CA1306503C - Shared data/voice communication system with programmable data priority - Google Patents

Shared data/voice communication system with programmable data priority

Info

Publication number
CA1306503C
CA1306503C CA000587017A CA587017A CA1306503C CA 1306503 C CA1306503 C CA 1306503C CA 000587017 A CA000587017 A CA 000587017A CA 587017 A CA587017 A CA 587017A CA 1306503 C CA1306503 C CA 1306503C
Authority
CA
Canada
Prior art keywords
voice
data
accordance
mode
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000587017A
Other languages
French (fr)
Inventor
Kenneth John Zdunek
Jay Robert Krebs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of CA1306503C publication Critical patent/CA1306503C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Abstract

CM00421H ABSTRACT A shared data/voice communication system wherein data traffic may be guaranteed priority at a set, but programmable, level of system capacity and wherein interference between such data and voice traffic is effectively minimized. The system operates on standardized channel access rules in the data mode, as well as requesting permission to operate in the voice mode, which if granted, effects a specific protocol to condition the system for voice traffic and manage the same during such pendency. Long and short timers are selectively activated depending upon whether the system is in the voice or data mode to minimize collisions of the system radio data terminals requesting channel access.

Description

13~6~03 SHARED DATA/~OICE COMMUNICATION SYSTEM WITH
PROGRAMMABLE DATA PRIORITY

Background of the In~ention o5 This invention relates in general to communication systems and more particularly to a shared data/voice communication system wherein the data capacity may be programmed and maintained as desired and also wherein interference between voice and data traffic is effectively minimized.
Communication systems which process data information are becoming more and more common in the industry. In point of fact, systems which handle data only are relatively wide spread. Typically such radio data systems comprise a base station with full duplex capability, a network control processor (NCP), front end to a system host computer, and a plurality of portable radio data terminals operating in half duplex mode.

A9 may be expected, suitable channel access protocol arrangements are required to minimize terminal interference and keep the system operating with optimum efficiency~ To this end, a protocol has been developed which has en~oyed wide spread application, referred to in the literature as "non-persistent busy tone (bit) multiple access". Basically, the protocol permits ohannel contention between radio data terminals. When one such terminal gains channel access and begins to transmit data, the base station informs/advises the other system data terminals of such by way of setting "inhibit bits" at predetermined locations or positions in the outbound data stream. When a data terminal encounters these inhibit bits, it waits for a random time before contending again for access to the channel. In this 13~6S(~
way, the sy~tem operates with minimum interference and an orderly proce6s iR established for all participating data terminal~ in the ~ystem to ut~lize the available capacity.

It should be noted that in such radio data systems, the informa~ion being communicated is in fact data. Without more, voice, or analog information, as such is not compatible. There are occasions, however, and increasingly so, where voice communications is very much desired. In some cases, it is absolutely essential.
Of course, the user can communicate by voice with a separate mobile or portable unit operating on a completely different channel and/or communication syst~m.
As will be readily recognized, such option is quite expensive and, at the same time, inefficient.

There are, o~ cour~e, 6ystems that accommodate both voice and data on the same system, and even the same channel. ~owever, these are primarily voice systems adapted to also accommodate in limited terms the transmission of data. They are primarily designed to effect channel management with suitable voice protocol arrangements which are not efficient for data management.
Moreover, such systems have no means of guaranteeing the sy~tem will be used for a minimum level data transmission. Voice communication can and does frequently dominate system usage entirely.

What is needed s the ability to add to an existing e~ficiently operated data communication system the capability of voice communication a well, without changing the data access protocol being used therein.
The addition of the voice communication capability should in no way increase the level of interference on such channel when units are operated in either voice or data 13~65~)3 mode. Moreover, there need~ to be an effective means and method of guaranteeing that specific but programmable levels o~ data capacity are being utilized ~y the system 05 even though lt is shared by both the voice and data txaffic.

Summary of the Invention Accordingly, it is an object o~ the present invention to provide a radio data communication system operating with a conventional channel access protocol, with an added voice communication capability without increasing a certain minimum level of interference.

A more particular object of the present invention is to provide a shared data and voice communication system of the foregoing type wherein the system radio data termin~l units operating in data mode continue to utilize the conventional or standard channel access protocol 80 as not to impair system efficiency in that mode.

A still further object of the present invention is to provide a shared data and voice communication sy3tem of the foregoing type wherein programmable but specific, and thus guaranteed, levels of usage of the communication channel arc provided for data transmission and processing.

