CA1300580C - Sme actuator - Google Patents

Sme actuator

Info

Publication number
CA1300580C
CA1300580C CA000567852A CA567852A CA1300580C CA 1300580 C CA1300580 C CA 1300580C CA 000567852 A CA000567852 A CA 000567852A CA 567852 A CA567852 A CA 567852A CA 1300580 C CA1300580 C CA 1300580C
Authority
CA
Canada
Prior art keywords
sme
plunger
disc
washers
plunger means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000567852A
Other languages
French (fr)
Inventor
David N. Abujudom
Dennis Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Service Co
Original Assignee
Johnson Service Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Service Co filed Critical Johnson Service Co
Application granted granted Critical
Publication of CA1300580C publication Critical patent/CA1300580C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/025Actuating devices; Operating means; Releasing devices electric; magnetic actuated by thermo-electric means

Abstract

Abstract An SME actuator is provided by a housing, a plunger axially reciprocal in the housing; a compression spring or Belleville washers biasing the plunger in one direction, SME
(shape memory effect) disc washers around the plunger and thermally deformable to move the plunger in the opposite direction, and a concentric electrical resistance heater and/or fluid inlet and outlet ports for thermally actuating the SME disc washers to in turn move the plunger. Multi-position control is provided by a stack of a plurality of SME
Belleville disc washers of differing transition temperatures.
Alternatively, the washers can all have the same transition temperature and operate proportionally with increasing or decreasing temperatures. Another version is provided by an SME torsion bar and threaded drive element for axially translating the plunger.

Description

~3()~:)5~3~
SME ACTUATOR
The invention relates to SME, shape memory effect, actuator mechanisms.
SME alloys are known in the art and exhibit a given 5 mechanical movement to a thermally deformed position in response to heating above a transition temperature. Upon cooling below the transition ~emperature, or below a hysteresis temperature with respect thereto, the SME element returns or is biased to return to its original position of repose. For further background regarding 10 SME materials and actuating mechanisms, reference is made to Buehler et al U.S. Patent 3,174,851, Buehler et al U.S. Patent 3,403,238, Willson et al U.SO Patent 3,613,732, Todoroki et al U.S. Patent 4,531,988 and Ohkata U.S. Patent 4,570,852, and to Watanabe Japanese Patent Document 0077180 and Nishibori Japanese 15 Patent Document 0146982.
In accordance with one aspect of the invention there is provided an actuator comprising: housing means; plunger means reciprocally movable in said housing means; SME, shape memory effect, disc washer means around said plunger means and 20 thermally deformable to move said plunger means along a travel stroke in a given direction, said SME disc washer means comprising a stack of a plurality of SME disc washers through which said plunger extends; at least one non-SM~ Belleville washer in said stack biasing said plunger means in a direction aiding said 25 thermal deformation of said SME means in said given direction and providing bias and resiliency at the end of the travel stroke of said plunger means upon thermal deformation of said SME disc washers.
Brief Descri~tion of the Drawinqs FIG. 1 is a sectional s~de view of an SME actuator constructed in accordance with the invention.
FIG. 2 is a sectional view of a portion of FIG. 1 showing an actuated condition.
FIG. 3 shows an alternate embodiment of a portion of 35 FIG. 1.
FIG. 4 shows another alternate embodiment of an SME
actuator in accordance with the invention.
FIG. 5 shows another alternate embodiment of an SME
actuator in accordance with the invention.

