CA1243453A - Heart valve prosthesis - Google Patents

Heart valve prosthesis

Info

Publication number
CA1243453A
CA1243453A CA000491727A CA491727A CA1243453A CA 1243453 A CA1243453 A CA 1243453A CA 000491727 A CA000491727 A CA 000491727A CA 491727 A CA491727 A CA 491727A CA 1243453 A CA1243453 A CA 1243453A
Authority
CA
Canada
Prior art keywords
sleeve
prosthesis
support frame
frame
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000491727A
Other languages
French (fr)
Inventor
John Fisher
David J. Wheatley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Glasgow
Original Assignee
University of Glasgow
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Glasgow filed Critical University of Glasgow
Application granted granted Critical
Publication of CA1243453A publication Critical patent/CA1243453A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves

Abstract

ABSTRACT OF THE DISCLOSURE
The invention is a heart valve prosthesis in which a plurality of heart valve leaflets are mounted on a frame from which a plurality of leaftlet-mounting pins extend. A surroun-ding sleeve surrounds the frame in order to clamp the leaflets in position between frame and sleeve.

Description

~LZ~34S3 A HEART VALVE PROSTHESIS

This invention relates to a heart valve prosthesis.
Heart val~e prostheses have previously been proposed in a number of forms. An early development in prosthetic heart valves involved the use of various types of mechanical valves such as flap valves or poppet valves.
However, heart valve prostheses have utilised three flexible cusps. The cusps are in the form of flexible leaflets which are mounted for flexing about a gener~lly cylindrical base. The leaflets can flex inwardly from the lo base into a closed position and can flex outwardly to lie in a general cylindrical formation in an open position.
Two different types o tissue leaflet valves are commonly manufactured. In one type, complete porcine aortic valves are mounted inside a cylindrical support frame, commonly referred to as a stent. In another type, the leaflets are manufactured from bovine pericardium and also mounted on a frame. Normally the leaflets are mounted on their frame after having been treated with glutaraldehyde which crosslinks and stabilises the collagen in the leaflets and reduces their antigenicity. Materials other than porcine aortic valves or bovine pericardium have been proposed for valve leaflets, for example polyurethane,but valves incorporating leaflets of such other materials are not commercially available for clinical implant at present.
Various fsrms of frames have been proposed for the foregoing purpose. In, for example, British Patent No.
1,598,112, there is disclosed a heart valve prosthesis wherein the frame is formed by a frame system having a first frame defining three parallel legs on which the leaflets are mounted. A second frame cooperates with the first frame in order to clamp the leaflets therebetween so that the leaflets can be secured to and between the frames.
In European Patent Publication No. 0051451A a heart ~2~34S3 valve prothesls Is shown In whlch a frame havlng a cyllndrlcal base from whlch extends three Integral upstandlng legs Is formed of a blologlcally compatlble metal or plastlc materlal. Three cooperatlng valve leaflets are mounted on the frame and are secured to the cyllndrIcal base and to the upstandlng legs by stitchlng. Stltches, referred to as coaptatlon stltches, secure each leaflet to the upper end of each leg In order to try to ensure that the leaflets deflect Inwardly to enable the three leaflets to cooperate together to close the passage through the valve. The frame Is covered wlth a cloth In order to achleve well known blologlcal advantages. The cloth also facllltates the flxlng of an annular sewlng rlng to the outslde of the prosthe-s I s .

The above-descrlbed prevlously proposed arrangements have been found to be satlsfactory In operatlon but because of thelr relatlvely complex constructlon and assembly, whlch Involves sewlng or the llke In order to secure the leaflets to the frame, they have dlsadvantages In that they do not readlly lend themselves to mass productlon technlques and are conse-quently relatlvely expenslve to produce. The durablllty of these valves Is not Ideal. Mechanlcal fallures and tears In the leaflets have been reported In the short term and blologlcal effects such as calclflcatlon can cause valve malfunctlon In the longer term.

