric containing wood pulp and textile fibers is prepared by hydroentanglement with a continuous filament, base web. The fabric may be apertured or essentially nonapertured and may be made water repellant for use in medical and surgical applications.

Description

13124q3 ~IGI~ STRI~NGT~ NONWOV~N FABRIC

This invention relates to high strength nonwoven fabrics containing wood pulp, and to methods of their preparation. In one of its more specific aspects, the present invention relates to a unique apertured or nonapertured composite fabric comprising a relatively high proportion of wood pulp fibers intimately entangled with staple fibers and with a web of continuous filament fibers. In one of its more specific aspects, a spunlaced fabric suitable for disposable medical applications is produced by hydraulically entangling wood pulp and staple fibers with a continuous filament base web producing a nonapertured high strength fabric, and treating the fabric with a fluorocarbon water repellant.

Composite webs made up of various combinations of fibers are known in the prior art. Nonwoven fabrics in which staple length textile fibers are hydroentangled with continuous filaments are disclosed in U.S. 3,494,821 and 4,144,370. In U.S. 4,623,576, staple fibers are blended with melt blown fibers during the blowing process to form a composite web. In U.S.
Patent No. 3,917,785 and 4,442,161, a layer of textile fibers, which may be mixed with wood pulp, is hydroentangled to form a non-woven fabric, while in '3~
U.S. Patent No. 3,493,462, two layers of wood fibers and staple length rayon fibers are hydroentangled with a central web of unbonded continuous filaments to produce a leather substitute.

- Nonwoven fibrous webs comprising mixtures of wood pulp and synthetic fibers have high moisture absorption capabilities and may be inexpensively produced by conventional papermaking procedures.
However, such products also tend to have relatively low wet strength properties and lack sufficient strength for many applications, for example, for use as household cloths, food service wipes and industrial machinery wipes. The strength of such products may be improved by including a bonding agent in the fiber furnish or by application of an adhesive binder to the formed web. When the strength characteristics of the web are improved by use of an adhesive binder, such as a synthetic resin latex, the li~uid absorption capability of the web is correspondingly decreased.

In accordance with the present invention, a high strength nonwoven absorbent fabric may be produced which comprises a web of continuous filament fibers and a soft, absorbent surface of wood pulp fibers mixed with staple length textile fibers intimately entangled with the continuous filament fibers. In one specific -3- 1 31 24 q3 embodiment of this invention, a spunbonded web is formed in known manner and combined with an unbonded or lightly bonded air laid or water laid web of pulp and textile fibes by hydraulic entanglement. As a specific example, a water-laid web made up of 80 to 90 weight percent wood pulp fibers and lO to 20 weight percent short, staple length polyethylene terephthalate (PET) fibers hydroentangled with a spunbonded web of continuous filament nylon produces a strong nonwoven fabric having excellent water absorption qualities. In another specific example of another embodiment of this invention, a wet laid web of wood pulp fibers and PET
staple fibers is spunlaced with spunbonded polypropylene forming an absorbent oleophilic fabric useful in wiping oil and water based sp~lls.
Staple fibers may range in length from three eighths inch to two inches and may include natural fibers, e.g., cotton, wool and synthetic fibers, including nylon, polyester, and the like. Fiber denier is ~sually about 1.2 to 2.0 denier per filament. The nonwoven fabrics of this invention containing a substantial proportion of wood pulp are strong when wet and highly absorbent, and do not require stabilizati-on with a latex adhesive. The continuous filament base web may be produced by known methods from any of various synthetic resins including polyolefins, nylons, polyesters, and the like.
-4- 1~12493 In a preferred embodimcnt of the present invention, a continuous filament base web and a separately formed fibrous layer or web composed of a mixture of wood pulp fibers and textile fibers are spunlaced into one another to provide a nonwoven fabric. The fibrous layer may be formed by any conventional web manufacturing process. For example, the web may be produced by a wet-laying process, or by air laying, or by other techniques utilized in the paper and nonwovens industries. In one preferred embodiment of this invention, the continuous filament web and the fibrous web are separately formed and brought together as separate layers or plies and then subjected to hydraulic entanglement to produce a single composite spunlaced fabric. A preferred method and apparatus for hydraulically entangling the fibers is disclosed in U.S. Patent No. 3,494,821.

Preferably, the fibrous layer is produced by a classical, wet-laid papermaking method using any one of various, commonly practiced dispersant techniques to disperse a uniform furnish of wood pulp fibers and staple fibers onto a foraminous screen of a conventional papermaking machine. U.S. Patent No.
4,081,319 to Conway and U.S. Patent No. 4,200,488 to Brandon et al. disclose wet-laying methods which may be used to produce a uniform web of wood pulp and staple fibers.

While various wood pulps may be incorporated into the finished fabric by hydroentanglement as disclosed herein, those pulps which are characteri~ed by long, flexible fibers of a low coarseness index are preferred. Wood fibers with an average fiber length of three to five millimeters are especially suited for use in the spunlaced fabrics. Western red cedar, redwood and northern softwood kraft pulps, for example, are among the more desireable wood pulps useful in the nonwoven spunlaced fabrics.

Staple fiber length is an important factor affecting the ahrasion resistance of the resulting fabric. Staple fibers which are either too short or too long do not entangle well with the continuous filament fibers of the base web. Staple fiber lengths in the range of from about three eighths inch to about one inch are suitable for use in the process of this invention. Staple fiber lengths in the range of from about one half inch to three quarters inch are preferred. The diameter of the fibers should be not greater than three denier for best results. Synthetic fibers of one and one half denier or less are preferred.

The wood pulp fiber content of the reinforced nonwoven web in accordance with the present invention may be in the range of from about 40 weight percent to about 90 weight percent. For most applications, a wood pulp content in the range from about 55 weight percent to 75 weight percent is preferred. The higher levels of wood pulp provide increased absorbency to the product usually with some loss of abrasion resistance.

The continuous filament base web preferably has a basis weight not greater than about 0.55 ounce per square yard. Preferably, the basis weight of the base web is in the range of 0.15 to 0.~ ounce per square yardO The polymers from which the co~tinuous filaments are made can vary widely and can include any polymer or polymer blend capable of being melt spun. Among the acceptable polymers are polyethylene, polypropylene polyester and nylon. Bonding of the continuous filament web is essential when produced in a separate step, in which case the bonding area should not exceed about fifteen percent of the total area of the web for best results. Bonding in the range of six to ten percent area bonded is preferred.

. .

In the present invention, the entangling treatment can be carried out under conventional conditions described in the prior art, for example, by the hydroentanglement process disclosed in U.S. Patent No. 3,485,706 to F.J. Evans or 3,560,326 to Bunting Jr., et al. A~
known in the art, the product fabric may be patterned by carrying out the hydroentanglement operation on a patterned screen or foraminous support. Nonpatterned products also may be produced by supporting the layer or layers of fibrous material on a smooth supporting surf~ce during the hydroentanglement treatment as disclosed in U.S. Patent No. 3,493,462 to Bunting, Jr.
et al.

The basis weight of the finished fabric may range from about 0.~ ounce per square yard to about four ounces per square yard. The lower limit generally defines the minimum weight at which acceptable web strength (greater than one pound per inch strip tensile) can be attained. The upper limit generally defines the weight above which the water jets are not effective to produce a uniformly entangled web.