Detailed Descri~tion There is shown in FIG. 1 a valve 2 having an opening 4 engageable by valve plug 6 to terminate fluid flow from inlet 8 to outlet lO. Valve plug 6 is threadingly mounted to the bottom end of a plunyer 12 which is axially vertically reciprocal in upstanding portion 14 of the housing. Compression spring 16 biases plunger 12 upwardly to the open condition of valve 2. A plurality of SME, shape memory effect, disc washers la thermally deform, by direct or indirect heating, FIG. 2, to move plunger 12 downwardly and close valve plug 6 by seating it in opening 4. SME
disc washers l8 are of conventional SME alloy material available for example from Beta Phase Company, 1060 Marsh Road, Menlo Park, California 94025. At least one non-SME Belleville washer 20 is included in the stac~
and provides resiliency at the end`of the travel stroke of the plunger upon thermal deformation of the SME disc washers.
Plunger 12 has a radially enlarged flange 22. Biasing spring 16 bears at its upper end against the underside of flange 22l and bears at its lower end against a stop washer 24 seated against shoulder 26 in the housing. The plunger includes a lower rod 28 of smaller diameter than flange 22 and threadingly connected to flange 22 and extending downwardly from flange 22 through stop washer 24. ~iasing spring 16 is concentric to rod 28. The plunger also inoludes an upper rod 30 of smaller diameter than flange 22 and extending integrally upwardly from flange 22 through SME disc washers 18 and into an axial vertical guide bore 32 in top cap 34. Cap 34 is thread mounted to housing portion 14 to close the upper end thereof.

1~

~3~5~3~

An electrical resistance heater is provided by an annular coil 36 concentric to SME stack 18 and having a pair of terminal wires 38 extending externally of the housing through aperture 40, sealed by epoxy 41, and in circuit with voltage source 42 and switch 44.
Upon closure of switch 44,~current from voltage source 42 flows through heater coil 36 whi~:h heats SME stack 18 such that the latter thermally deforms to the condition shown in FIG. 2. The close proximity of the heater coil to the SME stack provides thermal coupling therebetween.
Valve plug 6 may be actuated solely by the heat of resistance heater coil 36, or in combination with heating or cooling provided by the flu~d from inlet 8. In the preferred embodiment, the SME stack i~
heated to a given temperat~re by fluid from inlet 8, and the SME stack is further heated by resistance coil heater 36 to a temperature above transition temperature, to actuate the valve, FIG. 2. Plunger 28, flange 22 and plunger 30 are heat conductivo members and conduct heat from the fluid to the SME stack. Stop washer 24 is also a heat conductive member and/or may be provided with apertures through which the fluid may flow to directly contact the SME stack. In other embodiments, hot or cold fluids from inlet 8 may enhance or degrade heating of the SME stack and/or require less or more electrical current flow through heater coil 36 and/or faster or slower heating times.
Spring 16 returns plunger 30 upwardly upon repose of the SME stack.
FIG. 3 shows an alternate embodiment of the actuator of FI~. l and uses like reference numerals with the postscript "a" where appropriate to facilitate clarity. Plunger 12a is axially vertically reciprocal in housing portion 14a. Compression spring 16a bears ~; .

lL3~ 30 be~ween stop washer 24a and flange 22a to bias the plunger upwardly. SME stack 18a be~rs against the top surface of flange 22a to drive the plunger downwardly upon thermal deformation of the SME stack. SME stack 18a bears at its upper end against the undersurface of cap 34a which is thread mounted to housing portion 14a. SME stack 18a is concen~ric to heater coil 3Ga which in turn is concentric to upper rod 30a of the plunger. The terminal wires 38a of the heater coil extend upwardly through an opening 40a in upper cap 34a and are sealed by epoxy 4la.
FIG. 4 shows another alternate embodiment.
Plunger 50 is axially vertically reciprocal in housing 52. Plunger 50 includes a radially enlarged central flange S4, and a reduced di~ameter upper rod 56 extending upwardly from the flange, and a reduced diameter lower rod 58 extending downwardly from the flange. A plurality of Belleville washers 60 are concentric to upper rod 56 and bear between the top wall 62 of the housing and the upper surface of flange 54 to bias plunger 50 downwardly. A plurality of SME
disc washers 64 are concentric to lower rod 58 and bear between the bottom housing wall 66 and flange 54 to move plunger 50 upwardly upon thermal deformation oÇ
the SME stack. Plunger 50 has actuated and non-actuated positions according to thermal deformation and repose of SME disc washers 64. Non-SME 8elleville washers may be included in the stack to provide resiliency at the end of the travel stroke of the plunger upon thermal deformation of the SME disc washers. Upper rod 56 includes an internally threaded bore 68 for connection to a work-performing element.
Lower rod 58 includes a heat conductor rod 70 therein. SME disc washers 64 are concentric to plunger rod 58 and to the upper portion 70a of heat conductor ., ~3~ 5~

