CA1288717C - Ribbon cassettes - Google Patents

Ribbon cassettes

Info

Publication number
CA1288717C
CA1288717C CA000499786A CA499786A CA1288717C CA 1288717 C CA1288717 C CA 1288717C CA 000499786 A CA000499786 A CA 000499786A CA 499786 A CA499786 A CA 499786A CA 1288717 C CA1288717 C CA 1288717C
Authority
CA
Canada
Prior art keywords
ribbon
spool
take
cassette
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000499786A
Other languages
French (fr)
Inventor
Alan John Harry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Francotyp Postalia GmbH
Original Assignee
Francotyp Postalia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Francotyp Postalia GmbH filed Critical Francotyp Postalia GmbH
Application granted granted Critical
Publication of CA1288717C publication Critical patent/CA1288717C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J33/00Apparatus or arrangements for feeding ink ribbons or like character-size impression-transfer material
    • B41J33/14Ribbon-feed devices or mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J32/00Ink-ribbon cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J35/00Other apparatus or arrangements associated with, or incorporated in, ink-ribbon mechanisms
    • B41J35/28Detachable carriers or holders for ink-ribbon mechanisms
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00185Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
    • G07B17/00193Constructional details of apparatus in a franking system
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00185Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
    • G07B17/00193Constructional details of apparatus in a franking system
    • G07B2017/0025Storage of, e.g. ribbon

Abstract

Title: Improvements in ribbon cassettes and apparatus incorporating same.

ABSTRACT.

A ribbon cassette, such as in inked ribbon for a printing machine, has a supply spool and a take-up spool. An unwinding force is applied to the ribbon and the take-up spool is driven from the supply spool through a slip coupling. The configuration of the driving connection between the spools is such as to lead to a theoretical speed of the take-up spool which is always greater than is actually needed to match the speed of unwinding from the supply spool. Slip however occurs to match the speeds and to maintain tension in the ribbon.

Description

i2~ 7 Title: Improvements in ribbon cassettes OESCRI PTION

Field of invention This invention relates to ribbon cassettes of the type containing a spool of ribbon which in use is transferred to a second spool within the cassette and to apparatus using such cassettes. A cassette incorporating the 5 invention is particularly suited for housing a ribbon which is coated with a thermally activatable ink or dye and which is transferred in a printing process by local heating of the ribbon.

Background to the invention 10 Cassettes containing a spool of ribbon in which during use, the ribbon is transferred to another spool, are known. They are employed in tape recoders, typewriters, printer.s and so on to carry items such as magnetic tape or inlced ribbon. These ca.ssettes usually have Eeatures, such 15 as sprocketed holes Ln the centre of one or both of the spools, which allow the apparatus on which the cassette i5 to be used, to transmit a driving force to the ca.ssette which will wind the used ribbon onto the take-up spool.

The mechanisms used in such arrangements are complex and a 20 motor or other prime mover is required to power the drive mecllanism. This prime mover may be synchronised with the .- ~.

.~ .
3L;~887~L7 take-up spool speed requirements or~ as is more often the case, a slipping clutch is used to automatically control the speed of take-up. In addition, the ca~ssette must be designed so that the drive mechanism will readily engage 5 the cassette. This is usually simplified by allowing the spools to 'float' within the cassette. The spools can then align themselves with the drive mechanism as the cassette is inserted.

A still more complex arrangement is necessary if the 10 cassette is to be inserted into the apparatus in a direction other than parallel to the axes of rotation of the spools. It may then be necessary to use an arrangement in which the drive mechanism is moved into engagement with the cassette spools after the cassette has 15 been fully inserted.

The invention According to one aspect of the invention, there is provided a ribbon cassette wherein the supply spool is adapted to be driven by an unwinding force applied to the 20 ribbon and the take-up spool is adapted to be driven by the supply spool through a slip coupling which, at beginning o ribbon transfer and throughout transfer thereafter~ tends to wind the take-up spool at an excess .speed greater than that necesary to match the speed of 25 ribbon unwinding from the supply spool.

With the ribbon cassette in accordance with the invention an appropriate tension is maintained in the ribbon, and creation of slack is avoided, by the tendency of the take-up spool to wind on spent ribbon at an excess speed. Slip 30 occurs at the coupling to prevent the take-up spool ....

12~

snapping the ribbon. The point at which slip occurs can be predetermined so that an appropriate range ribbon tension i5 maintained throughout the process of tape transfer from the supply spool to the take-up spool.

5 In one embodiment the slip coupling comprises an endless belt or band extending around the supply and take-up spools in friction engagement therewith under a tension sufficient to in~part slipping drive from the supply spool to the take-up spool. The belt preferably passes around 10 grooves in or pulleys associated with the supply and take-up spools, the diameter if the groove or pulley of the take-up spool being sufficiently smaller than that of the supply spool to create a transmission ratio appropriate to the required tendency to excess speed of the take-up 15 spool. Slipping can occur between the belt or band and one or both of the spools or bands.

The slipping threshold can be controlled by using a resilient material for the belt. The tension in the belt and coefficient of friction between the band and the 20 pulley then determines the slipping threshold.

Alternatively the tension can be maintained by other means such as with an auxiliary component, eg another pulley, which is spring loaded into engagement with the belt at a position intermediate between the supply spool and take-up 25 spool pulleys. The slack of the belt is thus removed and the tension is determined by the spring force.