The continuous filament web may be supplied from a suitable source in rolls, unwound from a roll, layered with one or more webs of wood pulp and textile fibers, and hydroentangled. Alternatively, one or both webs may be produced on-site and fed directly from the web former to the hydroentangling apparatus without the need for drying or bonding of webs prior to entanglement. One or more separately formed webs containing the staple length textile fibers and wood pulp fibers is laminated with the continuous filament web on a foraminous screen or belt, preferably made-up of synthetic continuous filaments woven into a screen.
The combined webs are transported on the screen under several water jet manifolds of the type described in U.S. Patent No. 3,485,706. The water jets entangle the discrete staple fibers and wood fibers present in the nonelastic web with the continuous filaments producing an initmately blended composite fabric. After drying, the resulting fabric is soft and is suitable for use in disposable personal care or health care applications, or as a durable, multiple use fabric. Food service and utility wipes made up of continuous filaments spunlaced with staple fibers and wood pulp are strong, absorbent and generally superior in service than similar products of latex bonded hydroentangled synthetic fibers.

Colored fabrics may be made up from dyed wood pulp, dyed or pigmented textile staple fibers and pigmented continuous filaments, particularly those of polypropylene.

Fluorochemically finished fabrics made up of continuous filaments spunlaced with staple fibers and wood pulp fibers are strong, water repellent, soft, pliable, clothlike in appearance and feel and are suitable for us in health care applications such a sterilization wrap, and operating room gowns and drapes. Additionally this fluorochemically treated fabric can be sterilized by currently known and commercially available sterilization processes, e.g., gamma irradiation, ethylene oxide gas, steam, and electron beam methods of sterilization.

One embodiment of a suitable method for makinq the nonwoven fabric of this invention is illustrated in the figure, which is a simpliied, diagrammatic illustration of apparatus capable of carrying out the method of forming a nonwoven fabric in accordance with this invention. With reference to the figure, thermoplastic polymer pellets are placed in the feed hopper 5 of a screw extruder 6, where they are heated to a temperature sufficient to melt the polymer. The molten polymer is forced by the screw through conduit 7 into a spinning block 8. The elevated temperature of the polymer is maintained in spin block 8 by electr~ic heaters tnot illustrated). Polymer is extruded from the spin block 8 through a plurality of small diameter capillaries, for example capillaries having a diameter -lo- 1312493 of about 0.015 inch, at a density of 30 capillaries per inch, and exit from the spinning block as filaments of molten polymer 10.

The filaments 10 are deposited onto a foraminous endless belt 12. Vacuum boxes 13 assist in the retention of fibers on the belt. The fibers form a coherent web 14 which is removed from the belt by a pair of pinch rolls 15 and 16. Bonding elements (not illustrated) may be included, but are not necessarily required, in rolls 1~ and 16 to provide the desired extent of bonding of the continuous filaments.

The continuous filament web from consolidation rolls 15 and 16 is fed to rolls 17 and 18 where it is covered by a preformed web 19 comprising staple fibers and wood pulp fibers drawn from supply roll 20 over feed roll 21. A second preformed web 22 comprising staple fibers and wood pulp fibers is drawn from supply roll 23 over roll 18 onto belt 26. The layers of preformed webs, i.e., a continuous filament web 14 and the substantially nonelastic webs 19 and 22, are brought together at rolls 17 and 18 and carried on a foraminous carrier belt 26 formed of a flexible material, such as a woven polyester scrPen, through the hydroentanglement apparatus. The carrier belt 26 is supported on rolls, one or more of which may be driven by means not illustrated. A pair of rolls 27 and 28 remove the hydroentangled fabric from the belt 26 for drying and subsequent treatment.

5Several orifice manifolds 29 are positioned above the belt 26 to discharge small diameter, high velocity jet streams of water onto the webs 22 and 14 as they move from rolls 20 and 21 to rolls 27 and 28.
10Each of the manifolds 29, 2g' and 29n is connected with a source of water under pressure through conduits 30, 30' and 30", and each is provided with one or more rows of 0.005 inch diameter apertures spaced on 0.025 inch centers (to provide 40 orifices per linear inch) along the lowermost surface of the manifolds. The spacing between the orifice outlets of the manifolds and the web directly beneath each manifold is preferable in the range of from about one-quarter inch to about one-half inch. ~ater from jets issuing from the orifices and passing through the webs 22, 14 and the screen 25 is removed by vacuum boxes 32. Although only three manifolds are illustrated, as many as fourteen manifolds are preferred, the first two operating at a manifold pressure of about 200 psig and the remainder at pressures in the range of 400 to 1800 psig.

In the following examples 1 to 3, a 10 X 10, 0:062 caliper plain weave PET screen from National Wire Fabric Corporation having a warp size of 0.032 inch and a shute of 0.035 inch with an open area of 44 percent and an air permeability of 1255 cubic feet per minute is used as the carrier belt for the hydroentanglement operation.

A wet laid 41 lb./ream (1.98 oz./sq. yd.) web is prepared from a mixture of 60 weight percent long fiber northern softwood kraft pulp and 40 weight percent of 1.5 denier by three-quarter inch polyethylene terephthalate (PET) staple fibers. A 0.43 oz./sq. yd.
commercially available spunbonded polypropylene web with a six percent area bond, sold under the trade mark Cel~stra* by the Nonwoven Division of James River Corporation, Richmond, Virginia, is laid on the lQ X 10 mesh PET screen and covered by the wet laid web. The webs are passed at a speed of 240 ft./min. ~nder water jets from a series of ten manifolds each of which is provided with row of 0.005 inch diameter orifices spaced 0.025 inch apart extending across the full width of the webs. The fibers from the two webs are hydroentangled by subjecting them to the action of two rows of water jets operating at a manifold pressure of *Trademark 200 psig, four rows at a manifold pressure of 600 psig, four at 1200 psig and four at 1800 psig.

Properties of the nonwoven fabric produced in this example are shown in Table I in comparison with the properties of the water laid web alone, and those of a commercially available all synthetic nonwoven fabric sold as a food service wipe.

3n :

TABLE I
Present 100~
Water Laid Invention Synthetic Specimen Web ExamPle 1 HEF Fabric Basis Weight (oz/yd2) 1.85 2.22 2.48 (9/yd2) 52.463.0 70.2 Tensile (g/in) CD Dry 8063699 2692 MD Dry 6915602 3862 CD Wet 1322478 2172 MD Wet 1764222 3009 Tear (g) CD Dry 5621166 1152 MD Dry 520776 894 CD Wet 1482090 904 MD Wet 1721970 700 Taber Abrasion Top Dry 33 Bottom Dry 28 Top Wet 22 Bottom Wet 17 Geometric Mean 483 214 Thickness Caliper Dry 111132 103 Caliper Wet 93112 101 Loft 39.846.4 32.7 Absorption Capacity (g/in2) 0.309 0.274 0.28 Capacity (~) 928651 594 Rate (sec) 0.26 0.5 0.2 Wipe Dry (sec) 23.376.4 77.9 Wiping Efficiency Rating --- 4.2 3.8 Fuzz Test Top (mg) 17.70.00 0.00 Bottom (mg) 8.55 0.10 0.00 EXAMPLES 2 & 3 Spunlaced fabrics were produced by the method of Example 1 using the same water laid web of 40 weight percent PET and 60 weight percent northern softwood kraft fibers hydroentangled with a continuous filament 0.175 ounce per square yard nylon web sold under the trade name Cerex PBNII by James River Corporation, and a 0.43 ounce per square yard spunbonded polypropylene web sold under the trade name Celestra I by James River Corporation.

The physical properties of these fabrics are shown in Table II.