In practicing the invention, a shared data and voice communication system i8 provided which has a centrally located base station controlled by a network control processor, as well as a plurality of data terminals with voice capability. The system operates with a predetermined channel access protocol in the data mode and wherein data priority is maintained for a set but programmable level of data usage. The system 13~6503 includes mean~ in each of the data terminals for requesting voice mode for the communication system. And in the network control proce~sor, suitable means are included for granting such requests, inhibiting all other 05 system terminals from sending data messages during the pendency of the requesting terminal operating in the voice mode, as well as means ~or terminating the voice mode operation at an appropriate time and returning the base station to data mode only operation. The network control processor also includes means for maintaining a set programmable level of data traffic for the communicatlon system by not granting any voica mode requests wherever and whenever the programmed level of data traffic has not been reached as programmed.
Brief Description of the Drawinqs Figure l is a block diagram of a conventional data only communication ~ystem which may be considered as known in the art;
Figure 2 is a block diagram of a shared voice and data communication system which has been constructed in accordance with the present invention;

Figure 3 is a further block diagram in more detail of the communication system of Figure 2 showing a more detailed interconnection between the constituent elements thereof;

Figure 4 is a diagramic representation of a request by a portable terminal for a grant by the central network control proce6sor/base station and the associated protocol for operating the communications system in voice mode.

13~65()3 Figure 5 is a flow chart of the channel access procedure effected by the system radio data terminal~ in data voice and data modes:

05 Figure 6 is a flow diagram of the voice call assignment procedure effected by the NCP for granting or not granting a voice request;

Figure 7 is a state diagram of a portable radio data terminal operating in the data and voice modes with transition therebetween;

Figure 8 is a state diagram of the network control processor and base station operating in the data and voice modes with transition therebetween;

Brief Descri~tion of the Preferred Embodiment Referring now to the drawings, a typical radio data only communication system 10, which may be considered as known in the art, is illustrated in block form in Figure 1. The system has a centrally located base station 12, comprising a transmitter 14 and receiver 16, operating in full duplex mode, which communicates with, by modem 18, and is controlled by, a network control processor (NCP) 20. The NCP in turn communicates with a host computer 22 as indicated. A plurality of portable radio data terminals 24 are also a part of the system 10, operating in half duplex mode.

As previously mentioned, a standard channel access protocol has been devised for managing the data communication ByStem 10 of the above type described. The radio data terminals 24 individually seek channel access by transmitting data packets on the inbound channel. The base station/NCP 20 informs/advise the other (and listening~ system terminals 24 of this fact by setting 13~6S03 bits located at predetermined positions in the outbound stream. These bits may be referred to as "inhibit bits"
and corre pond to a conventional busy tone. If another terminal has a data message to be sent, it first monitors 05 the channel and will sense the inhibit bits when set.
Upon such occurring, the terminal waits a random time after which it monitors the channel again. This random time may be referred to as the inhibit delay time and is uniformly distributed between zero and some given time T, usually set to substantially correspond to the average inbound data packet length. At some point, perhaps after repeated attempt~, the referenced terminal will find or sense no inhibit bits and will be free to transmit its intended data message packet.
The system 10 in Figure 1 operates efficiently and effectively, but is capable of data only communication.
For the reasons set forth in the background section previously, there is in many instances a need for voice capability as well. Note that it is a need for voice capability in essentially a system designed for proces~ing data and not vice versa. It i~ not a system intended for voice communications only at the inception and, subsequently, where the capability of processing data is added.

The data system of the present invention, which permits limited voice communications, is set forth diagrammatically in Figure 2, which system has been constructed in accordance with the precepts of the present invention. In broad terms, the system 30 of Figure 2 i8 much like that of Figure 1 in that a centrally located base station 32 is provided comprised of a receiver 34 and transmitter 36. Modem 38 permits communication with the NCP 40 which in turn communicates with a host computer 42. A plurality of portable/mobile 13~6503 radio data terminals 44 are also in integral part of the system. In this case, ra~io data terminals 44 are also capable of voice tran mission and have a microphone (not shown) with a push-to-talk switch. Further, as a part o~
05 the arrangement ~or effecting voice capability, the tone remote console (TRC) 46 and remote console 48 i8 provided.