Yet another arrangement involves using 'V' shaped grooves for the pulleys. The wedging effect that occurs as the belt is drive provides the required drawing forces and the 30 angle of the edge can be chosen to give the required -" ~.2l31 3~

friction force.

In another embodiment of the invention a non-slipping drive is possible between the two spool pulleys , such as for example the pulleys may have gear teeth around their S periphery and engage via an intermediate idler gear (necessary to achieve the correct direction of rotation o the take-up spool relative to the supply spool), the required slipping being achieved by separate means such as by a friction clutch between one spool and its pulley or 10 both spools and pulleys.

According to another apsect of the invention at least one of the spools may incorporate a clutch or lost motion connection which permits manual rotation of the take-up spool in order to take up slack in the ribbon without 15 rotating the supply spool through the drive between the two spools. Thus, when any slack exists in the ribbon which may be slack formed by spent tape, it will be wound onto the take-up spool and not back onto the suppy spool.

Means may be provided to effect manual rotation of the 20 take-up spool to take up slack, such as a knob on the axle of the take-up spool.

The invention is of particular application in apparatus that uses thermally activated dye transfer means or printing since the adhesion which is produced between the 25 ribbon and an item which is to be printed after the dye has been thermally activated, provides the necessary friction to transfer it from the supply spool to the take-up spool.

The invention may also for e~ample be applled to a ., .. :' , -~ ~L213~

cassette containing an inked ribbon or ~he like for use intypewriting or printing apparatus or by way of a further example, to a cassette containing an inked ribbon for use in a franking machine.

5 The invention may also be applied to a cassette containing a magnetic recording tape.

According to another aspect of the invention, there is provided a method of printing using a thermal print head and a ribbon of thermally activatable dye comprising the i lo steps of producing relative movement between the print ¦ head on the one hand and the article to be printed and the ribbon on the other hand wherein adhesion between the article and the~ribbon is created by local heating of the ribbon is used to effect drive of the ribbon past the 15 print head from a supply spool to a take-up spool.

The spools may be located in a cassette.

The cassette may be stationary relative to the printing apparatus and the article moved past the printing station or, in a system in which the printinc~ station moves within 20 the apparatus and the ite~ is stationary, the cassette may also move or may remain stationary.

The invention thus provides a drive arrangement which can be incorporated into a cassette and ob~iates the need for an external drive to the take-up spool. lnstead the 25 apparatus pulls the tape or ribbon from the supply spool and the motion thus generated in the supply spool is transmitted via a slipping drive arrangement to the take-up spool.

~Z8~37~7 The invention is particularly appropriate for use with printers that use thermally activate dye as the ink medium. The dye is carried on the ribbon and after thermal activation, this dye has been found to provide an adhesive force between the ribbon and the printed item which is sufficient to case the ribbon to be unwound from the supply spool when drive is provided only to the printed item. Thus no drive force at all need be provided directly to the ribbon or cassette, only to the item that is being printed.

An additional advantage of the invention when used with thermal transfer printing apparatus is that it allows lateral movement of the cassette during insertion. In a particular embodiment of the invention, such a feature is 15 used to advantage in two areas: (a) to reduce the chances of the ribbon snagging on the print head and (b) to allow the ribbon inside the cassette to engage with a drive to a sensor for detecting the motion of the ribbon (and therefor the article being printed).

.
, - . .
. ' ' ,.,' . .

. - 7 -Description of the drawin~s A cassette for dye impregnated ribbon incorporating the invention and postal franking apparatus with which the cassette can be used will now be described w.ith reference to the accompanying drawings, in which:-5 Figure 1 is a perspective view of a franking machine inwhich a cassette embodying the invention can be used;

Figure 2 is a front elevation with front plate partly cut away to show an inserted cassette and component parts ¦ associated therewith;

Figure 3 is an underside view of inside the machine with certain parts removed for clarity;

Figure 4 illustrates to an enlarged scale part of the main cam shaft and two mic~oswitches associated therewith;

Figure S is a view of the exit end of the machine with 15 parts removed to reveal internal functional details;

Figure 6 is a cut away perspective view from one end of a cassette incorporating the invention;

Figure 7 i5 a view of the opposite end of the cassette;

Figure 8 is a cross-section through the cassette of Figure 20 6 showing the non-return mechanism;

Figure 9 is a similar cross-section through the cassette showing the take-up spool mounting assembly;

387~

Figure 10 shows the inserted cassette and immediately adjacent cooperating component parts of the machine;

Figure 11 is a scrap view showing an optical encoder which is driven by the movement of the ribbon within the 5 cassette;

Figure 12 is a rear view of the lower part of the machine with covers removed, showing tile eject wheel drive; and Figure 13 is a scrap perspective view showing the envelope stop and release mechanism.

1O The improved cassette of the present invention (shown in Figures 6, 7 and 8) will be described in relation to its use in a postal franking machine ~shown in the remaining views o~ the drawingsl although it is to be understood that this application is merely one example of the many applications for the invention.