"` 13124q3 ~BLE II
Example 2 Example 3 Nylon Base Polypropylene Specimen Web Web Basis Weight (oz/yd2) 54.9 73.1 (g/yd2) 1.94 2.58 Tensile (g/in) CD Dry 1655 5236 MD Dry 3096 CD Wet 415 MD Wet 975 Tear (g) CD Dry 1094 MD Dry 1466 CD Wet 1268 MD Wet 2000 Taber Abrasion Geometric Mean 165 577 (Top & Bot; Wet & Dry) ttoPr dry) Thickness Caliper Dry 104 Caliper Wet 91 Loft 40 5 Absorption Capacity (g/in2)0.264 0.315 Capacity (%) 762 Rate (sec) 0.2 Wipe Dry (sec) 26.6 Fuzz Test Top (mg) 3-4 Bottom (mg) 0.4 -17- 1 31 2 4 q3 In the foregoing examples, the tensile strength, reported in grams per inch of width is determined by repeated tests of one inch wide by five inch strips in an Instron Model ~201 tensile tester. Tear, reported in grams, is measured by an Elmendorf tear tester using single ply test strips. Caliper is measured on a four ply sample with a TMI Model 551 micrometer and is reported in mils. Loft, reported in mils, is determined with an Aimes 212.5 loft tester on a single ply of the specimen. Absorptive Capacity, reported in grams per square inch, is measured by the INDA wiping efficiency test IST 190.0-85 as is the Wipe Dry Time, reported in seconds.

The Taber Abrasion test is performed with a Taber Abrasion Tester Model 503, results are reported in cycles to Eailure.

Absorptive Rate, reported in seconds, is the measure of the time required for one milliliter of water to complettely absorb into the fabric.

Fuzz measures the linting resistance of nonwoven fabrics, and is determined by rubbing a material sample with an abrasive sponge and measuring the amount of fibers collected after 20 cycles and it is reported in milligrams.

` 13124q3 Wiping Efficiency Rating is a subjective rating with an arbitrary scale of 1 to 5 ranging from l=poor to 5=superior.

In this example, a fabric suitable for medical applications is produced from a six percent bonded, 0.3 ounce per square yard continuous filament nylon web of 3.5 denier per filament marketed under the trade mark Cerex III* by James River Corporation of Virginia, Richmond, Virginia. The continuous filament nylon web is placed between two 0.9 oz./sq. yd. wet laid webs containing by weight 35 percent bleached sisal, 35 percent bleached debonded sulfite pulp and 30 percent three quarters inch by l.2 denier polyethylene terephthalate (PET) fibers.

The composite laminate comprising the nylon web sandwiched between two preformed wet laid webs- is supported on a tightly woven, 98 X 96, plain weave, 0.080 caliper polyester transfer belt, having a warp of 0.0059 inch filament diameter and a shute of 0.0079 inch filament diameter with an open area of l4_8 percent and an air permeability of 200 cubic feet per minute. The fibers are subjected to two passes under the hydraulic jets at 200 psig r six passes at 800 psig *Trademark on the face side of the fabric and four passes at 800 psig on the reverse side. The resulting composite fabric has a nonapertured appearance, and is soft and pliable.
A fluorocarbon water repellant finish is applied to the resultant fabric; the properties of the finished fabric are shown in the Table III, in comparison with a commercially available woven fabric marketed under the trade mark Sontara* by E.I. DuPont De Nemours and Company, Wilmin~ton, Delaware.

*Trademark -20- 13t~4q3 TABLE III

This Comparison Invention Fabric 5 Basis Weight (oz./sq. yd.) 2.2 1.9 Grab Tensile (lb.) MD 23 23 Grab Elongation (~) MD 58.5 28.5 CD 89.4 95.0 Elmendorf Tear (g) MD 2640 1088 Mullen Burst (PSI) 28 30 Frazier Air Permeability (CFM/sq.ft.) 148 120 15 Water Impact (g) 1 4 Hydrostatic Head (cm) 21 20 Mason Jar (min) 60+ 60+
Handle-O-Meter MD 26 33 ( 4X7 ) 3/4 n Gap CD 16 8 Particle Count, Gelbo Flex809 1535 10-Min. Count (1 Micron &
Larger) -21- 13124~3 In this example, a fabric suitable for medical applications as a gauze replacement is produced from a 0.175 ounces per square yard continuous filament nylon web of 3.5 denier per filament marketed under the trade name Cerex PBNII by James River Corporation of Virginia, Richmond, Virginia. ~he continuous filament nylon web is laid on a 30 X 26 mesh PET screen, and coyered by a 1.06 ounces per square yard wet laid web containing by weight 35 percent bleached sisal, 35 percent bleached debonded sulfite wood pulp, and 30 percent 3~4 inch by 1.2 denier polyethylene terphthalate (PET) fibers.

The webs are supported on a 1/2 twill woven, 30 X 26 polyester transfer belt, having a warp of 0.0177 inch filament, and a shute of 0.0197 inch filament with an open area of 22.9 percent and an air permeability of 590 cubic feet per minute.

The fibers are subjected to two rows of hydraulic jets at 200 psig and eight rows of hydraulic jets at 600 psig. The resulting apertured fabric has a gauze like appearance and is soft and pliable.

13~2493 The properties of the fabric are shown in table IV.

TABLE IV

Basis weight (oz/sq.yd) 1.2 Grab Tensile (lb) MD 9.3 Dry CD 5.4 10Grab Elongation (%) MD 50 Dry CD 78 Elmendor~ Tear (GM) MD 990 Dry CD 440 Elmendorf Tear (GM) MD 320 Wet 345 Mullen Burst (PSI~ 26 Thickness (MILS) 18 Absorption Capacity (~) 900 In this example a fabric suitable for medical applications is produced from a 0.175 ounces per square yard continuous filament nylon web of 3.5 denier per filament marketed under the trade name Cerex PBNII by James River Corporation of Virginia, Richmond Virginia.

The continuous filament nylon web is laid onto a tightly woven 98 X 96, plain weave, 0.080 caliper polyester transfer belt, having a warp of 0.0059 inch filament diameter and a shute of 0.0079 inch filament diameter, with an open area of 14.8 percent and an air permeability of 200 cubic feet per minute, and covered by a 1.4 ounces per square yard wet laid web containing by weight 80 percent bleached debonded sulfite wood pulp, and 20 percent 3/4 inch X 1.5 denier polyethylene terephthalate (PET) fibers.

The fibers are subjected to two passes under the hydraulic jets at 200 psig, and six passes under the hydraulic ~ets at 800 psig. The resulting fabric has a non-apertured appearance, and is soft and pliable. The fabric properties are shown in Table V.

TABLE V

Basis weight (oz/sq.yd) 1.6 Grab Tensile (lb) MD 19.1 Dry CD 13.8 Grab Elongation (%) MD 54 25Dry CD 75 Elmendorf Tear (GM) ~D 940 Dry CD 1280 Mullen Burst (PSI) 33 Thickness (MILS) 18 Frazier Air Permeability 248 (CFM/sq.yd) TEST PROCEDYRES
Mullen Burst = Bursting strength ASTM-D3786-80a This test method covers the determination of the resistance of textile fabrics to bursting using the hydraulic diaphragm bursting tester.
Bursting strength = the force or pressure required to rupture a textile structure, by distending it with force, applied at right angles to the plane of the fabric; reported in pounds per square inch of force to rupture.
Frazier Air PermeabilitY ASTM - D737~75 This test method covers the direct determination of air permeability of textile structures by the calibrated orifice method.
Air Permeability = is the rate of air flow through a material under a differential pressure between the textile structure sur~aces. The measurement is expressed in cubic feet of air per minute per square foot of material at a differential pressure of 0.5 inches of water.
~andle-O-Mete~ TAPPI Method T490;
INDA Standard Test 90.0 - 75 This test method assesses the quality of "Hand", which includes a combination of surface friction and flexural rigidity of textile materials.
The Handle-0-Meter measures the peak force in grams required to push a sample material into a predetermined slot opening at a predetermined stroke length.
~Ydrostatic ~ead AATCC Method 127-1977 This method covers the determination of the resistance of textile fabrics to water penetration under constantly increasing hydrostatic pressure.
Hydrostatic head measures thye height ~in centimeter of a column of water which textile materials can support prior to water penetration through the fabric.