A more detailed representation of the system 30 is shown in Figure 3. In addition to the previously referenced component parts, system 30 includes limited distance modems (LDM) 50 perm~tting communications between the NCP 40 and host computer 42 on a full duplex basis and are of the type referenced as HDLC ABM modem~
operating with the capability of 9.6 Xilobits. A general communications controller (GCC) 54 is located at the base site intercoupled to the NCP through associated modems.
Mode~ 38 of Figure 2 is shown as a pair of modems in Figure 3, which are also of the HDLC ABM type with 9.6 kilobits capability. Wire lines indicated at 52 constitute a four-wire TELC0 circuit to permit full duplex communications between base station 32 and NCP 40.
A two-wire, voice grade, line 56 connects the TRC 46 with the remote console 48. Finally, a scroll mode terminal 58 is provided which i9 coupled by an RS-232 link 60 to the NCP 40. Data information is passed between the NCP
40 and the base station 32 via modems 38 and wire line 52 while voice communication is processed by the dispatcher at con olel 48 over wire line 52 to the base station 32.
Terminal 58 permits the dispatcher to keep track of the dat~ or voice mode the system is operating on as well as the identity o~ the user utilizing the system at any particular moment in time.

It will be recalled that system 32 is primarily designed to process data. Further, it operates with a 13~S03 specific channel access protocol as previously described in managing the data traffic over the system. Ev~n though system 32 has been givlen the capability of voice transmisaion in accordance with the present invention, it 05 is to retain such channel access protocol for handling the data but make provision for permitting and managing voice traffic as well. Accordingly, in the first instance, the portable radio data terminal 44 must request authorization to operate in the voice mode by first sending a request to talk (RTT) in the form of a data packet essentially in the same way as it does for data. Upon receipt at the base station 32, a decision by the NCP 40 must be made whether to grant such request.
If in the affirmative, a suitable protocol arrangement must be initiated to grant the request and manage the ensuing voice communication while keeping other radio data terminals from attempting to communicate during the pendency of such voice message.

This is depicted graphically in Figure 4 showing the neces~ary step~ to initiate voice communication by a particular radio data terminal 44 and the ensuing protocol to establish the ~ame and manage the system.
The radio data terminal 44 initiates the request by pUshing a voice request button on the terminal at step 62 which effects transmission of the appropriate data packet interpreted as a request to talk (RTT). Upon receipt at the base station and routed to the NCP a decision is made by it whether or not to assign the system channel to voice. The factors for making this decision will be discussed subsequently. If the decision is in the affirmative, the grant is made at step 64. Upon receipt by the portable radio data terminal 44, it acknowledges back the grant at step 66.

13~65(~;~
The data terminal then waits for further action by the NCP 40. The NCP ends all data activity on the channel and then initiate~ voice mode by fir~t transmitting a supervisory, sub-audible code signal (SC) 05 at step 68. The sub-audible code may be either a tone or a digital signal as desired. Upon receipt thereof by the radio data terminal ~4, voice communication may commence and i effected upon the push-to-talk switch (not shown) being activated at step 70. This cauces the voice message to be transmitted along with the subaudible code signal. If the dispatcher wishes to send a voice message back to th~ radio data terminals, the same is likewise transmitted along with the subaudible code signal as indicated at step 72.
The voice activity continues until completed or is terminated by predetermined conditions. In general, voice activity may be terminated by any of the following:
(a) overall call length time limit being exceeded; (b) voice inactivity time out being reached; (c) being terminated at the option of the dispatcher at his or her discretion; or (d) by being preempted by an emergency call.

In this manner, the overall system 30 operates with either data or voice, but continues to function effectively using the standard data channel access rules.
The system radio data terminals 44 may not transmit voice until a request is made to do so using a data message indicating such request. When, and only when, such request is granted, may the reguesting terminal transmit voice, and even here, only after the NCP converts the system to voics mode operation and indicates such by transmitting a supervisory, subaudible code signal. The other radio data terminals in the system are prevented from accessing the channel during the pendency of either 13~f~503 a data or voice message. Whi.le data is on the system channel the inhibit bits are set in the outbound data stream as previously described and will cause another radio data terminal when it monitors the channel to wait 05 a random time be~ore it attempts access again. Likewise, if a data terminal, when monitoring a channel, encounters voice, such terminal will again wait a random time be~ore attempting to acces~ again. It should be pointed out, however, since voice activity inherently results in a lo longer use of the channel, that the random times waited by other radio terminals attempting access must necessarily be longer when the system is operating with voice communication. In other words, the inhibit times should be longer for voice operation than for data. ~his is depicted in the flow chart as shown in Figure 5.

As shown therein, when a message is ready to be sent by a radio data terminal 44 at step 80, the channel i8 monitored to determine if the inhibit bits are set at step 82. If yes, indicating the channel is in use for data operation, the standard (short) random inhibit timer is activated at step 84, such timer being in the range of 0 to 250 milliseconds. The terminal seeking access waits a random time within this range at step 86 and attempts channel access again at step 80. Conversely, if inhibit bits are not detected as being set (step 82) the terminal determines if voice is on the channel at step 88 and, if not, sends its message in the usual manner. I~ the voice is detected, the terminal sets the long (voice) random timer at step 92, in the range of 0 to 10 seconds, and waits a random time within that range at step 94 before again attempting channel access at step 80.
-In this way, the number of messages that may otherwise be lost due to repeated collisions for channelaccess may be significantly reduced when the system is ~3~Çii503 ~ CM00421H

sperating in the volce mode, because the "long" inhibit timer is invoked rather than the standard or short term timer utilized when in data mode since the data messages are normally much shorter in duration than voice.