rod 70. An annular heater coil 72 is concentric to the lower portion 70b of rod 70 axially spaced below upper portion 70a. 8Ottom wall 66 of the housing has an opening 74 through which rods 58 and 70 extend. Upper rod portion 70a of the rod and SME disc washers 64 are internal to the housing. In the non-actuated position of the plunger as shown in FIG. 4, lower rod portion 70b and heater 72 are external to the housing. In the actua~ed position of the plunger, heater 72 and lower rod portion 70b move axially vertically upwardly through opening 74 and at least partially into the housing. Upper wall 62 of the housing has an opening 76 through which upper plunger rod 56 moves.
Housing 52 has a circumferential side wall 78 extending axially between the end walls and defining an internal cavity. A seal is provided by an annular bellows gasket 80 between flange 54 and the inner surface of side wall 78 such that axial vertical movement of flange 54 in the cavity defines a first variable volume chamber 82 containing SME disc washers 64 and sealed rom a second inversely variable volume chamber 84 containing Belleville washers 60. Inlet and outlet ports 86 and 88 are provided through the housing walls for communicating fluid into and out of chamber 82 and~providing direct fluid contact with SME disc washers 64. Fluid contact, and inlet 86 and outlet 88, are optional. Heat from heater coil 72 is conducted by rods 70 and 58 to heat SME disc washers 64 to thermally deform same. As an alternative to heat conductor rod 70, plunger rod 58 is itself a highly heat conductive member.
- The SME Belleville disc washers may be directly heated with a low voltage source, in which case the bearing surfaces 31b and 31c, FIG. 1, 31d and 31e, FIG. 3, and 71a and 71b, FIG. 4, should ba ~T

~3~580 electrically nonconductive. The electrical resistance of the SME stack may be increased by addin~
electrically resistive 1washers or discs in series with the stack. Adding such elements within the stack may also be used to affect the force and stroke.
Multi-position control is provided by selecting SME Belleville disc washers with different transistion temperatures. In one embodiment in FIG. 2, parallel SME disc washers l9a and l9c each have a transition temperature Tl and orm a firct sub~et and are slanted in the same direction relative to plunger 30 therethrough. Parallel SME disc washers l9b and 19d have a transition temperature T2 and fonm a second subset, and are slanted oppositely to washer~ l9a and l9c. In this manner, the T~ disc washerc are interleaved with and slant oppositely from the T1 disc washers. The Tl disc washers are spaced and separated by a T2 disc washers therebetween. Temperature T2 is higher than temperature Tl, and the different transition temperatures provide multi-step multi-position movement of plunger 30. At temperatures below T1, plunger 3a and valve plug 6 are in the raised fully open condition. At temperatures between Tl and T2, the Tl disc washers l9a and l9c thermally deform, but not the T2 disc washers 19b and l9d, and plunger 30 and valve plug 6 are in a partially lowered partially open condition. At temperatures above T2, both the Tl disc washers 19a and 19c and the T2 disc washers l9b and 19d thermally deform, and plunger 30 and valve plug 6 are in the lower closed position. Additional SME disc washers can be included in each subset to lengthen the travel stroke of the plunger. Adding further subsets of SME disc washers of further differing transition temperatures adds further intermediate steps in the positioning of valve plug 6 along its vertical travel 5E~O

stroke~ and provide a more smoothly continuous travel stroke~ a 5 desired-In another embodiment in FIG. 2~ disc washer5 l9a and 19b have a transition temperature Tl and form a first subset, and are contiguous to each other and slant in opposite directions- Di~c washers l9c and l9d have a higher transition temperature T2 and fonm a second subset, and are contiguous to each other and slant in opposite directions. At temperatures below Tl, valve plug 6 is fully open. At temperatures between Tl and T2, the first subset l9a and l9b thermally deforms to partially lower valve plug 6 to an intermediate position. At temperature~ above T2, the sacond subset provided by disc washers l9c and l9d also thermally deforms to fully lower valve plug 6 to its closed position. Adding further subsets of disc washers of further differing transition temperatures provides further steps in the vertical trave~ stroke of valve plug 6.
In another embodiment, the SME disc washers all have the same transition temperature and operate proportionally with increasing or decreasing temperatures, to provide the above noted multi-position control.
FIG. 5 shows another alternate embodiment.
Housing 90 has an intermediate cap 92 thread mounted thereto. Intermediate cap 92 has a top cap 94 thread mounted thereto. An SME torsion bar 96 has an upper portion 98 of a given keyed configuration, such as a square or a hex, nonrotatably held in a like keyed configured bore 100 of housing cap 94. SME torsion bar 96 has a lower end 102 of a given keyed configuration nonrotatably received in a drive element 104 having a like keyed configuration inner bore 106. Housing cap 92 has an inner threaded bore 108. Drive element 104 ~3~513~