-25- 13~2493 Mason ~L INDA Standard Test Method 80.7 - 70 This test method covers the determination of the resistance of textile fabrics to penetration of water under a constant hydrostatic pressure.
Mason jar measures the elapsed time in minutes to water (liquid) penetration through the fabric.
- Gelbo Plex Test INDA Standard Test Method 160.0-83 This test method covers the determination of the number of lint particles emitted from a textile fabric during continuous twisting and flexing action.
It measures the number of particles emitted from a continuously flexed and twisted material for a given period in minutes, and a predetermined particle size measured in microns.

Claims (14)

1. A high strength nonwoven fabric comprising a bonded continuous filament base web and a wet laid second fibrous web consisting essentially of 50 to 90 weight percent wood pulp and 10 to 50 weight percent staple length fibers inti-mately entangled with one another and with said base web.
2. A nonwoven fabric according to Claim 1 wherein the dry weight ratio of wet laid fibers to continuous filament base web fibers is in the range of about 3 to about 15.
3. A composite nonwoven fabric according to Claim 1 wherein the dry weight ratio of wet laid fibers to continuous filament base web fibers is in the range of about 5 to 10.
4. A nonwoven fabric according to Claim 1 wherein the continuous filament of the base web is of polypropylene.
5. A nonwoven fabric according to Claim 1 wherein the continuous filament of the base web is of nylon.
6. A nonwoven fabric according to Claim 1 wherein the continuous filament of the base web is of polyester.
7. A composite nonwoven fabric according to Claim 1, wherein the continuous filament base web is a bonded web with a bonding area in the range of from about six to about twenty-five percent of the total area of the web.
8. A nonwoven fabric according to Claim 1 wherein the staple length fibers of the second web are selected from the group consisting of cotton, wood, rayon, polyamides, polyolefins, polyesters, and acrylic fibers.
9. A nonwoven fabric according to Claim 1 wherein the staple length fibers are in the range of .8 to 6 denier per filament and a length in the range of three eighths inch to two inches.
10. A nonwoven fabric according to Claim 1 wherein the basis weight of the continuous filament base web is in the range of from about 0.15 to 0.8 ounce per square yard.
11. A nonwoven fabric according to Claim 1 having a basis weight in the range of from about .8 to about 4 ounces per square yard.
12. A composite nonwoven fabric comprising 15 to 25 weight percent of a bonded continuous fil-ament web, wherein the bonded area is within the range of 5 to 25 percent, and 75 to 85 weight percent mixed fibers consisting essen-tially of 50 to 90 weight percent softwood papermaking fibers and 10 to 50 weight percent staple length fibers hydroentangled with one another.
13. A nonwoven fabric according to Claim 1 having a fluorocarbon water repellant finish applied after hydroentanglement of the fibers.
14. A method of making a nonwoven fabric comprising cellulosic papermaking fibers, wood pulp and staple length fibers reinforced with a web of continuous filament fibers which com-prises laminating a plurality of water laid webs containing 45 to 90 weight percent wood pulp and 55 to 10 weight percent staple length synthetic fibers basis the dry weight of the fibers, with a continuous filament synthetic fiber web, subjecting the resulting multi-layer web to hydroentanglement forming a composite web of entangled fibers, and drying said composite web to form said nonwoven fabric.
CA000577323A 1987-09-15 1988-09-14 High strength nonwoven fabric Expired - Fee Related CA1312493C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/097,157 US4808467A (en) 1987-09-15 1987-09-15 High strength hydroentangled nonwoven fabric
US097,157 1987-09-15

Publications (1)

Publication Number Publication Date
CA1312493C true CA1312493C (en) 1993-01-12

Family

ID=22261571

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000577323A Expired - Fee Related CA1312493C (en) 1987-09-15 1988-09-14 High strength nonwoven fabric

Country Status (10)

Country Link
US (1) US4808467A (en)
EP (1) EP0308320B1 (en)
JP (1) JPH01111056A (en)
AT (1) ATE97454T1 (en)
CA (1) CA1312493C (en)
DE (1) DE3885691T2 (en)
DK (1) DK510988A (en)
FI (1) FI884231A (en)
NO (1) NO169669C (en)
PT (1) PT88511B (en)