General descrip_ion of the franki~ ne The franking machine is shown pictorially in Figure 1 and includes a keyboard 10 for data entry and LED display d~vices 12 and 14 for displaying information which is to 20 be printed during the franking operations. A printing ribbon cassette is received in a compartment 16 which has a door 18 which is openable to allow a cassette to be inserted so that the ribbon underlies a thermal printing head located within the machine (see ite~ 27 in 25 Figure 2) and which extends into the housing 16 to cooperate with the ribbon housed within the cassette (as will hereinafter be described), in order to ~rillt information on to an envelope or like article which is ~8~7~7 inserted in the direction of the arrow 20, beneath the cassette compartment. The franked envelope emerges from the other side of the compartment as indicated by the arrow 22. The expression inked ribbon is intended to 5 cover any dye coated or impregnated ribbon or tape, which dye can be deposited onto sheet material in contact therewith.

The printing head forms no part of the present invention but will be described in general so as to provide a more lo complete understanding of the overall operation of the machine.

Typically the printer is made up of one or more rows of points which can be individually electrically heated and which are selectively activated in timed relationship to 15 the transport of the envelope relative to the printer.
The heated points are commonly referred to as "thermal points". By sandwiching a dye coated or impregnated ribbon between the thermal points and an envelope, so printing onto the envelope can be achieved by selectively 20 activating the thermal points so as to locally heat the ribbon and cause dye to be transferred at the heated point from the ribbon to the envelope surface.

Where the ribbon is coated or impregnated with thermally activatable dye and the printer is a thermal printer, it 25 has been founcl that under sufficient pressure, the thermal printing step can produce sufficient adhesion between the ribbon and the envelope, to allow the movement of the latter to effect ribbon feed. This automatically ensures the required synchronism between envelope movement and 30 ribbon movement. The ribbon is automatically peeled away from the envelope surface by causing the paths of the ~2l3~

envelope and the ribbon to diverge.

In a franking machine, some information (fixed information) will be common to all impressions whilst other information (variable information) relating to 5 amount and date etc,will vary from day to day and article to article. Fixed information may be entered via the keyboard 10 or may be stored in a memory device such as a read only memory (ROM) within the machine but the variable information is most preferably entered via the keyboard 0 10. However entered, in the franking machine under consideration, the information is finally stored in a microprocessor controlled memory (not shown) and the processor is arranged to deliver timed electrical control signals for repeatedly and selectively energising the 15 thermal points of the printer during, and in timed relationship to, the transport of the envelope (as will be described later).

De ~ tion of the casette embodying the invention Referring now to Figures 2 and 5 to 10, the cassette (best 20 seen in Fiyure 6) comprises an outer casing 24 shaped to allow it to be fitted into the housing 16 in the direction of the arrow 26 of Figure 6. After initial horizontal movement into the compartment in the housing 16, a latch mechanism (to be described later~ operates so as to lift 25 the cassette into an elevated position as can best be seen in Figure 2, where the cassette is shown in its operating position within the housing.

The lower section of the cassette carriage 24 is cut away at 25 to allow the casing to fit over the printing head 27 30 with the inked ribbon 29 of ~he cassette extending below , :
" ., ;, ... ..

. - .
:.

387:~7 the head.

The cassette 24 includes a delivery .spool 28 and a take-up spool 30. An endless belt 32 preferably of elastic material couples the two spools by passing around a 5 peripheral groove 34 at one end of the take-up spool 30 (see Figure 9) and around a similar groove in a pulley 36 mounted at the similar end of the take-up spool 28 and connected thereto by a one ~ay clutch as will hereinafter be described. The diameter of the pulley 36 lo is considerably greater than that of the spool 30 and the transmission ratio be:tween the pulley 36 and spool 30 is selected so as to be greater than the transmission ratio between the roll of ribbon on the supply spool to that on the take-up spool, even when the former is full and the 15 latter is empty. Consequently the belt 32 will always attempt to drive the take-up spool 30 at a speed in excess of that required to simply wind on the ribbon (which is being pulled off the supply spool) and in this way the ribbon is tensioned between the two spools.

20 Where a non re-usable ribbon is employec~, it is important that if the ribbon should become slack for any reason, the slack ribbon cannot be accidently rewound onto the supply spool 28. To this end the supply spool 28 is prov.ided with a one way clutch to prevent accidental reverse 25 rotation. This device is shown in Figure 8 and comprises a coil spring 38 wound tightly around an axle 40 on which the supply spool 28 is fixed. The spring includes a tail 42 which engages in an aperture (not visible) formed in the cooperating end face of the.pulley 36. The pulley 30 36 is otherwise freely rotatable about the axle 40 relative to the spool 28. ~rive between the pulley 36 and the spool 28 is transmitted via the spring and tail when 8'7~

the pulley is rotated in one direction but the tightness of the spring on the axle is such that slipping will occur when the pulley is rotated in the opposite sense. It has been found that the same arrangement can also be used in 5 which the spring slips relative to the axle in both directions of rotation, but to a much smaller extent in the windup direction than in the opposite direction.

Under normal circumstances ribbon drive is effected as previously mentioned by frictional contact and adhesion 1O between the ribbon and the article to be printed.
However, a knob 44 is mounted on an axial extension 46 of the axle 48 of the take-up spool 30 (see Figures 6 and 9) and manual movement of the ribbon is effected by rotating the knob 44 in an anti-clockwise manner so as to draw 15 ribbon from the spool 28 onto the spool 30.