is externally threaded, and is matingly received in threaded bore 108. An annular heater coil 110 is concentric to SME torsi,on bar 96. Upon heating, SME
torsion bar 96 torsionally rotates threaded drive element 104 which in turn axially translates plunger 112 downwardly. Plunger 112 has a radially enlarged flange 114 and a reduced diameter lower rod 116 extending downwardly from the flange. Compression spring 118 is concentric to rod 116 and biases plunger 112 upwardly. Spring 118 bears at its upper end against the underside of flange 114 and at its lower end against a stop washer 120. Rod 116 extends th'rough washer 120. Axially extending internally threaded passage 108 has an axial end face 122 defining an annular collar. The central portion 124 of the upper surface of flange 114 is axially aligned with and engaged by drive element 104. The radially outer portion 126 of the flange is axially aligned with annular collar 122 and engages the collar in the non-actuated position of the plunger.
It is recognized that various equivalents, alternatives and modifications are possible within the scope of the appended claims.

Claims (19)

1. An actuator comprising:
housing means;
plunger means reciprocally movable in said housing means;
SME, shape memory effect, disc washer means around said plunger means and thermally deformable to move said plunger means along a travel stroke in a given direction, said SME
disc washer means comprising a stack of a plurality of SME
disc washers through which said plunger extends;
at least one non-SME Belleville washer in said stack biasing said plunger means in a direction aiding said thermal deformation of said SME means in said given direction and providing bias and resiliency at the end of the travel stroke of said plunger means upon thermal deformation of said SME
disc washers.
2. The invention according to claim 1 comprising return biasing means biasing said plunger means in a direction opposite said given direction upon repose of said SME disc washers.
3. The invention according to claim 2 wherein said plunger means moves axially in said housing means and has a radially enlarged flange, and wherein said return biasing means bears against one side of said flange, and said SME disc washer means bears against the other side of said flange.
4. The invention according to claim 3 wherein said plunger means includes a rod of smaller diameter than said flange and extending axially from said other side of said flange.
5. The invention according to claim 4 wherein said plunger means includes a second rod of smaller diameter than said flange and extending axially from said one side of said flange, and wherein said return biasing means is concentric to said second rod.
6. The invention according to claim 1 comprising an electrical resistance heater thermally coupled to said SME
disc washer means for heating said SME disc washer means.
7. The invention according to claim 6 wherein said heater comprises an annular member concentric to said SME disc washer means.
8. An actuator comprising:
housing means;
plunger means reciprocally movable in said housing means;
SME, shape memory effect, disc washer means around said plunger means and thermally deformable to move said plunger means in a given direction;
means for returning said plunger means in a direction opposite said given direction upon repose of said SME disc washer means;
wherein said return means comprises biasing means biasing said plunger means in said opposite direction, and wherein:
said plunger means moves axially in said housing means and has a radially enlarged flange and first and second rods extending axially from opposites sides of said flange;
said housing means has first and second distally opposite end walls, said second end wall having an opening therein through which said second rod extends;
said biasing means is concentric to said second rod and bears between said second end wall and said flange said SME disc washer means is concentric to said first rod and bears between said first end wall and said flange.
9. The invention according to claim 8 wherein said first end wall has an opening therein through which said first rod extends.
10. An actuator comprising:
housing means;
plunger means reciprocally movable in said housing means;
a stack of a plurality of SME, shape memory effect, disc washers around said plunger means and thermally deformable to move said plunger means, at least one SME disc washer in said stack having a different transition temperature than another SME disc washer in said stack to provide multi-position movement of said plunger means.
11. The invention according to claim 10 wherein said stack includes one or more SME disc washers each having a transition temperature T1, and one or more SME disc washers each having a transition temperature T2 different than T1.
12. The invention according to claim 11 wherein T2 is higher than T1, and wherein said plunger means has a first position at temperatures less than T1, a second position at temperatures between T1 and T2, and a third position at temperatures greater than T2, said second position being between said first and third positions.
13. The invention according to claim 12 wherein said T1 disc washers are parallel and slanted relative to said plunger means therethrough, and wherein said T2 disc washers are parallel and slanted oppositely to said T1 disc washers relative to said plunger means therethrough, said T2 disc washers being interleaved with said T1 disc washers, such that a T1 disc washer is spaced from the next T1 disc washer by a T2 disc washer therebetween which slants oppositely to said T1 disc washers.
14. The invention according to claim 12 wherein said T1 disc washers are contiguous to each other and alternately slant oppositely relative to plunger means therethrough and form a first subset along plunger means, and wherein said T2 disc washers are contiguous to each other and alternately slant oppositely relative to said plunger means therethrough and form a second subset along said plunger means, such that at temperatures between T1 and T2 said first subset is thermally deformed to move said plunger means to said second position, and at temperatures above T2 both of said first and second subsets are thermally deformed to move said plunger means to said third position.
15. An actuator comprising:
housing means;
plunger means reciprocally movable in said housing means;
SME, shape memory effect, means in said housing means and thermally deformable to move said plunger means along a travel stroke in a given direction;
means biasing said plunger means in the same direction as said given direction aiding said thermal deformation of said SME means and providing bias and resiliency at the end of said travel stroke along said given direction upon said thermal deformation.
16. The invention according to claim 15 comprising return biasing means for returning said plunger means in a direction opposite said given direction against said first mentioned biasing means upon repose of said SME means.
17. The invention according to claim 15 comprising electrical resistance heater means thermally coupled to said SME means for heating said SME means, wherein said SME means and said heater means are separate elements and are both around said plunger means.
18. The invention according to claim 15 wherein said SME
means comprises SME disc washer means.
19. The invention according to claim 10 wherein said SME
disc washers in said stack are thermally deformable to move said plunger means along a travel stroke in a given direction, and comprising at least one non-SME Belleville washer in said stack biasing said plunger means in a direction aiding said thermal deformation of said SME disc washers in said given direction and providing bias and resiliency at the end of the travel stroke of said plunger means upon thermal deformation of said SME disc washers.
CA000567852A 1987-08-27 1988-05-26 Sme actuator Expired - Fee Related CA1300580C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US090,236 1987-08-27
US07/090,236 US4836496A (en) 1987-08-27 1987-08-27 SMF actuator

Publications (1)

Publication Number Publication Date
CA1300580C true CA1300580C (en) 1992-05-12

Family

ID=22221912

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000567852A Expired - Fee Related CA1300580C (en) 1987-08-27 1988-05-26 Sme actuator

Country Status (6)