Families Citing this family (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136761A (en) * 1987-04-23 1992-08-11 International Paper Company Apparatus and method for hydroenhancing fabric
US4902564A (en) * 1988-02-03 1990-02-20 James River Corporation Of Virginia Highly absorbent nonwoven fabric
US4939016A (en) * 1988-03-18 1990-07-03 Kimberly-Clark Corporation Hydraulically entangled nonwoven elastomeric web and method of forming the same
US4970104A (en) * 1988-03-18 1990-11-13 Kimberly-Clark Corporation Nonwoven material subjected to hydraulic jet treatment in spots
US4879170A (en) * 1988-03-18 1989-11-07 Kimberly-Clark Corporation Nonwoven fibrous hydraulically entangled elastic coform material and method of formation thereof
US4931355A (en) * 1988-03-18 1990-06-05 Radwanski Fred R Nonwoven fibrous hydraulically entangled non-elastic coform material and method of formation thereof
US4950531A (en) * 1988-03-18 1990-08-21 Kimberly-Clark Corporation Nonwoven hydraulically entangled non-elastic web and method of formation thereof
US5737813A (en) 1988-04-14 1998-04-14 International Paper Company Method and apparatus for striped patterning of dyed fabric by hydrojet treatment
US5632072A (en) 1988-04-14 1997-05-27 International Paper Company Method for hydropatterning napped fabric
US5197945A (en) * 1988-05-31 1993-03-30 Minnesota Mining And Manufacturing Company Alginate wound dressing of good integrity
CA1318115C (en) * 1988-10-05 1993-05-25 Hugo P. Watts Hydraulically entangled wet laid base sheets for wipes
US5028465A (en) * 1989-03-20 1991-07-02 James River Corporation Hydroentangled composite filter element
US5817079A (en) * 1989-04-04 1998-10-06 Mcneil-Ppc, Inc. Selective placement of absorbent product materials in sanitary napkins and the like
JP2815899B2 (en) * 1989-05-26 1998-10-27 ユニチカ株式会社 Composite nonwoven fabric and method for producing the same
EP0418493A1 (en) * 1989-07-28 1991-03-27 Fiberweb North America, Inc. A nonwoven composite fabric combined by hydroentangling and a method of manufacturing the same
JPH0382859A (en) * 1989-08-23 1991-04-08 Tookai:Kk Surgical fiber material, surgical operation cloth and production of surgical fiber material
WO1991004855A1 (en) * 1989-09-28 1991-04-18 James River Corporation Ballistic-resistant articles and method of manufacture thereof
US5144729A (en) * 1989-10-13 1992-09-08 Fiberweb North America, Inc. Wiping fabric and method of manufacture
US5106457A (en) * 1990-08-20 1992-04-21 James River Corporation Hydroentangled nonwoven fabric containing synthetic fibers having a ribbon-shaped crenulated cross-section and method of producing the same
JP2513871Y2 (en) * 1990-09-19 1996-10-09 ユニチカ株式会社 Non-woven
FR2667622B1 (en) * 1990-10-08 1994-10-07 Kaysersberg Sa HYDRAULICALLY LINKED MONTISSE AND MANUFACTURING METHOD THEREOF.
JPH04153351A (en) * 1990-10-12 1992-05-26 Unitika Ltd Laminated nonwoven fabric and preparation thereof
US5137600A (en) * 1990-11-01 1992-08-11 Kimberley-Clark Corporation Hydraulically needled nonwoven pulp fiber web
CA2048905C (en) * 1990-12-21 1998-08-11 Cherie H. Everhart High pulp content nonwoven composite fabric
US6784126B2 (en) * 1990-12-21 2004-08-31 Kimberly-Clark Worldwide, Inc. High pulp content nonwoven composite fabric
US5223329A (en) * 1991-01-29 1993-06-29 Amann John A Laminate sheet article
DE4114952A1 (en) * 1991-05-08 1992-11-12 Akzo Nv Nonwoven material for use as filter fabric, etc. - has two layers consisting of spun-bounded or nonwoven material on which carded staple mat is placed
GB9118737D0 (en) * 1991-09-02 1991-10-16 Chicopee Composite fabrics
FR2686628A1 (en) * 1992-01-28 1993-07-30 Perfojet Sa COMPLEX TEXTILE STRUCTURE BASED ON NON - WOVEN FIBROUS NAPPES AND METHOD AND INSTALLATION FOR OBTAINING THE SAME.
JPH05232454A (en) * 1992-02-21 1993-09-10 Hitachi Cable Ltd Liquid crystal display element
US5151320A (en) * 1992-02-25 1992-09-29 The Dexter Corporation Hydroentangled spunbonded composite fabric and process
JP2793072B2 (en) * 1992-03-03 1998-09-03 大日本スクリーン製造株式会社 Zoom lens and in-mirror lens
JP2621742B2 (en) * 1992-06-29 1997-06-18 王子製紙株式会社 Manufacturing method of wipes
US5459912A (en) * 1992-03-31 1995-10-24 E. I. Du Pont De Nemours And Company Patterned spunlaced fabrics containing woodpulp and/or woodpulp-like fibers
TW219958B (en) * 1992-05-01 1994-02-01 Asahi Chemical Ind
JP3236119B2 (en) * 1992-06-03 2001-12-10 旭化成株式会社 Composite nonwoven fabric and method for producing the same
DE69317781T2 (en) * 1992-07-27 1998-07-30 Procter & Gamble LAMINATED DOUBLE TEXTURED TREATMENT PADS
DE69305096T2 (en) * 1993-01-07 1997-04-30 Minnesota Mining & Mfg FLEXIBLE NON-WOVEN
GB9307117D0 (en) * 1993-04-06 1993-05-26 Hercules Inc Card bonded comfort barrier fabrics
JP3139215B2 (en) * 1993-05-31 2001-02-26 王子製紙株式会社 Pulp composite sheet
CA2107169A1 (en) * 1993-06-03 1994-12-04 Cherie Hartman Everhart Liquid transport material
US5350625A (en) * 1993-07-09 1994-09-27 E. I. Du Pont De Nemours And Company Absorbent acrylic spunlaced fabric
GB9317490D0 (en) * 1993-08-23 1993-10-06 Hercules Inc Diaper barrier leg-cuff fabrics
US5516572A (en) * 1994-03-18 1996-05-14 The Procter & Gamble Company Low rewet topsheet and disposable absorbent article
US5573841A (en) * 1994-04-04 1996-11-12 Kimberly-Clark Corporation Hydraulically entangled, autogenous-bonding, nonwoven composite fabric
US5413849A (en) * 1994-06-07 1995-05-09 Fiberweb North America, Inc. Composite elastic nonwoven fabric
JP2986689B2 (en) * 1994-08-29 1999-12-06 ユニ・チャーム株式会社 Manufacturing method of nonwoven wiper
US5475903A (en) * 1994-09-19 1995-12-19 American Nonwovens Corporation Composite nonwoven fabric and method
US5564970A (en) * 1994-11-17 1996-10-15 Hewlett-Packard Company Method and apparatus for creating or restoring high friction surface to media roller
JP3487462B2 (en) * 1995-03-31 2004-01-19 王子製紙株式会社 Nonwoven fabric for vegetation sheet and method for producing the same
US5587225A (en) * 1995-04-27 1996-12-24 Kimberly-Clark Corporation Knit-like nonwoven composite fabric
US6022818A (en) * 1995-06-07 2000-02-08 Kimberly-Clark Worldwide, Inc. Hydroentangled nonwoven composites
DE19522763A1 (en) * 1995-06-27 1997-01-02 Fleissner Maschf Gmbh Co Method and device for consolidating a nonwoven fabric
EP0861341A1 (en) * 1995-11-17 1998-09-02 International Paper Company Uniformity and product improvement in lyocell fabrics with hydraulic fluid treatment
US20040097158A1 (en) * 1996-06-07 2004-05-20 Rudisill Edgar N. Nonwoven fibrous sheet structures
WO1998002608A1 (en) * 1996-07-12 1998-01-22 Kimberly-Clark Worldwide, Inc. Hydroentangled nonwoven composites
US6022447A (en) * 1996-08-30 2000-02-08 Kimberly-Clark Corp. Process for treating a fibrous material and article thereof
KR20010012907A (en) * 1997-05-23 2001-02-26 데이비드 엠 모이어 Structures useful as cleaning sheets
US6777064B1 (en) 1997-05-23 2004-08-17 The Procter & Gamble Company Cleaning sheets, implements, and articles useful for removing allergens from surfaces and methods of promoting the sale thereof
US5780369A (en) * 1997-06-30 1998-07-14 Kimberly-Clark Worldwide, Inc. Saturated cellulosic substrate
US6120888A (en) * 1997-06-30 2000-09-19 Kimberly-Clark Worldwide, Inc. Ink jet printable, saturated hydroentangled cellulosic substrate
US6103061A (en) * 1998-07-07 2000-08-15 Kimberly-Clark Worldwide, Inc. Soft, strong hydraulically entangled nonwoven composite material and method for making the same
SE9703886L (en) * 1997-10-24 1999-04-25 Sca Hygiene Paper Ab Method of making a nonwoven material and made according to the method
US6314627B1 (en) * 1998-06-30 2001-11-13 Polymer Group, Inc. Hydroentangled fabric having structured surfaces
US6177370B1 (en) 1998-09-29 2001-01-23 Kimberly-Clark Worldwide, Inc. Fabric
US20030166372A1 (en) * 1998-10-06 2003-09-04 Howard Thomas Insect resistant geotextile
US6110848A (en) * 1998-10-09 2000-08-29 Fort James Corporation Hydroentangled three ply webs and products made therefrom
US20020050016A1 (en) * 2000-02-24 2002-05-02 Willman Kenneth William Cleaning sheets comprising a polymeric additive to improve particulate pick-up and minimize residue left on surfaces and cleaning implements for use with cleaning sheets
US7091140B1 (en) * 1999-04-07 2006-08-15 Polymer Group, Inc. Hydroentanglement of continuous polymer filaments
FR2794776B1 (en) * 1999-06-10 2001-10-05 Icbt Perfojet Sa PROCESS FOR THE PRODUCTION OF A NONWOVEN MATERIAL, INSTALLATION FOR ITS IMPLEMENTATION AND NONWOVEN THUS OBTAINED
ATE412726T1 (en) 1999-09-27 2008-11-15 Procter & Gamble CLEANING PRODUCT FOR HARD SURFACES
US6716805B1 (en) * 1999-09-27 2004-04-06 The Procter & Gamble Company Hard surface cleaning compositions, premoistened wipes, methods of use, and articles comprising said compositions or wipes and instructions for use resulting in easier cleaning and maintenance, improved surface appearance and/or hygiene under stress conditions such as no-rinse
US20050133174A1 (en) * 1999-09-27 2005-06-23 Gorley Ronald T. 100% synthetic nonwoven wipes