The present Inventlon provldes a stent for a heart va;ve prosthesls In whlch some of the foregolng dlsadvantages are obvlated or mitlgated.
Accordlng to the present Inventlon there Is provlded ,a heart valve prosthesls comprlslng an annular support frame for a pluralIty of flexlble tlssue valve elements, sald support frame havlng a plurallty of spaced posts deflnlng openlngs therebetween to permlt a portlon of each valve element to flex from an open posltlon to a closed posltlon, and means for securlng the valve
- 2 -~2434S3 elements to the support frame comprlslng an outer annular sleeve concentrlc wlth sald support frame adapted to clamp a non-flexlng portlon of each valve element In operatlve posltlon between the support frame and sald sleeve characterlzed In that sald support frame and sald sleeve are releasably secured to each other by means of a plurallty In Interengaglng proJectlons extendlng from one of the frame and sleeve member and releasably and connected to the other member and on whlch the valve elements are mounted.

Preferably, the annular support Is provlded wlth a plu--ralIty of radlally extendlng proJectlons on whlch the valve ele-ments and sleeve can be mounted to clamp the valve 8 1 ements In thelr operatlve posltlon.

Preferably also, the proflle of the clamplng sleeve substantlally corresponds to the proflle of the annular support.

An embodlment of the present Inventlon wlll now be descrlbed by way of example, wlth reference to the accompanylng drawlngs, In whlch:-Flg. 1 Is a perspectlve vlew of a heart valve prosthe-sls In accordance wlth the present Inventlon Incorporatlng an Inner frame and an outer support sleeve securlng a valve tlssue 26 provlded by three valve leaflets therebetween. The prosthesls Is provlded wlth an outer cloth coverlng and an annular sewlng rlng;

Fig. 2 Is a perspectlve vlew of the Inner frame;

Flg. 3 Is a perspectlve vlew of the outer support sleeve;

FIg.s 4a and 4b are dlagrammatlc representatlons Illus-tratlng vertlcal and horlzontal sectlons of a valve leaflet; and Flg. 5 Is a fragmentary vertlcal sectlonal vlew, to an .

34S~
enlarged scale, of a portlon of the prosthesls Illustratlng the manner In whlch each valve leaflet Is supported between the fra~e and the outer support sleeve.

- 3a -- ~l2~3~LS3 The prosthetic valve is intended for the atrio-ventricular or ventricular-aortic positions within a human heart and can have a range of sizes of from 25 to 33 mm~ diameter for the mitral position and 19 to 27 mm.
diameter for the aortic position. The prosthesis as illustrated in the accompanyiny drawings comprises an inner frame 11 of any suitable biologically inert metal or synthetic plastics material, e.g., acetal. The frame 11 comprises a cylindrical base 12 from which extend upwardly towards the outflow end of the valve three spaced posts 13 integral with the base 12 and which posts define scalloped spaces or sectors 14 therebetween. The outer peripheral edges of the base 12 and posts 13 defining the scallops 14 are bevelled. Mounted in the frame 11 so as to project radially outwardly from the cylindrical base 12 are a plurality of~e.g.,~seven,tissue-locating pins or similar projections 15. It will be appreciated that the pins 15 do not project radially inwardly beyond the inner surface of the frame 11. From each post 13, a pair of studs 16 extend radially outwardly therefrom and washer elements (not shown) are engaged with said studs in order to secure a tissue therebetween.
A tissue formed of bovine pericardium ox any other suitable natural or synthetic material is utilised to form three valve leaflets 17. The three leaflets 17 are secured to the inner frame 11 by affixing the leaflets 17on to the seven outwardly projecting pins 15 and two studs 16. The perimeter of each scallop 14 is defined by the intersection of a sphere of approximately 11 mm. radius with the cylindrical base 12 of frame 11. As indicated in Fig. 2, the width W of the tip of the posts 13 is approximately 2 mm., the scallop depth h is 14 mm. and the overall height H of the frame is 18 mm. The internal diameter of the frame 11 is approximately 23 mm. and its outside diameter approximately 25 mm.