Country Link
US (1) US4836496A (en)
EP (1) EP0304944A3 (en)
JP (1) JPS6474368A (en)
KR (1) KR910003517B1 (en)
CA (1) CA1300580C (en)
NO (1) NO883797L (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419133A (en) * 1989-09-05 1995-05-30 Schneider; Edward T. High speed thermochemical actuator
JPH083802Y2 (en) * 1989-10-02 1996-01-31 株式会社山本製作所 Valve for preventing water hammer
US5014520A (en) * 1990-04-06 1991-05-14 Robertshaw Controls Company Control device having a coiled compression shape memory spring, refrigerator system utilizing the control device and methods of making the same
DE4105796A1 (en) * 1991-02-23 1992-08-27 Krupp Industrietech Servo driven flow valve - has heated memory metal spring and securing catch for valve drive
DE4130759A1 (en) * 1991-09-16 1993-03-18 Flottweg Gmbh CENTRIFUGE FOR CONTINUOUS SEPARATION OF SUBSTANCES OF DIFFERENT DENSITY
US5312152A (en) * 1991-10-23 1994-05-17 Martin Marietta Corporation Shape memory metal actuated separation device
US5344506A (en) * 1991-10-23 1994-09-06 Martin Marietta Corporation Shape memory metal actuator and cable cutter
DE4308297A1 (en) * 1992-03-20 1993-09-23 Rexroth Mannesmann Gmbh
DE4322731A1 (en) * 1993-07-08 1995-01-12 Leybold Ag Valve for regulating fluid flows with an actuator made of electrically heatable, shape-remembering material
US5442914A (en) * 1993-12-07 1995-08-22 Otsuka; George K. Shape memory alloy heat engine
US5684846A (en) * 1995-09-21 1997-11-04 Westinghouse Electric Corporation Nuclear reactor plant having containment isolation
DE19649225A1 (en) * 1996-11-27 1998-05-28 Nass Magnet Gmbh Valve
EP0921457A3 (en) * 1997-11-22 2000-01-19 Carver plc Fluid flow control valve actuator
DE19802723A1 (en) * 1998-01-24 1999-08-12 Kuesters Beloit Gmbh & Co Kg roller
US6427712B1 (en) * 1999-06-09 2002-08-06 Robertshaw Controls Company Ambient temperature shape memory alloy actuator
US6247678B1 (en) 1999-11-01 2001-06-19 Swagelok Company Shape memory alloy actuated fluid control valve
US6771005B2 (en) * 2001-02-14 2004-08-03 Caterpillar Inc Apparatus and method for adjusting the pre-load of a spring
EP1239151A1 (en) * 2001-03-05 2002-09-11 Abb Research Ltd. Actuator
KR20020081638A (en) * 2001-04-20 2002-10-30 송정석 Form power of recollection spring to use solenoid valae
DE10223466B4 (en) * 2001-05-31 2015-07-02 Magna Powertrain Hückeswagen GmbH pump
US6543743B2 (en) * 2001-07-12 2003-04-08 Arlo H. T. Lin Gas control valve
CN100359232C (en) * 2004-09-06 2008-01-02 上海华诚通信器材有限公司 Sequence valve with temp. memory
US7866624B2 (en) * 2004-10-18 2011-01-11 Gm Global Technology Operations, Inc. Heat sensitive release valve for cryogenic tank
US20080097291A1 (en) * 2006-08-23 2008-04-24 Hanson Ian B Infusion pumps and methods and delivery devices and methods with same
DE102005045432A1 (en) * 2005-09-23 2007-03-29 Möhlenhoff Wärmetechnik GmbH Valve adjusting arrangement for use in heating and ventilation engineering, has pressure spring acting on metallic part and mounted in housing such that metallic part is held in end position during cessation of heating
DE102006044515A1 (en) * 2006-09-21 2008-04-10 Itw Automotive Products Gmbh & Co. Kg Device for driving a valve