US6321425B1 (en) * 1999-12-30 2001-11-27 Polymer Group Inc. Hydroentangled, low basis weight nonwoven fabric and process for making same
US7290314B2 (en) * 2000-01-11 2007-11-06 Rieter Perfojet Method for producing a complex nonwoven fabric and resulting novel fabric
CA2392835C (en) * 2000-01-17 2008-05-27 Gerold Fleissner Method and device for production of composite non-woven fibre fabrics by means of hydrodynamic needling
DE10004448A1 (en) * 2000-01-17 2001-07-19 Fleissner Maschf Gmbh Co Making composite non-woven, e.g. for sanitary products, involves calendering a support layer, applying a wood pulp layer and needle punching with water jets
DE10001957A1 (en) * 2000-01-18 2001-07-19 Fleissner Maschf Gmbh Co Air laying non-wovens with melt adhesive fiber outer and cellulose inner layers includes bonding of all three layers by water jet needle punching
DE10008746A1 (en) * 2000-02-24 2001-08-30 Fleissner Maschf Gmbh Co Method and device for producing composite nonwovens by means of hydrodynamic needling
US20020042962A1 (en) * 2000-02-24 2002-04-18 Willman Kenneth William Cleaning sheets comprising a polymeric additive to improve particulate pick-up and minimize residue left on surfaces and cleaning implements for use with cleaning sheets
PT1292729E (en) * 2000-04-18 2004-11-30 Vliesstoff Technologie In 3 Di NON-CLOTHING TEXTILE STRUCTURE UNDERSTANDING STABILIZED FILAMENT SETS
WO2002004729A1 (en) * 2000-07-11 2002-01-17 Polymer Group Inc. Multi-component nonwoven fabric for use in disposable absorbent articles
US7255816B2 (en) 2000-11-10 2007-08-14 Kimberly-Clark Worldwide, Inc. Method of recycling bonded fibrous materials and synthetic fibers and fiber-like materials produced thereof
MXPA03003769A (en) * 2000-11-10 2003-07-28 Kimberly Clark Co Hydroentangled nonwoven composite structures containing recycled synthetic fibrous materials.
US20020115370A1 (en) * 2000-11-10 2002-08-22 Gustavo Palacio Hydroentangled nonwoven composite structures containing recycled synthetic fibrous materials
US6782589B2 (en) * 2000-11-29 2004-08-31 Polymer Group, Inc. Method for forming laminate nonwoven fabric
EP1360357B2 (en) * 2001-01-12 2010-06-09 Polymer Group, Inc. Hydroentanglement of continuous polymer filaments
FR2823511B1 (en) * 2001-04-13 2003-12-26 Rieter Perfojet INSTALLATION FOR PRODUCING A NONWOVEN SPUNBOND TABLECLOTH CONSOLIDATED BY SPRAYING A FLUID
DE10126515A1 (en) * 2001-05-30 2002-12-05 Fleissner Gerold Process for consolidating a web of wood pulp
US20030003831A1 (en) * 2001-06-29 2003-01-02 Childs Stephen Lee Cleaning sheets comprising multi-denier fibers
US20030003832A1 (en) * 2001-06-29 2003-01-02 The Procter & Gamble Company Cleaning sheets comprising a fibrous web of carded staple fibers hydroentangled with a reinforcing fibrous web
FR2827313B1 (en) * 2001-07-10 2004-03-12 Rieter Perfojet NONWOVEN COMPRISING A CONTINUOUS FILAMENT TABLECLOTH, MANUFACTURING METHOD THEREOF AND APPLICATION THEREOF AS WIPING RAG
US7070884B2 (en) * 2001-10-09 2006-07-04 Polymer Group, Inc. Separator with improved barrier performance
US6712121B2 (en) * 2001-10-12 2004-03-30 Kimberly-Clark Worldwide, Inc. Antimicrobially-treated fabrics
US6607636B2 (en) * 2001-11-01 2003-08-19 Kimberly-Clark Worldwide, Inc. Non-rewetting multi-fiber hand towel and methods of making same
US20030171056A1 (en) * 2001-11-05 2003-09-11 Gustavo Palacio Hydroentangled nonwoven web containing recycled synthetic fibrous materials
ITMI20012521A1 (en) * 2001-11-30 2003-05-30 Orlandi Spa BARRIER-EFFECT MATTRESS COVER FABRIC
US20030118776A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Entangled fabrics
US20030171051A1 (en) * 2002-03-08 2003-09-11 3M Innovative Properties Company Wipe
AU2003226088A1 (en) * 2002-04-05 2003-10-20 Polymer Group, Inc. Two-sided nonwoven fabrics having a three-dimensional image
US20040002273A1 (en) * 2002-07-01 2004-01-01 Kimberly-Clark Worldwide, Inc. Liquid repellent nonwoven protective material
US20040009732A1 (en) * 2002-07-11 2004-01-15 Nowak Michael R. Nonwoven ream wrap
WO2004020725A1 (en) 2002-08-29 2004-03-11 The Procter & Gamble Company Low density, high loft nonwoven substrates
EP1560968A4 (en) * 2002-10-22 2008-12-03 Polymer Group Inc Nonwoven secondary carpet backing
DE10256138A1 (en) * 2002-11-29 2004-06-17 Fleissner Gmbh & Co. Maschinenfabrik Process for hydrodynamically enclosing a variety of finite, three-dimensional products with water jets
US7994079B2 (en) * 2002-12-17 2011-08-09 Kimberly-Clark Worldwide, Inc. Meltblown scrubbing product
US20040111817A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Disposable scrubbing product
US6878238B2 (en) * 2002-12-19 2005-04-12 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US6875315B2 (en) 2002-12-19 2005-04-05 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US20040121121A1 (en) * 2002-12-23 2004-06-24 Kimberly -Clark Worldwide, Inc. Entangled fabrics containing an apertured nonwoven web
US6958103B2 (en) * 2002-12-23 2005-10-25 Kimberly-Clark Worldwide, Inc. Entangled fabrics containing staple fibers
US7022201B2 (en) * 2002-12-23 2006-04-04 Kimberly-Clark Worldwide, Inc. Entangled fabric wipers for oil and grease absorbency
US7381667B2 (en) * 2002-12-27 2008-06-03 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Hydroentangled textile and use in a personal cleansing implement
US7067038B2 (en) * 2003-02-06 2006-06-27 The Procter & Gamble Company Process for making unitary fibrous structure comprising randomly distributed cellulosic fibers and non-randomly distributed synthetic fibers
US7052580B2 (en) * 2003-02-06 2006-05-30 The Procter & Gamble Company Unitary fibrous structure comprising cellulosic and synthetic fibers
US7141142B2 (en) * 2003-09-26 2006-11-28 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US7432219B2 (en) 2003-10-31 2008-10-07 Sca Hygiene Products Ab Hydroentangled nonwoven material
SE0302874D0 (en) 2003-10-31 2003-10-31 Sca Hygiene Prod Ab A hydroentangled nonwoven material
US7422660B2 (en) * 2003-10-31 2008-09-09 Sca Hygiene Products Ab Method of producing a nonwoven material
SE0302875D0 (en) * 2003-10-31 2003-10-31 Sca Hygiene Prod Ab Method of producing a nonwoven material
SE0302873D0 (en) * 2003-10-31 2003-10-31 Sca Hygiene Prod Ab Method of producing a nonwoven material
US7416638B2 (en) * 2003-11-18 2008-08-26 Georgia-Pacific Consumer Products Lp Apparatus and method for manufacturing a multi-layer web product
US20050130522A1 (en) * 2003-12-11 2005-06-16 Kaiyuan Yang Fiber reinforced elastomeric article
SE0303413D0 (en) * 2003-12-18 2003-12-18 Sca Hygiene Prod Ab a composite nonwoven material containing continuous filaments and short fibers
US7194788B2 (en) * 2003-12-23 2007-03-27 Kimberly-Clark Worldwide, Inc. Soft and bulky composite fabrics
US20050136772A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
US7645353B2 (en) * 2003-12-23 2010-01-12 Kimberly-Clark Worldwide, Inc. Ultrasonically laminated multi-ply fabrics
US20050148260A1 (en) * 2003-12-24 2005-07-07 Kopacz Thomas J. Highly textured non-woven composite wipe
AU2004317213B2 (en) * 2004-03-18 2010-02-25 Sca Hygiene Products Ab Method of producing a nonwoven material
EP1766121B1 (en) 2004-06-29 2012-03-21 SCA Hygiene Products AB A hydroentangled split-fibre nonwoven material
US7858544B2 (en) 2004-09-10 2010-12-28 First Quality Nonwovens, Inc. Hydroengorged spunmelt nonwovens
US20060191115A1 (en) * 2004-11-30 2006-08-31 Pgi Polymer, Inc. Method of making a filamentary laminate and the products thereof
CA2583914A1 (en) * 2004-11-30 2006-06-08 Pgi Polymer, Inc. Method of making a filamentary laminate and the products thereof
US20060143767A1 (en) * 2004-12-14 2006-07-06 Kaiyuan Yang Breathable protective articles
US20060135026A1 (en) * 2004-12-22 2006-06-22 Kimberly-Clark Worldwide, Inc. Composite cleaning products having shape resilient layer
US20060141014A1 (en) * 2004-12-28 2006-06-29 Eknoian Michael W Skin treatment articles and methods
WO2006071149A1 (en) * 2004-12-29 2006-07-06 Sca Hygiene Products Ab Fastening means in the form of a belt for an absorbent article
MX2007012929A (en) 2005-04-29 2007-12-12 Sca Hygiene Prod Ab Hydroentangled integrated composite nonwoven material.
US8921244B2 (en) 2005-08-22 2014-12-30 The Procter & Gamble Company Hydroxyl polymer fiber fibrous structures and processes for making same
US7478463B2 (en) * 2005-09-26 2009-01-20 Kimberly-Clark Worldwide, Inc. Manufacturing process for combining a layer of pulp fibers with another substrate
JP4431992B2 (en) * 2006-03-30 2010-03-17 高知県 Moisturizing nonwoven fabric
US20080000057A1 (en) * 2006-06-29 2008-01-03 Hien Nguyen Non-woven structures and methods of making the same
EP2102402A4 (en) * 2006-11-29 2010-12-08 Sca Hygiene Prod Ab A hydroentangled nonwoven material
US10024000B2 (en) 2007-07-17 2018-07-17 The Procter & Gamble Company Fibrous structures and methods for making same
US7972986B2 (en) 2007-07-17 2011-07-05 The Procter & Gamble Company Fibrous structures and methods for making same
US8852474B2 (en) 2007-07-17 2014-10-07 The Procter & Gamble Company Process for making fibrous structures