- ~l2~3~53 An outer support sleeve 18, which i8 of a suitable flexible biologically inactive material, e.g., acetal, is adapted to be positioned over the external surface of the adjoining leaflets and securedc~erthe outer ends of the pins 15 in order to clamp the lower portion of the leaflets 17 between the inner frame 11 and the outer sleeve 18.
Once again, it will be appreciated that the pins 15 do not extend beyond the outer surface of the outer sleeve 18.
The outer sleeve 18 has a cylindrical base 19 provided with a series of holes 19a adapted to register with the pins 15 of frame 11. The sleeve 18 also has spaced upstanding posts 20 similar to corresponding portions of the inner frame 11 so that the profiles of the frame 11 and outer sleeve 18 are generally in register with each other when they are located in their operative positions relative to one other. The outer sleeve 18, however, is provided with posts 20 which are broader than those of the inner frame 11 in a circumferential direction and each has a vertical slot 21 adjacent the overlapping region and into which slots the studs 16 and their associated securing washers project. The cylindrical base 19 of the outer sleeve 18 is also provided with vertical slits 22 at the location of each post to enable the cylindrical base 19 of the outer sleeve 18 to be sufficiently distorted to allow it to be easily clipped in position around the base 12 of the inner frame 11 to which the leaflets 17 have been affixed.
The base of the scallop of the outer frame 18 projects 1 mm. above the base 12 of inner frame 11 and the top of the posts 20 project about 2 mm. above their associated posts 13 of the frame 11. As indicated in Fig. 3, the overall height H' of outer sleeve 18 is 20 mm. and the scallop depth h' is 15 mm. The outside diameter of the outer sleeve 18 is 27 mm. and the internal diameter is about 26 mm. The width W' of each post 20 at its upper ~Z434S3 tip is 7 mm. and the vertical slots 21 axe approxlmat01y 2 mm. wide.
As shown in Fig. 4a in vertical section, one suitable form of each leaflet 17 at its flexible portion above the base 12 of frame 11 defines an initial angle of about 20 before curving through a radius R of about 11 mm. to extend towards its free edge in a substantially vertical direction.
The height h" of the leaflet is approximately 1~ mm. Fig.
4b shows the arcuate form of each leaflet when operatively located between its associated posts 13. Each leaflet 17 is preferably manufactured from bovine pericardium selected from specific areas of pericardial sac to give uniform thickness and extensibility. In manufacture of each leafletit is positioned in a mould and placed in a glutaraldehyde bath to crosslink the tissue and produce the desired geometry for the leaflets. Holes for positioning each leaflet 17 on the pins 15 and studs 16 of the frame 11 are also made when each leaflet is on the mould.
It will be noted that the tips of the posts of the outer sleeve 18 are rounded in order to reduce the risk of myocardial injury in the atrio-ventricular position.
Fig. 5 illustrates, to an enlarged scale, the manner in which, in practice, the sleeve 18 and frame 11 engage and support a valve leaflet 17. Prior to assembly, the frame 11 is enclosed in a covering 24 formed from a single piece of pericardial tissue. The tissue covering 24 is stitched at 25 to provide a double-layer tail 26 of tissue extending therefrom. It will be noted that the inner face of the frame 11 is seamless. The sleeve 18 is covered with a covering 27 of a cloth such as polyester which is stitched at 28 to provide a double-layered extension in the form of a cloth tail 29.
On assembly of the prosthesis of the invention, valve leaflets 17 are positioned on the outwardly extending 7l2~3~3 pins 15 and studs 16 of the tissue-covered inner frame 11, the leaflets being secured to each other by vertical stitched seams at their adjacent edges and tips. Securing washers (not shown) are then releasably affixed to the studs 16 to secure the leaflets 17 thereto. The cloth-covered outer sleeve 18 is then positioned, as shown in Fig. 5, on the outside of the mounted leaflets 17 on the pins 15 and base 19 of the outer sleeve 18 is secured on to the inner frame 11 by means of a surrounding acetal locking or clamping ring 30, the vertical edges of leaflets 17, the studs 16 and associated securing washers being accommodated within the slots 21 (Fig. 3~ of the outer sleeve 18. In this way, each valve leaflet 17 can be mounted accurately and securely in their desired position without the necessity for hi~hly skilled suturing. The clamping of the tissue between the cloth-covered sleeve 18 and tissue covered frame 11 provides an even distribution of pressure on each valve leaflet 17 at its base regions and the studs 16 towards the top of the posts 13 will precisely locate the leaflets 17 thereon. In addition, the outer sleeve 18 protects the pericardial tissue against injury during insertion of the prosthesis and also against possible injury from long suture ends in the aortic position.
As shown in Fig. 5, an external doublQ-layer cloth panel 31 is secured by stitching at 32 to the tissue tail 26.
The cloth tail 29 of the cloth covering 27 of the outer sleeve 18 is folded upwardly over the outer face of locking ring 30 and the inner layer of tail 29 is secured by stitching at 33 along the upper edge of said ring.
The tissue tail 26 and cloth panel 31 are subsequently folded upwardly over the secured tail 29 stitched at 33a. The outer layer of the cloth panel 31 is stitched at 34 to the inner layer of tail 29. The tissue tail 26 e~tends outwardly around the base of the valve to prevent host tissue ingrowth into the valve orifice. The outer layer of panel 31 and inner layer of tail 29 are continued `` lZ~3~S3 upwardly and wound in a spiral and stitched at 35 to outer layer of panel 31 to form a sewing ring 3~ whereby the prosthesis can be secured in its operative position.
It will be apparent that the position of the sewing ring ', relative to the prosthesis can be varied as required in order to give a higher or lower valve profile as required.
If desired, in the,atrio-ventricular position the posts 20 of the outer sleeve 18 can be linked by a connecting suture 23 (Fig. 1) to reduce the chance of snaring of sutures on the posts during insertion. I
The prosthesis described above is intended for a 1, 27 mm. atrio-ventricular valve and it will be appreciated that the dimensions can be varied in order to suit requirements and for other valves which have to be employed at other locations.
Although it has commonly been found desirable to provide three valve leaflets in a heart valve prosthesis of the type to which the present invention relates, it will be appreciated that it may be possible to use a number of leaflets other than three e.g., two.
It will be appreciated by those skilled in the art that the beneficial functions of a valve produced in accordance with the present invention depend upon care ~eing taken with respect to a number of parameters, e.g., selection and preliminary treatment of the valve leaflets in accordance with accepted practice.