BRPI0812866A2 (en) * 2007-07-03 2014-12-09 Vetco Gray Scandinavia As SUBMARINE DRIVER
WO2009024334A2 (en) * 2007-08-21 2009-02-26 Otto Egelhof Gmbh & Co. Kg Valve element and thermostatic control device for controlling a mass flow
CA2720926A1 (en) 2007-11-26 2009-06-04 Multi-Shot Llc Mud pulser actuation
US8205855B2 (en) * 2008-08-13 2012-06-26 Bejing HaiLin Auto Control Equipment Co., Ltd. Electric control valve
WO2010069508A1 (en) * 2008-12-18 2010-06-24 Otto Egelhof Gmbh & Co. Kg Arrangement for adjusting a valve
DE102009011611B4 (en) * 2009-03-04 2014-02-27 Mertik Maxitrol Gmbh & Co. Kg Gas regulating valve
US8621959B2 (en) * 2010-01-21 2014-01-07 GM Global Technology Operations LLC Compact active material actuated transmissions for driving multiple output loads from a single primary actuator
DE202010010747U1 (en) * 2010-07-28 2010-10-21 Bürkert Werke GmbH Drive for a shape memory alloy microvalve and microvalve
DE102011112966A1 (en) * 2011-09-13 2013-03-14 Trw Automotive Gmbh Actuator with actuator of shape memory material
US9080685B2 (en) * 2012-02-07 2015-07-14 Tianbaili new technology development Co. Ltd Double-switched automatic sprinkler valve
US9127483B2 (en) 2012-05-15 2015-09-08 GM Global Technology Operations LLC Resettable devices
US9228441B2 (en) * 2012-05-22 2016-01-05 United Technologies Corporation Passive thermostatic valve
FR2991399B1 (en) 2012-06-04 2018-01-12 Centre National D' Etudes Spatiales (Cnes) SHAPE ACTUATOR WITH SHAPE MEMORY
EP2713050B1 (en) * 2012-09-28 2019-10-30 Inventas AG Memory shape alloy actuator
DE202012104460U1 (en) * 2012-11-19 2014-02-21 Otto Egelhof Gmbh & Co. Kg Shut-off valve for liquid and gaseous media
CN103644360B (en) * 2013-10-21 2016-08-17 扬中市通发实业有限公司 Used in fire-fighting handwheel heating temperature control outlet valve
EP2878814B1 (en) * 2013-11-29 2017-09-13 Siemens Schweiz AG Actuator
CN104373671A (en) * 2014-02-27 2015-02-25 韩润虎 Fluid valve, valve element actuator and valve element actuation method
US9677681B1 (en) * 2014-03-14 2017-06-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Shape memory actuated normally open permanent isolation valve
US20160290099A1 (en) * 2015-04-01 2016-10-06 Schlumberger Technology Corporation Shape memory material gas lift valve actuator
DE202015003030U1 (en) * 2015-04-24 2016-07-27 Gebr. Kemper Gmbh + Co. Kg Metallwerke Hot water circulation system with an SMA-controlled valve
US10094272B2 (en) * 2015-07-17 2018-10-09 Honeywell International Inc. Linkage for exhaust bypass valve of multi-stage turbocharger
WO2017181991A1 (en) * 2016-04-22 2017-10-26 Rainbow Quantic Limited Rotary actuator using shape memory alloy wires in traction
KR101836695B1 (en) * 2016-09-12 2018-03-08 현대자동차주식회사 Pressure cap for a vehicle's cooling system having variable opening pressure
CN110541870B (en) * 2018-05-28 2021-04-13 哈尔滨工业大学 Locking and releasing device based on shape memory polymer composite material
CN109911565B (en) * 2019-03-12 2020-10-16 浏阳市三工环保科技有限公司 Biomass fuel stove feed mechanism
RU205955U1 (en) * 2021-01-11 2021-08-12 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" EXECUTIVE MECHANISM OF SHUT-OFF VALVE DRIVE WITH ALLOY ELEMENTS WITH SHAPE MEMORY EFFECT