RU2415638C1 (en) * 2007-09-03 2011-04-10 Ска Хайджин Продактс Аб Laminate with improved rubbing properties and method of its production
US20090083921A1 (en) * 2007-10-02 2009-04-02 Edward Williams Apparatus for cleaning ducts
US8900351B2 (en) * 2007-11-14 2014-12-02 Nitto Denko Corporation Filter medium and method of manufacturing the same and filter unit
US20100159775A1 (en) * 2008-12-19 2010-06-24 Chambers Jr Leon Eugene Nonwoven Composite And Method For Making The Same
US20100159774A1 (en) * 2008-12-19 2010-06-24 Chambers Jr Leon Eugene Nonwoven composite and method for making the same
FI20095800A0 (en) 2009-07-20 2009-07-20 Ahlstroem Oy Nonwoven composite product with high cellulose content
ES2551230T3 (en) * 2009-11-02 2015-11-17 The Procter & Gamble Company Low fraying fibrous structures and methods to manufacture them
WO2011053677A1 (en) 2009-11-02 2011-05-05 The Procter & Gamble Company Fibrous structures and methods for making same
AU2010313170B2 (en) 2009-11-02 2014-03-27 The Procter & Gamble Company Fibrous elements and fibrous structures employing same
US20110119850A1 (en) * 2009-11-24 2011-05-26 Mary Frances Mallory Apertured Wiping Cloth
FR2959518A1 (en) 2010-03-31 2011-11-04 Procter & Gamble FIBROUS STRUCTURES AND METHODS OF PREPARATION
US10639212B2 (en) 2010-08-20 2020-05-05 The Procter & Gamble Company Absorbent article and components thereof having improved softness signals, and methods for manufacturing
BR112013002433A2 (en) 2010-08-20 2016-05-24 First Quality Nonwovens Inc absorbent article and components thereof exhibiting signs of optimized softness, and methods for its manufacture.
TR201906027T4 (en) 2011-05-04 2019-05-21 Essity Hygiene & Health Ab Method for producing a hydroentangled nonwoven material.
US9433154B2 (en) * 2011-07-22 2016-09-06 Jacob Holm & Sons Ag Biodegradable landscape fabric
CN103814163A (en) * 2011-07-26 2014-05-21 Sca卫生用品公司 Flushable moist wipe or hygiene tissue and a method for making it
DE102011112267A1 (en) * 2011-09-02 2013-03-07 Carl Freudenberg Kg fusible
JP5281719B1 (en) * 2011-09-09 2013-09-04 旭化成せんい株式会社 Filter material
US9194084B2 (en) 2012-05-03 2015-11-24 Sca Hygiene Products Ab Method of producing a hydroentangled nonwoven material
US8882876B2 (en) * 2012-06-20 2014-11-11 Hollingsworth & Vose Company Fiber webs including synthetic fibers
US8968517B2 (en) 2012-08-03 2015-03-03 First Quality Tissue, Llc Soft through air dried tissue
US9926654B2 (en) 2012-09-05 2018-03-27 Gpcp Ip Holdings Llc Nonwoven fabrics comprised of individualized bast fibers
US20140087195A1 (en) * 2012-09-24 2014-03-27 Honeywell International Inc. Chlorofluoropolymer coated substrates and methods for producing the same
US20160229211A1 (en) * 2012-09-24 2016-08-11 William Becker Sheeted medical articles with adhered wristband
EP2967263B1 (en) 2013-03-15 2019-02-27 GPCP IP Holdings LLC Water dispersible wipe substrate
US10519579B2 (en) 2013-03-15 2019-12-31 Gpcp Ip Holdings Llc Nonwoven fabrics of short individualized bast fibers and products made therefrom
CA2921537C (en) 2013-08-16 2021-03-30 Georgia-Pacific Consumer Products Lp Entangled substrate of short individualized bast fibers
EP3052678A1 (en) 2013-09-30 2016-08-10 3M Innovative Properties Company Fibers, wipes, and methods
WO2015047988A1 (en) 2013-09-30 2015-04-02 3M Innovative Properties Company Compositions, wipes, and methods
CN105579637B (en) 2013-09-30 2018-04-10 3M创新有限公司 Fiber and cleaning piece and method with the epoxidized fatty acid ester being arranged on
KR101696588B1 (en) 2013-12-20 2017-01-13 킴벌리-클라크 월드와이드, 인크. Hydroentangled elastic film-based, stretch-bonded composites and methods of making same
MX2016007516A (en) 2013-12-20 2016-09-13 Kimberly Clark Co Hydroentangled elastic filament-based, stretch-bonded composites and methods of making same.
EP3142625A4 (en) 2014-05-16 2017-12-20 First Quality Tissue, LLC Flushable wipe and method of forming the same
EP2985375B1 (en) 2014-08-12 2017-03-29 Glatfelter Gernsbach GmbH Dispersible non-woven fabric and method for producing the same
WO2016077594A1 (en) 2014-11-12 2016-05-19 First Quality Tissue, Llc Cannabis fiber, absorbent cellulosic structures containing cannabis fiber and methods of making the same
US10273635B2 (en) 2014-11-24 2019-04-30 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
CA2967986C (en) 2014-12-05 2023-09-19 Structured I, Llc Manufacturing process for papermaking belts using 3d printing technology
US10538882B2 (en) 2015-10-13 2020-01-21 Structured I, Llc Disposable towel produced with large volume surface depressions
CA3001475C (en) 2015-10-13 2023-09-26 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
WO2017066656A1 (en) 2015-10-14 2017-04-20 First Quality Tissue, Llc Bundled product and system and method for forming the same
EP3367862B2 (en) * 2015-10-30 2023-05-03 Kimberly-Clark Worldwide, Inc. Method for making wiping products
MX2018006109A (en) * 2015-11-20 2018-08-24 Essity Hygiene & Health Ab An absorbent material.
MX2018009679A (en) 2016-02-11 2019-07-04 Belt or fabric including polymeric layer for papermaking machine.
US20170314206A1 (en) 2016-04-27 2017-11-02 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US11618191B2 (en) 2016-07-27 2023-04-04 Composecure, Llc DI metal transaction devices and processes for the manufacture thereof
US10977540B2 (en) 2016-07-27 2021-04-13 Composecure, Llc RFID device
US10762412B2 (en) 2018-01-30 2020-09-01 Composecure, Llc DI capacitive embedded metal card
US11172803B2 (en) 2016-08-12 2021-11-16 The Procter & Gamble Company Cleaning sheets having coating thereon
CA3168412A1 (en) 2016-08-26 2018-03-01 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbancy, and softness
CA3036821A1 (en) 2016-09-12 2018-03-15 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
ES2884449T3 (en) * 2016-10-17 2021-12-10 Procter & Gamble Articles containing a fibrous structure
CA3037980A1 (en) 2016-10-17 2018-04-26 The Procter & Gamble Company Fibrous structure-containing articles that exhibit consumer relevant properties
US11583489B2 (en) 2016-11-18 2023-02-21 First Quality Tissue, Llc Flushable wipe and method of forming the same
US10767296B2 (en) * 2016-12-14 2020-09-08 Pfnonwovens Llc Multi-denier hydraulically treated nonwoven fabrics and method of making the same
RU2746917C2 (en) * 2016-12-14 2021-04-22 ПФНОНВОВЕНС ЭлЭлСи Hydraulically processed nonwoven materials and a method for their production
WO2018144124A1 (en) 2017-02-03 2018-08-09 Nike Innovate C.V. Fiber-bound engineered materials formed using engineered scrims
EP3576934B1 (en) * 2017-02-03 2023-12-06 Nike Innovate C.V. Fiber-bound engineered materials formed utilizing carrier screens
US10619309B2 (en) 2017-08-23 2020-04-14 Structured I, Llc Tissue product made using laser engraved structuring belt
US11151437B2 (en) 2017-09-07 2021-10-19 Composecure, Llc Metal, ceramic, or ceramic-coated transaction card with window or window pattern and optional backlighting
FI3679523T3 (en) 2017-09-07 2023-05-05 Composecure Llc Transaction card with embedded electronic components and process for manufacture
US10722091B2 (en) 2017-10-06 2020-07-28 The Procter & Gamble Company Cleaning article with preferentially coated tow fibers
US10653286B2 (en) 2017-10-06 2020-05-19 The Procter & Gamble Company Cleaning article with preferential coating
DE102018114748A1 (en) 2018-06-20 2019-12-24 Voith Patent Gmbh Laminated paper machine clothing
US11697538B2 (en) 2018-06-21 2023-07-11 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11738927B2 (en) 2018-06-21 2023-08-29 First Quality Tissue, Llc Bundled product and system and method for forming the same
EP4133048A1 (en) 2020-04-10 2023-02-15 The Procter & Gamble Company Cleaning implement with a rheological solid composition
EP4133047A1 (en) 2020-04-10 2023-02-15 The Procter & Gamble Company Cleaning article with preferential rheological solid composition
WO2022082192A1 (en) 2020-10-16 2022-04-21 The Procter & Gamble Company Cleaning article with preferential coating
US11833237B2 (en) 2021-03-09 2023-12-05 The Procter & Gamble Company Method for enhancing scalp active deposition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493462A (en) * 1962-07-06 1970-02-03 Du Pont Nonpatterned,nonwoven fabric
US3560326A (en) * 1970-01-29 1971-02-02 Du Pont Textile-like nonwoven fabric
GB1550955A (en) * 1975-12-29 1979-08-22 Johnson & Johnson Textile fabric and method of manufacturing the same
JPS5473977A (en) * 1977-11-17 1979-06-13 Mitsubishi Rayon Co Leather like sheet article and production thereof
JPS54120783A (en) * 1978-03-14 1979-09-19 Mitsubishi Rayon Co Leather like sheet article and production
JPS54125771A (en) * 1978-03-17 1979-09-29 Mitsubishi Rayon Co Leather like sheet article and production
JPS5936757A (en) * 1982-08-19 1984-02-29 株式会社クラレ Laminate nonwoven fabric and production thereof
US4442161A (en) * 1982-11-04 1984-04-10 E. I. Du Pont De Nemours And Company Woodpulp-polyester spunlaced fabrics
US4612237A (en) * 1985-12-13 1986-09-16 E. I. Du Pont De Nemours And Company Hydraulically entangled PTFE/glass filter felt