Due to the presence of the belt 32, the supply spool 28 will also be rotated but at a lower speed than the take~up spool 30 so as to maintain tension.

If the ribbon web 29 becomes slack, the olle way c1utch 20 connection between spool 28 and pulley 36 prevents spent ribbon from being rewound onto the delivery spool 28.
Thus if knob 44 is accidentally rotated in a clockwise manner, the lost motion connection will cause the slack loop to increase as ribbon is unwound from spool 30 and is 25 not taken up by the delivery spool. The intention is that the user will discover that the slack is not being taken up but is in fact increasing before positive drive is effected between the pulley 36 and the spool 28, whereupon it is anticipated that the operator will rotate the knob 30 44 in the opposite sense (ie anti-clockwise) which will .. ..
, ,, :
~ .

;

'17 immediately result in the slack being taken up on the take-up spool 30.

A fuller understanding of the operation of the cassette will be obtained by considering how it cooperates with the 5 passage of an envelope through the franking machine shown in Figures 1 and 2.

Further desctription of operation of franking machine The envelope path includes a pressure roller 52 mounted between two L-shaped members 54 and 56 forming a sub-l0 assembly (see Figures 2 and 13)~ A shaft 58 extendsrigidly between the lower ends of the two members 54 and 56 and a cam follower is situated along the length thereof tsee Figure 13~. The assembly of the members 54 and 56 is pivotal about an axle 62 ~see Figure 13) to allow the 15 roller 52 to be raised and lowered relative to the envelope path under the action of a cam 64 mounted on a cam shaft 66.

Shaft 66 is driven by a motor 68 acting through a worm gear 70 ancl worm wheel 72 (see Figures 3 and 12).

20 Initially the roller 52 is in the lowered position shown in Figure 2, but upon operation of motor 68 cam 64 is rotated so as to allow the sub-assembly formed by the members 54 and 56 to rotate in an anti-clockwise manner (as shown in Figure 2) under the action of two springs 74 25 and 76 (see Figure 13). Only one of these springs (spring 74) is visible in Figure 2 and for clarity the springs have been omitted from the underside view in Figure 3.
However, referring to Figure 3, the springs in question extend between the holes 78 and 80 in the inturned lower .. ... ..

~2~387~7 ends of the carriers 54 and 56 and a rigid rod 82 which extends between two side plates 84 and 86 ~see Figure 3).

To assist in reconciling the Figures, plate 86 can be seen in Figure 2 due to the fact that plate 84 has been cut 5 away in Figure 2.

In operation, an envelope shown at 88 in Figure 13 is introduced below the cassette housing 16 until its leading edge touches the upper end of a lever 90 which constitutes an envelope sensor. The latter is pivoted about an axle l0 92 and is normally held in a vertical position against a stop (not shown) by a spring 94. The lever includes an actuating Iug 96 which under the action of the spring 94 is held against the operating member of a microswitch 98 so as to hold the latter in an OPEN condition. This is 15 changed into a CLOSED condition as the upper end of lever 90 is moved in the direction of the arrow 100 in Figure 13.

The upper end oE lever 90 includes a lateral flange 102 which upon intial movement under the influence of the 20 leading edge of the envelope engages the upper end 104 of a Z-shaped member 106 pivoted on the axle 62 and normally held in the position shown in Figure 13 by a spring 106 and a cam 108 also carried by the cam shaft 66. Rotation of the cam shaft 66 will cause cam 108 to move relative to 25 the lower arm of the Z~shaped member 106 and will cause the latter to move against the spring 106 and thereby lower the upper end 104 relative to the flange 102. Until end 104 drops below the lower edge of the flange 102, the envelope is prevented from passing further through the 30 machine but as soon as the upper end of lever 104 drops below the flange 102 , the lever 90 can continue to move ~, . ". ::~

'' ' ~ ' ;`~ ': ~ ' ' : ' .. ' :

~l~8~37~L~

in the direction of arrow 100, pivoting about the axle 92 against th~ action of return spring 94, and permitting onward movement of the envelope in the direction of arrow 100 .

5 Speed of rotation of shaft 66 and the position and shape of the cams 64 and 108 are selected so as to ensure that the upper end of the lever 90 inhibits the movement of the envelope in the direction of arrow 100 until the roller 52 has just been raised into its operating position under the 10 action of the springs 74 and 760 The roller 52 serves two purposes:

a) to provide a firm but resilient pad as a backing for the envelope or other item during printing and b) to provide the necessary drive for moving the envelope l5 or other article through the franking machine at least during the printing operation.

To this end the roller 52 is mounted on shaft 110 which is driven by a second motor 112 via a complex gear train which can best be seen by comparing Figures 2, 3 and 12.
2~) The output shaft of the motor carries a worm gear 114 which meshes with worm gear 116. A smaller diameter toothed wheel 118 linked to the worm wheel 116 by a sleeve 120 (see Figure 3) drives a gear wheel 122 mounted on a shaft 124 which extends through the plate 86. Beyond the 25 plate and not visible in Figure 2, is mounted another gear wheel 126 which meshes with a gear wheel 128 carried by a sleeve 130 on which a second gear wheel is mounted identified by reference numeral 132 and which provides a :~L288~17 driving surface for an endless belt 134 for driving a pinch wheel 136 located at the envelope exit.