As mentioned previously, one of the advantages of the system of the present invention is that it maintains a user specified maximum percent utilization of voice on the channel. This guarantees the channel will be reserved for a given level of data activity. As an example, if the maximum amount of voice traf~ic i~ chosen not to exceed 15 percent, the system will be conditioned to guarantee that 85 percent of the available time will be devoted to data traffic. of course, this ratio can be changed as needed or simply preferred.

This selection of setting the ratio of data to voice utilization i9 an important aspect in the decision by the NCP 40 in determining whether ox n,ot to immediately grant authorization or voice communication when a request i~ received ~rom a system radio data texminal 44, or, if not, to queue the request for later grant on a first in, first out basis when the request may be honored.

This decision-making process and procedure is depicted in the flow chart as shown in Figure 6. The algorithm as therein contained determines the voice call as~ignment procedure as well as maintaining the specified ratio of data to voice traffic. When a period of voice activity ends, the NCP 40 temporarily stores the duration of the voice message. It then computes a "data interval"
based on this voice message duration and the desired or specified maximum utilization of the channel for voice.
This data interval may be detel~ined as follows:

13~6~()3 Data I~n~l 3 (1 - Max. voice util.) x Volce M~ge ~tlon.
Max. Volce Util.
Any voics ~TT received during this data interval (steps 102, 104) is then queued, step 106, for later 05 processing on a ~IFO basis when voice is permitted.
There i8, of course, a minimum length to the "data interval" of several seconds to handle any data activity which may be pending as a result of voice being on the channel. This minimum data interval can be a fixed length based on estimates of the data traffic on the system, or it may be dynamically adjusted according to the NCP estimate of current "penned-up" data traffic.
Thi~ may, for example, be derived from the NCP out bound message queues.
It will be appreciated that, if the situation is such that voice may be allowed at step 104, the NCP 40 then checks to ~ee if any data message is in progress at step 108 and, if so, will delay until the current data message i~ finished at step 110. If there is no data message in process, the assignment of the channel to voice mode may then be made at 112 as de~cribed previously. The start call duration timer may be then initiated at step 114 if there i9 no portable or dispatcher transmitting voice at step 116. The voice communication continues until such time as the repeater times out or the call duration limit has been exceeded or the dispatcher sends an abort command to terminate.
Following the ces~ation of voice communication, the channel i3 then returned to dat~ mode again at step 100'~

The portable function on voice mode is depicted in the state diagram of Figure 7. As shown, the portable while in the data mode at step 120 may assert the PTT to request permission for voice communication at step 122 13~6503 and either receives from the centrally located base station 32 a busy indication or a grant from the central base station for permis6ion to use voice communication.

05 If a bu~y indication is first received, it will be under~tood that the data terminal will awa1t an appropriate time after which the NCP 40 may determine that the grant may be made~ If so, it will be made in the manner previously discribed. If the signal from the NCP 40 cannot be received and processed, an out of range indication will be initiated. As previously indicated, th~ portable waits for a subaudible coding 6ignal in the outbound message stream to authorize transmission by the portable o~ voice communication as indicated at step 124.
The portable may receive voice by releasing the PTT and monitorlng the channel at step 126 and may reassert the PTT to further transmit voice communication by reverting back to step 124. If, however, the portable, in ~ monitoring the channel for voice transmission, fails to receive the same within a specified period of time as indicated at step 128, it simply returns to the data mode as indicated at step 120'.