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121315A (en) * 1961-11-21 1964-02-18 Controls Co Of America Bimetal operated poppet valve
US3174851A (en) * 1961-12-01 1965-03-23 William J Buehler Nickel-base alloys
US3205675A (en) * 1962-03-20 1965-09-14 Controls Co Of America Valve with bimetal means for refrigeration system
US3403238A (en) * 1966-04-05 1968-09-24 Navy Usa Conversion of heat energy to mechanical energy
FR1520788A (en) * 1967-03-03 1968-04-12 Commissariat Energie Atomique Device with adjustable stroke, for positioning or moving at least one object
US3471088A (en) * 1967-08-01 1969-10-07 Zyrotron Ind Inc Valve control mechanism
US3613732A (en) * 1969-07-17 1971-10-19 Robertshaw Controls Co Temperature-responsive valve operators
SE371308B (en) * 1973-12-19 1974-11-11 Incentive Ab
US4268006A (en) * 1978-06-02 1981-05-19 Emerson Electric Co. Modulating diaphragm valve
GB2056677A (en) * 1979-08-14 1981-03-18 Spirax Sarco Ltd Thermally-responsive actuators
DE2948686C2 (en) * 1979-12-04 1983-09-29 Gestra Kondensatableiter Gmbh & Co Kg, 2800 Bremen Bimetal controlled condensate drain
US4284235A (en) * 1979-12-19 1981-08-18 Werner Diermayer Vent control arrangement for combustion apparatus
BE888218A (en) * 1981-04-01 1981-10-01 Acec SOLAR ENERGY PUMP.
JPS588817A (en) * 1981-07-03 1983-01-19 株式会社山科精工所 Elastic washer
US4472113A (en) * 1982-01-22 1984-09-18 Rogen Neil E Pumping by martensitic transformation utilization
JPS5977180A (en) * 1982-10-26 1984-05-02 Toyoda Mach Works Ltd Fluid control valve
JPS59230189A (en) * 1983-06-13 1984-12-24 松下電器産業株式会社 Heat sensor
JPS6012799U (en) * 1983-07-06 1985-01-28 加藤発条株式会社 Drain valve for steam heating
JPS6036786A (en) * 1983-08-08 1985-02-25 Keihin Seiki Mfg Co Ltd Operating device
BE897753A (en) * 1983-09-14 1984-01-02 Turck Leonce C De Electrically-operated central heating shut=off valve - is operated by a heat-sensitive spring and heating element and has copper blocking cylinder
JPS60146975A (en) * 1983-12-31 1985-08-02 Kato Hatsujo Kaisha Ltd Anti-freeze valve
JPS60146982A (en) * 1984-01-09 1985-08-02 Fujii Gokin Seisakusho:Kk Flow path open/close device
JPS6117788A (en) * 1984-07-03 1986-01-25 Matsushita Electric Ind Co Ltd Expansion valve
JPS6153467A (en) * 1984-08-23 1986-03-17 Kanto Tokushu Seikou Kk Form memory actuating body
DE3503151A1 (en) * 1985-01-31 1986-08-07 Bernhard 4300 Essen Brüne SHUT-OFF DEVICE FOR AUTOMOTIVE HEATING SYSTEMS
JPS63205467A (en) * 1987-02-20 1988-08-24 Furukawa Electric Co Ltd:The Actuator
JPS6419191A (en) * 1987-07-14 1989-01-23 Nagano Keiki Seisakusho Kk Vacuum pump
FR2620180B1 (en) * 1987-09-04 1990-01-19 Aerospatiale SHAPE MEMORY ALLOY SPRING WASHER AND ITS APPLICATION TO A DEVICE FOR EXERCISING A PRESSURE ACTUATING BY BEARINGS