The gear wheel 132 meshes with another similar sized intermediate gear wheel 138 which in turn meshes with 5 another gear wheel of similar size 140 which is attached to the shaft 110 on which the roller 52 is mounted.

Although not clearly shown in Figures 3 and 12, the intermediate gear wheel 138 is in fact mounted on a shaft 142 which extends between the two members 54 and 56 and l0 through a slot (not shown) in the plate 86 so that the intermediate gear wheel 138 moves with the roller 52 and the gear wheel 140.

Likewise the gear wheel 132 (not visible in Figure 12 by virtue of being hidden) is mounted by an extension of the 15 shaft 62 on which the sub-assembly formed by members 54 and 56 pivot so that the centre of rotation of gear wheel 138 rotates about the centre of rotation of gear wheel 132 and gear wheel 138 remains in constant mesh both with 132 and 140.

20 Although no detail is given of the control circuitry, reference has already been made to the fact that control signals are derived from the operation of microswitch 98 for contro111ng the supply o~ operating current to motor 68. Other microswitches are provided as shown in Figure 4 25 operated by cams on cam shaft 66. One of the microswitches designated by reference numeral 144 is set to open when the motor has rotated the cam shaft 66 by an amount just su~ficient to raise the roller 52 into its operating position.

~28B~

Activation of the thermal points at the print head to commence Eranking is timed in relation to the controlle~
entry of the envelope. Franking commences when the envelope transport mechanism has taken over to move the 5 envelope through the apparatus. In order to initiate the print control signals at the correct instant, the processor delays release of the timed control signals for activating the thermal points by a period of time sufficient to allow the drive motor 68 to raise the 10 pressure roller 52 to engage the envelope and the ribbon.

Due to the differing shapes, thicknesses and surfaces of envelopes and other postal items which may be entered into the machine, and additionally due to variations along the length of any given item, a precisely uniform movement of the envelope by its transport mechanism cannot be ensured Consequently in order to arrange that the franking information is imparted without distortion, the control signals which repeatedly and selectively energise the thermal poin~s must be appropriately timed to incor.porate 20 timing variations corresponding to irregularities in envelope transport. It is therefore appropriate to monitor the transport of the envelope through the machine and derive the timing for the thermal point energising signals from the actual movement of the envelope.

25 In the machine under consideration, the envelope and ribbon within the cassette travel precisely together and it is therefore possible to monitor the movement of the envelope by monitoring the linear movement of the ribbon~

To this end the cassette makes provision for monitoring 30 the linear movement of the ribbon within the cassette.
Referring to Figures 6 and 10, it will be seen that the ~2~8~

ribbon path within the cassette includes a guide roller 148 around which the ribbon passes after it leaves the delivery spool, a second roller 150 just ahead of the print head position and a curved guide sur~ace 152 around 5 which the ribbon passes after leaving the print position and just in advance of the take-up spool. The roller 148 is located just behind a window 154 situated at an angled corner of the cassette housing so as to expose the ribbon passing around the roller for engagement by an optical 10 encoder carried by the franking machine and located in or e~tending into the housing into which the cassette is fitted.

Detail of the encoder is given in Figure 11 of the drawings and in particular this comprises a ribbon-driven 15 wheel 156 which is spring loaded towards the roller 148 so that the ribbon is nipped between the two rollers 156 and 148. An apertured disc 158 is driven by the wheel 156 by engagement of the latter with a roller 160 mounted on the same shaft as the apertured disc 158. An opto-20 electric coupler 162 comprising a light emitting diode(LED) source on one side of the apertured disc and a photodetector on the other side, provides electrical output pulses corresponding to the interrupts of the light beam produced when disc 158 rotates. ~he` ratios of the 25 driving and driven wheels are selected so that the disc 158 rotates at a speed corresponding to the speed of linear movement of the ribbon 29 through the cassette and which in turn corresponds to the linear speed of the envelope. Any irregularities in envelope movement are 30 reflected in changes in the speed of rotation of the disc 158 and therefore in the timing and position of the pulses in the electrical signal produced by the opto-electric coupler 162.

:
.

~L2~

In order to ensure that the wheel 156 always resiliently engages the ribbon 29, the wheel 156 is mounted at the apex of an L-shaped member 164 and one end o one of the arms of the L-shape is connected via a spring 16~ to an 5 anchoring point 1~8 on a backing plate 17~, whilst the end of the other arm includes a slot 172 through which a pin shown diagramatically 174 passes, thereby allowing the wheel 156 to pivot about the axis of the pin 174 but also to move in a direction parallel to the longitudinal 10 direction of the slot 172. The effect of the spring 166 is to pull the wheel 156 into permanent contact with the roller 160 and the ribbon extending around the roller 148 so that drive from the moving ribbon to the wheel 156 is imparted to the roller 160 irrrespective of the absolute 15 position of the wheel 156.

Mention has previously been made o~ a two-stage operation for inserting the cassette into the housing. This is occassioned by vir-tue of the fact that the cassette has to be inserted lnto the housing broadside-on in the direction 20 of arrow 26 in Figure 6 but after it has been fully located at the rear of the housing, it must then be lifted so as to bring the window 15~ just below the wheel 15fi o~
the encoder. The cassette is shown in its raised and operating position in Figure 2 with the roller 148 in 25 contact (through the ribbon) with the wheel 156.