A state transition function diagram for the fixed end is indicated in Figure 8. Assuming that the channel for system 30 is in the data mode at step 130, it will remain in such mode until a request to voice communicate is received from one of the system radio data terminals 44. Upon deciding that such voice may be allowed at that point, the NCP 40 sends out the grant and upon receiving an acknowledgment back initiates the clear down data function at step 132 where it may complete any current outbound message, cause the GCC 46 to be put in the "inhibit-on" mode as well as sending any queued acknowledgments and ensure that the subaudible coding is activated and transmitted on the outbound stream. It ~3~65(~3 then waits ~or a detect of the subaudible coding or line P~ to indicate that the inbound channel is busy with voice as indicated at step 134. ~hereafter the call may be aborted by the dispatcher or by the call duration 05 limit being exceeded, as indicated at step 136, which then causes the repeater to shut down and it will revert to the data mode at step 130 when the portable data terminal is no longer on the channel. Alternatively, if after detecting voice on the channel at step 134, and the call i8 not specifically aborted, the NCP 40 will monitor the inbound channel, and if subaudible coding or no line PTT is detected, the inbound channel will be determined as not busy and may either, after a repeater drop out time has expired, revert to the clear down voice mode at step 138, or, if the subaudible coding is received before that time, revert back to step 134 where the inbound channel is determined as active and voic8 i~ on the channel. Assuming that step 138 has been reached, the repeater will then be turned of~ and the system will wa.it for any voice in a predetermined window after which it is returned to the data mode at step 130.

Accordingly, a shared data/voice communication 6ystem has been described wherein interference between data and voice mode operation is effectively minimized while at the same time guaranteeing that a set level of system capacity is reserved for data only traffic. The system operates without change on standard data channel access rule~ or protocol at all times except when a voice transmission has been authorized and is in fact taking place, wherein the speciali~ed voice management protocol takes effect. Long and short delay timers are included in the portable radio data terminals regarding random times the terminals are to wait, depending on whether the system is in voice or data mode, before attempting channel access and thereby minimize message interference 130~S03 as a result of excessive coll~sions when att~mpting such access. In this way, any 3yste~n radio data terminal may request, and when granted, communicate a voice me3sage to the central ba~e station. In like manner, portable-to-05 portable selective calls may be initiated as well as portable in~tiated group call~, dispatcher initiated selective calls, dispatcher initiated group calls, portable initiated emergency calls when the channel is in data mode, and portable initiated emergency calls when the channel i6 in voice mode.