Also Published As

Publication number Publication date
EP0304944A2 (en) 1989-03-01
KR890004117A (en) 1989-04-20
US4836496A (en) 1989-06-06
NO883797L (en) 1989-02-28
NO883797D0 (en) 1988-08-25
JPS6474368A (en) 1989-03-20
EP0304944A3 (en) 1989-12-06
KR910003517B1 (en) 1991-06-03

Similar Documents

Publication Publication Date Title
CA1300580C (en) Sme actuator
US4973024A (en) Valve driven by shape memory alloy
CN110023663B (en) Pneumatic valve
US8939427B2 (en) Arrangement for adjusting a valve
CN1308576C (en) Adjustable electronic thermostatic valve
US9581144B2 (en) Arrangement for adjusting a valve
EP1471225B1 (en) Thermoelement
US3967781A (en) Electrically operated expansion valve for refrigeration control
EP0746807B1 (en) Thermostat valve for the coolant circulation of an internal combustion engine
CN1328221A (en) Opening or closing valve
JP5383321B2 (en) Temperature sensitive actuator
DE19957558A1 (en) thermostat
US4103271A (en) Thermostats
US4026464A (en) Dual function thermal valve
US3721421A (en) Thermal actuators
US3439711A (en) Sequentially power actuated plural valves
JPH0773958A (en) Heating device
JPH0431726B2 (en)
US3771088A (en) Electrical switch construction and control system utilizing the same
US6404321B1 (en) Actuator
CN214999587U (en) Multi-directional control valve device
JPH0754154B2 (en) Automatic control equipment
JPH049948B2 (en)
EP0538884A1 (en) Gas spring
DE102004011984B4 (en) Electrothermal actuator with improved heating module and thermostatic valve assembly

Legal Events

Date Code Title Description
MKLA Lapsed