To achieve the horizontal and vertical motion, the opposite ends of the cassette are formed with slideways, one of which is denoted by reference numeral the 1760 Two slideways are provided at the opposite end and can be seen 30 in Fi~ure 7 and denoted by reference numerals 178 and 180.
The three slideways can be seen in dotted outline in ~21!~ 7~' F igure 2 .

On the cooperating opposed side walls of the cassette housing are three protrusions 182, 184 and 186 which respectively engage the slideways 176, 178 and 1~0 and 5 locate the cassette vertically as it is pushed into the housing.

The slideways include lateral slots 176', 178' and 180' which are divisional to slidingly receive the protrusions 182, 184 and 186 respectively where the cassette has been 10 fully pushed into the housing.

In order to facilitate the insertion of the cassette into its final electrical position in which the protrusions engage in the slots as opposed to the slidways, toggle springs are provided at the rear of the cassette housing 15 which are engaged by the rear of the cassette as the latter is pushed into position. One of the toggle springs is shown at 188 in Figure 5 and a similar one (not shown) is located at the opposite end of the casset,te housing.
The toggle spring includes two diverging arms, one 20 designated 190 and a longer one designated 192. On initial insertion the rear of the cassette engages the arm 190 and the longer arm 192 engages the underside of the cassette. Continued rearward movement of the cassette causes the arm 190 to be moved upwards and rearwards 25 thereby tensioning the spring since the longer arm 192 is prevented from following due to its engagement with the underside of the cassette.

As soon as the cassette has been pushed into the housing to an extent sufficient to enable the protrusions to 30 engage the vertical 510ts in its ends, the cassette can :, , move upwards, and does so, under the action of the two arms 192 of the two springs which at -that stage are fully tensioned with the arms 190 almost vertical.

The movement of the cassette in an upward direction is 5 limited by the depth of the slots 176', 178' and 180' in its ends and once the protrusions have engaged the slots and the cassette has moved into its fully raised position with the protrusions at the bottom of the slots, it remains firmly in that position under the action of the lO springs.

Removal of the cassette is achieved quite simply by pressing the cassette in a downward direction within the housing until the protrusions are fully clear of the slots. The housing can now move back along the slideways 15 out of the housing under the action of the springs.

Since the ribbon will nor~ally be hidden from view, it may be important to determine when the ribbon has been nearly used up. To this end a used ribbon detection lever 198 extends through an opening 200 in the rear wall of the 20 cassette and is pivoted at 202 relative to a microswitch 204. The outboard end of the lever 198 rests on the ribbon wrapped around the take-up spool 30 and as the diameter of the latter increases, so the lever 198 is raised. At a given point the lever will have been raised 25 sufficiently to actuate the microswitch 204, the operation -387~

oE which is used to indicate via a visible or audible (or both) alarm, that the ribbon Ca.SSQtte is virtually exhausted.

It will be seen that the lever 198 will automatically 5 protrude through the cut away region 200 as the cassette is inserted into the housing and requires no setting-up.

The machine may be arranged to be switched off after a predetermined amount of use after the microswitch 204 has actuated.

1O The exit of the envelope is controlled by the exit pinch wheel 136 and the spring loaded jockey wheel 194 mounted thereabove, and tensioned by a spring 196. The pinch wheel is driven by the endless belt 134 as previously described with reference to Figure 3.

Claims (10)

1. A ribbon cassette having a supply spool, a take-up spool, a ribbon, the supply spool in use being adapted to be driven by an unwinding force applied to the ribbon, and means whereby the take-up spool is adapted to be driven by the supply spool, said means including a slip coupling which, at beginning of ribbon transfer and throughout transfer thereafter, tends to wind the take-up spool at a speed greater than that necessary to match the speed of ribbon unwinding from the supply spool.
2. A ribbon cassette according to claim 1, including means for maintaining tension in the ribbon.
3. A ribbon cassette according to claim 1, in which the slip coupling comprises an endless belt extending around the supply and take-up spools in friction engagement therewith under a tension sufficient to impart slipping drive from the supply spool to the take-up spool.
4. A ribbon cassette according to claim 3, in which the belt passes around grooves associated with the supply and take-up spools, the diameter of the groove of the take-up spool being sufficiently smaller than that of the supply spool to create a transmission ratio appropriate to the required tendency to excess speed of the take-up spool.
5. A ribbon cassette according to claim 3, in which the belt is made of a resilient material.
6. A ribbon cassette according to claim 1, in which at least one of the spools incorporates a one way clutch for permitting manual rotation of the take-up spool in order to take up slack in the ribbon without rotating the supply spool through the drive between the two spools.
7. A ribbon cassette according to claim 1, in which the cassette contains an inked ribbon.
8. A method of printing using a thermal print head and a ribbon of thermally activated dye, comprising the step of producing relative movement between the print head on the one hand and the article to be printed and the ribbon on the other hand, wherein adhesion between the article and the ribbon is created by local heating of the ribbon and is used to effect drive of the ribbon past the print head from a supply spool to a take-up spool.
9. A method according to claim 8, in which the spools are located in a cassette.
10. A method according to claim 8, in which the cassette is stationary relative to the printing apparatus and the article is moved past the printing station.
CA000499786A 1985-01-19 1986-01-17 Ribbon cassettes Expired - Lifetime CA1288717C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8501404 1985-01-19
GB08501404A GB2169875B (en) 1985-01-19 1985-01-19 Improvements in ribbon cassettes