Claims (24)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A shared data/voice communication system having a central base station controlled by a network control processor and a plurality of radio data terminals with voice capability, said system operating with a predetermined channel access protocol in the data mode and wherein data priority is maintained for a set but programmable level of data usage, comprising in combination:
means in each of the data terminals for seeking access to the communication channel and requesting voice mode operation;
means in said network control processor for granting the request, operating the central base station in voice mode and inhibiting all other system terminals from sending data messages during the pendency of said requesting terminal operating in voice mode;
means for terminating voice mode operation and returning the base station to data mode only operation; and means in said network control processor for maintaining a set, programmable level of data traffic for the communication system by denying any voice mode request by a terminal when said programmable level of data traffic has not been reached.
2. A shared data/voice communication system in accordance with claim 1 wherein said means requesting voice mode operation includes means for transmitting a data packet in accordance with the standard data channel access protocol.
3. A shared data/voice communication system in accordance with claim 1 wherein said means for granting said request for voice mode operation includes means for computing a data interval and allowing voice communication only if said computed data interval has expired.
4. A shared data/voice communication system in accordance with claim 3 wherein said data interval is computed as equal to:
voice message duration where the maximum voice utilization is the programmable level of voice communication that is elected for system operation and the voice message duration is a duration of the last such message it transmitted on the system.
5. A shared data/voice communication system in accordance with claim 1 wherein said means for terminating voice mode operation includes means operating in response to either the call duration limit being exceeded, the base station timing out or the dispatcher transmits an abort command.
6. A shared data/voice communication system in accordance with claim 1 wherein said network control processor in inhibiting other system terminals during pendency of an inbound message includes means for setting inhibit bits at predetermined locations on the outbound data stream.
7. A shared data/voice communication system in accordance with claim 6 wherein said means in said radio data terminal for seeking access to the communication channel includes means for first determining if said inhibit bits are set, and if so, for initiating a short random inhibit timer, and if not, for either initiating a long random inhibit timer if voice if detected on the communication channel or sending its intended message if voice is not detected on the communication channel.
8. A shared data/voice communication system in accordance with claim 7 wherein the short random timer is in the range of 0-250 milliseconds.
9. A shared data/voice communication system in accordance with claim 7 wherein the long random timer is in the range of 0-10 seconds.
10. A shared data/voice communication system in accordance with claim 1 wherein the grant by the network control processor in response to a request for voice mode communication includes the further transmission of a subaudible code signal indicating the requesting data terminal may commence voice communication.
11. A portable radio data terminal intended for operation in standardized channel access protocol in a data communication system, which terminal is further capable of operating in voice mode, including in combination:
means for seeking access to the communication channel and requesting voice mode for the communication system by transmitting a predetermined data packet;
means for responding to a grant transmitted on an outbound data stream from a centrally located base station:
means for initiating a voice message upon receipt of a subaudible code signal from the base station by retransmitting said code signal in combination with the intended voice message; and means for terminating said voice mode operation in response to the occurrence of any set, predetermined conditions.
12. A portable radio data terminal in accordance with claim 11 wherein said means for seeking access to the communication channel includes means for first determining if inhibit bits are set in the outbound stream on the communication channel, and if so, for initiating a short random inhibit timer, and if not, for either initiating a long random inhibit timer, if voice is detected on the communication channel, or sending its intended message if voice is not detected on the communication channel.
13. A portable radio data terminal in accordance with claim 12 wherein the short random timer is in the range of 0-250 milliseconds.
14. A portable radio data terminal in accordance with claim 12 wherein the long random timer is in the range of 0-10 seconds.
15. A portable radio data terminal in accordance with claim 11 wherein said means for terminating voice mode operation includes means operating in response to either of the call duration limit being exceeded, the base station timing out or the dispatcher transmitting an abort command.
16. In a shared data/voice communication system having a central base station controlled by a network control processor, a plurality of radio terminals and operating on standardized channel access protocol in the data mode, a method for permitting such radio data terminals to further operate on voice mode while maintaining a set, but programmable level for which data priority is maintained, comprising the steps of:
providing the radio data terminals with voice capabilities;
permitting any one of the radio data terminals to seek access to the communication channel and request voice mode by sending a predetermined data packet:
having the network control processor grant the request under specified conditions, operating the central base station in voice mode and inhibiting all other system terminals from sending any data messages during the pendency of the requesting terminal operating in voice mode;
terminating voice mode operation and returning the base station to data mode only operation; and having the network control processor deny any voice mode requests by any radio data terminal when said programmable level of data traffic has not been reached.
17. A method in accordance with claim 16 wherein the granting of said request for voice mode operation includes the step of first computing a data interval and allowing voice communication only if said computed data interval has expired.
18. A method in accordance with claim 17 wherein said data interval is computed as equal to:
voice message duration where the maximum voice utilization is the programmable level of voice communication that is elected for system operation and the voice message duration is a duration of the last such message it transmitted on the system.
19. A method in accordance with claim 16 wherein the terminating of voice mode operation may be in response to either the call duration limit being exceeded, the base station timing out or the dispatcher transmiting an abort command.
20. A method in accordance with claim 16 wherein said network control processor in inhibiting other system terminals during pendency of an inbound message is effected by setting inhibit bits at predetermined locations on the outbound data stream.
21. A method in accordance with claim 16 wherein in seeking access to the communication channel it is first determined if said inhibit bits are set, and if so, initiating a short random inhibit timer, and if not, either initiating a long random inhibit timer if voice is detected on the communication channel or sending its intended message if voice is not detected on the communication channel.
22. A method in accordance with claim 21 wherein the short random timer sets a time within the range of 0-250 milliseconds.
23. A method in accordance with claim 16 wherein the long random timer sets a time within the range of 0-10 seconds.
24. A method in accordance with claim 16 wherein the granting by the network control processor in response to a request for voice mode communication includes further transmitting a subaudible code signal indicating the requesting data terminal may commence voice communication.
CA000587017A 1988-03-31 1988-12-23 Shared data/voice communication system with programmable data priority Expired - Lifetime CA1306503C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US175,888 1988-03-31
US07/175,888 US5115233A (en) 1988-03-31 1988-03-31 Shared data/voice communication system with programmable data priority

Publications (1)

Publication Number Publication Date
CA1306503C true CA1306503C (en) 1992-08-18

Family

ID=22642076

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000587017A Expired - Lifetime CA1306503C (en) 1988-03-31 1988-12-23 Shared data/voice communication system with programmable data priority

Country Status (5)