Also Published As

Publication number Publication date
ATE97454T1 (en) 1993-12-15
DK510988D0 (en) 1988-09-14
FI884231A0 (en) 1988-09-14
EP0308320A3 (en) 1990-03-14
PT88511A (en) 1989-07-31
DE3885691T2 (en) 1994-06-09
EP0308320B1 (en) 1993-11-18
DK510988A (en) 1989-03-15
NO169669C (en) 1992-07-22
US4808467A (en) 1989-02-28
PT88511B (en) 1993-09-30
NO884088L (en) 1989-03-16
NO169669B (en) 1992-04-13
EP0308320A2 (en) 1989-03-22
DE3885691D1 (en) 1993-12-23
NO884088D0 (en) 1988-09-14
FI884231A (en) 1989-03-16
JPH01111056A (en) 1989-04-27

Similar Documents

Publication Publication Date Title
CA1312493C (en) High strength nonwoven fabric
EP0326771B1 (en) Highly absorbent nonwoven fabric
EP0333228B1 (en) Nonwoven fibrous non-elastic material and method of formation thereof
US4775579A (en) Hydroentangled elastic and nonelastic filaments
EP0492554B1 (en) High pulp content nonwoven composite fabric method of making and use of same
EP0577156B1 (en) Composite nonwoven web material and method of formation thereof
EP0483816B1 (en) Hydraulically needled nonwoven pulp fiber web, method of making same and use of same
KR101084890B1 (en) Soft and bulky composite fabrics
CA2583814C (en) Embossed nonwoven fabric
US5587225A (en) Knit-like nonwoven composite fabric
EP0896645B1 (en) Durable spunlaced fabric structures
JPH03137257A (en) Perforated nonwoven fabric produced from a plurality of melt blow microfibers
CA2027508A1 (en) Wiping fabric and method of manufacture
EP0373974A2 (en) Method of preparation of a highly absorbent nonwoven fabric
CA1311351C (en) Highly absorbent nonwoven fabric made by hydroentanglement
JPH08260327A (en) Conjugate nonwoven fabric of cuprammonium rayon filament and it production
CA2165107A1 (en) High pulp content nonwoven composite fabric
MXPA97008244A (en) Composite fabric non-woven of type tram
JP2533260C (en)

Legal Events

Date Code Title Description
MKLA Lapsed