Publications (1)

Publication Number Publication Date
CA1288717C true CA1288717C (en) 1991-09-10

Family

ID=10573124

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000499786A Expired - Lifetime CA1288717C (en) 1985-01-19 1986-01-17 Ribbon cassettes

Country Status (13)

Country Link
US (2) US4767228A (en)
EP (2) EP0189984B1 (en)
JP (1) JPS61181673A (en)
KR (1) KR930011869B1 (en)
AR (1) AR242742A1 (en)
AT (2) ATE73052T1 (en)
AU (1) AU580651B2 (en)
BR (1) BR8600196A (en)
CA (1) CA1288717C (en)
DE (2) DE3684157D1 (en)
GB (2) GB2169875B (en)
SG (1) SG14689G (en)
ZA (1) ZA86246B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212857U (en) * 1988-07-11 1990-01-26
JPH03130179A (en) * 1989-07-20 1991-06-03 Canon Inc Thermal transfer recording device and thermal transfer recording
DE69026316T2 (en) * 1989-07-20 1996-09-19 Canon Kk Recording device and method using thermal transfer
JP2550191B2 (en) * 1989-12-25 1996-11-06 株式会社日立製作所 Thermal transfer film cassette and ink film used therefor
JPH0473175A (en) * 1990-07-13 1992-03-09 Tokyo Electric Co Ltd Printer
JPH0471877A (en) * 1990-07-13 1992-03-06 Tokyo Electric Co Ltd Transfer type printer
JP3047202B2 (en) * 1992-04-27 2000-05-29 株式会社サトー Prevention mechanism of carbon ribbon slack of printing device
EP0586265A1 (en) * 1992-06-24 1994-03-09 Axiohm Operation Register Device for thermal transfer printers
FR2704181B1 (en) * 1993-04-21 1996-01-12 Axiohm DEVICE FOR RECORDING THE OPERATIONS OF A TRANSFER THERMAL PRINTER.
FR2692838B1 (en) * 1992-06-24 1994-09-02 Axiohm Device for recording the operations of a thermal transfer printer.
US5318368A (en) * 1992-09-24 1994-06-07 Pitney Bowes Inc. Thermal transfer ribbon having ribbon follower
US5339280A (en) * 1992-09-24 1994-08-16 Pitney Bowes Inc. Platen roller and pressure roller assemblies for thermal postage meter
US5468080A (en) * 1993-03-25 1995-11-21 Jones; William B. Poly bag printer for packaging machine
US5524995A (en) * 1994-11-14 1996-06-11 Pitney Bowes, Inc. Apparatus and method for detecting the position of envelopes in a mailing machine
GB2302523B (en) * 1995-04-12 1998-03-25 Prestek Ltd Method of printing
KR100394394B1 (en) * 1996-03-12 2003-10-11 세이코 엡슨 가부시키가이샤 printer
US5959652A (en) * 1997-07-11 1999-09-28 Pitney Bowes Inc. Thermal ink ribbon cassette for mailing machines
DE50205263D1 (en) 2001-10-02 2006-01-19 Francotyp Postalia Ag Method and arrangement for opening a security housing
DE10164527A1 (en) * 2001-12-15 2003-07-10 Francotyp Postalia Ag Arrangement for protecting a print module in a mail processing device
DE10164526A1 (en) * 2001-12-15 2003-06-18 Francotyp Postalia Ag security chassis
US6848845B2 (en) * 2002-05-08 2005-02-01 Zih Corp. Thermal ribbon cartridge or roll with slack ribbon retraction
US20050084310A1 (en) * 2003-10-16 2005-04-21 Alps Electric Co., Ltd. Ribbon cassette for thermal transfer printer
DE202004010858U1 (en) * 2004-07-06 2004-11-04 Francotyp-Postalia Ag & Co. Kg Arrangement of a communication unit in a device
DE202004011390U1 (en) 2004-07-16 2004-10-28 Francotyp-Postalia Ag & Co. Kg Arrangement for a manually operated humidifier
DE202004015279U1 (en) * 2004-10-01 2005-01-13 Francotyp-Postalia Ag & Co. Kg Arrangement for a printing mail processing device
DE202004016611U1 (en) 2004-10-27 2005-02-10 Francotyp-Postalia Ag & Co. Kg Safety housing with ventilation openings
JP6270430B2 (en) * 2013-11-22 2018-01-31 キヤノン株式会社 Ink ribbon cassette and printing apparatus
JP1640670S (en) * 2018-10-18 2019-09-09 Foil transfer device
CN114683706B (en) * 2022-03-07 2023-04-11 深圳市奥莱新创科技有限公司 Temporary license plate printer