Country Link
US (1) US5115233A (en)
JP (1) JPH01290326A (en)
CA (1) CA1306503C (en)
GB (2) GB2217149B (en)
HK (1) HK149295A (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640832B1 (en) * 1988-12-15 1992-12-18 Europ Rech Electr Lab METHOD FOR OPTIMIZING TRANSMISSION OF AUTHORIZATION FOR ACCESS TO A NETWORK COMPRISING OPEN CHANNELS
US5138311A (en) * 1990-09-20 1992-08-11 Motorola, Inc. Communication system having adaptable message information formats
EP0509068A4 (en) * 1990-11-05 1993-05-12 Motorola, Inc. Dynamic association of rf radio data communication system in a pre-existing computer controlled network
GB2253323B (en) * 1991-03-01 1995-05-17 Racal Vodafone Ltd Telecommunications networks and methods
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US5235598A (en) * 1992-01-30 1993-08-10 Motorola, Inc. Method for utilizing a control channel for both data and voice
US5282204A (en) * 1992-04-13 1994-01-25 Racotek, Inc. Apparatus and method for overlaying data on trunked radio
US5533094A (en) * 1992-05-12 1996-07-02 Telefonaktiebolaget L M Ericsson, A Corp. Of Sweden Allocation of paging capacity in cellular applications by storing a set of page request group designations, paging extents and paging priority parameters
EP0615393A1 (en) * 1993-03-10 1994-09-14 Motorola, Inc. A method for packet data transmission on a cellular voice network
WO1995002305A1 (en) * 1993-07-06 1995-01-19 Motorola, Inc. Virtual pager for general purpose data terminal
WO1995003679A1 (en) * 1993-07-20 1995-02-02 Nomadic Systems, Inc. Method and apparatus for managing data transfer in a cellular communications system
GB2283391B (en) * 1993-08-27 1998-02-11 Motorola Israel Ltd Method of operation of a trunked radio system for data transmission
ZA948428B (en) * 1993-11-15 1995-06-30 Qualcomm Inc Method for providing a voice request in a wireless environment
US5487175A (en) * 1993-11-15 1996-01-23 Qualcomm Incorporated Method of invoking and canceling voice or data service from a mobile unit
US5572201A (en) * 1994-08-05 1996-11-05 Federal Signal Corporation Alerting device and system for abnormal situations
US5548805A (en) * 1994-08-23 1996-08-20 Racotek, Inc. Data communication system using spectral overlay
FI114178B (en) * 1995-01-09 2004-08-31 Nokia Corp Dynamic allocation of radio capacity in a TDMA system
GB9510072D0 (en) * 1995-05-18 1995-07-12 Evets Communications Ltd Communication system
FI101670B1 (en) * 1995-12-15 1998-07-31 Nokia Mobile Phones Ltd A method for communicating concealment of data transfer between a mobile station network and a mobile station
US5875187A (en) * 1996-06-28 1999-02-23 At&T Wireless Services Inc. TDMA messaging service microcell
US7012903B1 (en) 1996-06-28 2006-03-14 Cingular Wireless Ii, Llc TDMA messaging service microcell
KR100259914B1 (en) * 1997-07-18 2000-06-15 윤종용 Method for controlling data syschronization in wireless multi-terminal
US6259892B1 (en) 1997-09-19 2001-07-10 Richard J. Helferich Pager transceiver and methods for performing action on information at desired times
US6636733B1 (en) 1997-09-19 2003-10-21 Thompson Trust Wireless messaging method
US7003304B1 (en) * 1997-09-19 2006-02-21 Thompson Investment Group, Llc Paging transceivers and methods for selectively retrieving messages
US6233430B1 (en) 1997-09-19 2001-05-15 Richard J. Helferich Paging transceivers and methods for selectively retrieving messages
US6253061B1 (en) 1997-09-19 2001-06-26 Richard J. Helferich Systems and methods for delivering information to a transmitting and receiving device
US6826407B1 (en) 1999-03-29 2004-11-30 Richard J. Helferich System and method for integrating audio and visual messaging
US6087956A (en) 1997-09-19 2000-07-11 Helferich; Richard J. Paging transceivers and methods for selectively erasing information
US6983138B1 (en) * 1997-12-12 2006-01-03 Richard J. Helferich User interface for message access
US6266330B1 (en) 1998-01-22 2001-07-24 Nokia Mobile Phones Limited Dynamic allocation of radio capacity in TDMA system
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
US6879580B1 (en) * 1999-11-29 2005-04-12 Telefonaktiebolaget Lm Ericsson Combined CDMA multi-service carrier and TDMA/CDMA packet carrier
US7110768B1 (en) * 1999-12-06 2006-09-19 Avaya Technology Corp. Measurement and antenna placement tool for establishing a cell site
SE520919C2 (en) * 1999-12-29 2003-09-16 Volvo Technology Corp System and method of communication between a central station and a remote object
JP2003045042A (en) * 2001-07-31 2003-02-14 Toshiba Corp Thickness irregularity correction method for information recording medium and information recording and reproducing device using thickness irregularity correction method
GB0124323D0 (en) * 2001-10-10 2001-11-28 Nokia Corp Setting mode of communication
JP2006101048A (en) * 2004-09-29 2006-04-13 Nec Corp Ptt communication system, portable terminal device, and conversation start method used for them and program thereof
US8306203B1 (en) * 2005-06-10 2012-11-06 Nextel Communications, Inc. Method and computer-readable medium for terminating options for dispatch group calls
DE102005037569B4 (en) * 2005-08-09 2011-03-03 Infineon Technologies Ag Method for assigning a communication right, communication conference session server and communication conference session server arrangement
EP1932760A1 (en) * 2006-12-13 2008-06-18 Saab Ab A radio communication system for providing both voice and data communication services over radio communication channels and a method for use in a radio communication system
US8917631B2 (en) * 2010-08-23 2014-12-23 Ortsbo Inc. System and method for sharing information between two or more devices