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090299A (en) * 1961-06-02 1963-05-21 Potter Instrument Co Inc Ribbon tensioning mechanism for high speed printers
DE1176392B (en) * 1963-02-15 1964-08-20 Telefunken Patent Winding plate drive for magnetic tape devices
US3455431A (en) * 1968-03-07 1969-07-15 Trustees Employees Savings Method and apparatus for simultaneously moving a marking tape and other tape
US3759433A (en) * 1970-11-10 1973-09-18 Gerber Scientific Instr Co Method and apparatus for transporting a strip of recording material
US3762530A (en) * 1971-08-06 1973-10-02 Ncr Co Printing ribbon indexing system
US3939957A (en) * 1973-12-11 1976-02-24 General Electric Company Carriage operated ribbon drive and reverse mechanism
US3967790A (en) * 1974-03-07 1976-07-06 Qume Corporation Cartridge drive apparatus
DE2700812A1 (en) * 1977-01-11 1978-07-13 Hartmann & Braun Ag Recording machine winding roller slipping clutch - comprises pairs of friction washers with driving lugs aligned in axial grooves
US4151039A (en) * 1978-05-30 1979-04-24 Lash Donald W Double adhesive tape dispenser
US4236834A (en) * 1978-09-28 1980-12-02 International Business Machines Corporation Electrothermal printing apparatus
FR2464146A1 (en) * 1979-09-03 1981-03-06 Sodern Transport and simultaneous marking of documents - uses inked ribbon to help transport document past print head
DE3164817D1 (en) * 1980-03-13 1984-08-23 Nec Corp A cartridge for an inked ribbon for an impact printer
US4408908A (en) * 1980-12-19 1983-10-11 International Business Machines Corporation Ribbon feed system for a matrix printer
JPS57201686A (en) * 1981-06-05 1982-12-10 Sony Corp Color printer
US4467976A (en) * 1982-10-04 1984-08-28 International Business Machines Corporation Ribbon cartridge comprising a stuffer box intermediate a supply reel and take-up reel
JPS59145161A (en) * 1983-02-08 1984-08-20 Hitachi Ltd Thermal transfer printer
JPS59204584A (en) * 1983-05-07 1984-11-19 Mitsubishi Electric Corp Thermal transfer printer
JPS59217548A (en) * 1983-05-23 1984-12-07 Hitachi Ltd Thermal transfer recorder
US4591879A (en) * 1984-01-28 1986-05-27 Kabushiki Kaisha Sato Winding mechanism for tape-like web
US4568950A (en) * 1984-06-19 1986-02-04 Pitney Bowes Inc. Postage meter-thermal tape pressure and drive control printer
GB2169853B (en) * 1985-01-19 1988-11-02 Francotyp Postalia Gmbh Improvements in movement monitoring devices
US4739343A (en) * 1986-05-09 1988-04-19 Pitney Bowes Inc. Thermal printing system for postage meter mailing machine application
JP3706680B2 (en) * 1996-06-18 2005-10-12 本田技研工業株式会社 Liquid-filled bush

Also Published As

Publication number Publication date
DE3684157D1 (en) 1992-04-09
EP0189984A3 (en) 1987-04-29
EP0189984A2 (en) 1986-08-06
EP0337501A3 (en) 1989-10-25
GB2192155A (en) 1988-01-06
US4767228A (en) 1988-08-30
AR242742A1 (en) 1993-05-31
JPS61181673A (en) 1986-08-14
EP0337501B1 (en) 1992-03-04
EP0189984B1 (en) 1990-02-07
ZA86246B (en) 1986-08-27
GB2169875A (en) 1986-07-23
AU580651B2 (en) 1989-01-27
KR930011869B1 (en) 1993-12-21
ATE73052T1 (en) 1992-03-15
GB2192155B (en) 1988-10-05
ATE50202T1 (en) 1990-02-15
SG14689G (en) 1989-06-09
GB8714004D0 (en) 1987-07-22
GB8501404D0 (en) 1985-02-20
KR860005707A (en) 1986-08-11
DE3668836D1 (en) 1990-03-15
AU5252286A (en) 1986-07-24
US4886384A (en) 1989-12-12
BR8600196A (en) 1986-09-30
EP0337501A2 (en) 1989-10-18
GB2169875B (en) 1988-09-14

Similar Documents

Publication Publication Date Title
CA1288717C (en) Ribbon cassettes
EP0189269B1 (en) Improvements in movement monitoring devices
EP0327076B1 (en) Tape supply system for a thermal printing device or the like
US4917514A (en) Thermal printing device and tape supply cartridge embodying a tape cut-off mechanism
US5056940A (en) Thermal printing device and tape supply cartridge therefor
US4815874A (en) Thermal printer and tape-ribbon cartridge with cut-off mechanism
EP0180370B1 (en) A printer including paper feed and eject control apparatus
US4930913A (en) Thermal printing device and tape supply cartridge therefor
EP0607025B1 (en) Printing apparatus with cassette
US4832514A (en) Thermal transfer device and tape-ribbon cartridge therefor
US4440514A (en) Adjustable ribbon feed rates dependent upon ribbon type for ink ribbon cassettes
US6753894B2 (en) Image recording apparatus, thermal transfer ink ribbon and thermal transfer ink ribbon cassette used in this image recording apparatus
US5959652A (en) Thermal ink ribbon cassette for mailing machines
EP0189268B1 (en) Apparatus for receiving cassettes
CA1220976A (en) Thermal printer
JPH0736764Y2 (en) Small printing device
JPS61132367A (en) Ribbon cassette
JPH04275173A (en) Apparatus for prescribing position of tape in tape cartridge
JPH0651418B2 (en) Film ribbon cartridge
JPS61272184A (en) Thermal transfer printer

Legal Events

Date Code Title Description
MKLA Lapsed