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3311704A (en) * 1963-06-28 1967-03-28 Ibm Voice-data multiplexing system for transmitting data during pauses in the voice signals
US4291200A (en) * 1979-10-31 1981-09-22 Bell Telephone Laboratories, Incorporated Voice and data switching arrangement
US4418416A (en) * 1981-04-06 1983-11-29 Bell Telephone Laboratories, Incorporated Frequency modulation transmitter for voice or data
US4332027A (en) * 1981-10-01 1982-05-25 Burroughs Corporation Local area contention network data communication system
US4636791A (en) * 1982-07-28 1987-01-13 Motorola, Inc. Data signalling system
US4590473A (en) * 1982-07-28 1986-05-20 Motorola, Inc. Data signalling system
US4542380A (en) * 1982-12-28 1985-09-17 At&T Bell Laboratories Method and apparatus for graceful preemption on a digital communications link
US4517669A (en) * 1983-07-11 1985-05-14 Motorola, Inc. Method and apparatus for coding messages communicated between a primary station and remote stations of a data communications system
US4519068A (en) * 1983-07-11 1985-05-21 Motorola, Inc. Method and apparatus for communicating variable length messages between a primary station and remote stations of a data communications system
EP0188554B2 (en) * 1984-07-13 1995-05-24 Motorola, Inc. Cellular voice and data radiotelephone system
JPS6146635A (en) * 1984-08-11 1986-03-06 Fujitsu Ltd Data transmission line ensuring system
JPH0342770Y2 (en) * 1985-02-08 1991-09-06
JP2550937B2 (en) * 1985-03-04 1996-11-06 国際電信電話株式会社 ISDN subscriber terminal control system
US4716407A (en) * 1985-10-07 1987-12-29 Motorola, Inc. Trunked communication system true priority channel scan
CA1296773C (en) * 1987-04-30 1992-03-03 Kenneth John Zdunek Trunked communication system for voice and data
US4837858A (en) * 1987-04-30 1989-06-06 Motorola, Inc. Subscriber unit for a trunked voice/data communication system

Also Published As

Publication number Publication date
GB2258368A (en) 1993-02-03
GB2217149A (en) 1989-10-18
GB9220896D0 (en) 1992-11-18
GB2258368B (en) 1993-05-19
US5115233A (en) 1992-05-19
GB8902396D0 (en) 1989-03-22
JPH01290326A (en) 1989-11-22
GB2217149B (en) 1992-12-02
HK149295A (en) 1995-09-29

Similar Documents

Publication Publication Date Title
CA1306503C (en) Shared data/voice communication system with programmable data priority
EP1356641B1 (en) Method and apparatus for efficient use of communication resources in a data communication system under overload conditions
EP0606282B1 (en) Method for realising a group call in a digital radio network
US5636220A (en) Packet delivery method for use in a wireless local area network (LAN)
JP4545948B2 (en) Method and apparatus for providing fair access to users with different signal delays in a group communication system
KR960006465B1 (en) Method for dynamically allocating data channels on a trunked communication system
CA1290401C (en) Trunked radio repeater system
CA1238087A (en) Queued community repeater communications systems
JP4699552B2 (en) Method and apparatus for monitoring link activity to prevent system deadlock in a dispatch system
AU2002235514A1 (en) Method and apparatus for efficient use of communication resources in a data communication system under overload conditions
JP2004537184A6 (en) Method and apparatus for efficient use of communication resources in a data communication system under overload conditions
JP2000308146A (en) Method for controlling up link packet transmission in radio communication system
MXPA04005727A (en) Communication channel structure and method.
US4554677A (en) Queued community repeater controller
WO1996000482A2 (en) Method for allocating radio channels
JP4027983B2 (en) Method and apparatus for efficient system access within a dispatch system
JP2000358281A (en) Method for controlling access to radio resources for transmitting incoming link packet in radio communication network
EP1037405A3 (en) Satellite based demand assigned multiple access protocol for use with a processing satellite communication system
CA1326510C (en) Trunked radio repeater system
JPH04500294A (en) Waiting for data message
KR100476737B1 (en) Method and apparatus for monitoring link activity to prevent system deadlock in a dispatch system

Legal Events

Date Code Title Description
MKLA Lapsed
MKLA Lapsed

Effective date: 20040818