Claims (14)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A heart valve prosthesis comprising an annular sup-port frame for a plurality of flexible tissue valve elements, said support frame having a plurality of spaced posts defining openings therebetween to permit a portion of each valve element to flex from an open position to a closed position, and means for securing the valve elements to the support frame comprising an outer annular sleeve concentric with said support frame adapted to clamp a non-flexing portion of each valve element in operative position between the support frame and said sleeve characterized in that said support frame and said sleeve are releasably secured to each other by means of a plurality in interengaging project tions extending from one of the frame and sleeve member and releasably and connected to the other member and on which the valve elements are mounted.
2. A prosthesis as claimed in claim 1, in which the projections are formed on the support frame and extend outwardly therefrom to engage holes in the surrounding sleeve.
3. A prosthesis as claimed in claim 1, in which the sleeve is provided with a plurality of integral extensions, each of which is adapted to overlie one of the posts of the support frame.
4. A prosthesis as claimed in claim 3, in which each frame post is provided with a projecting stud or studs on which the valve elements are mounted.
5. A prosthesis as claimed in claim 4, in which each projecting stud is formed on the support frame post and is pro-vided with means for securing a valve element of elements thereto.
6. A prosthesis as claimed in claim 5, in which the securing means is a washer adapted to be releasably clipped on to its associated stud.
7. A prosthesis as claimed in claim 3, in which each sleeve extension has formed therein a slot adapted to receive means for joining adjacent tissue leaflets.
8. A prosthesis as claimed in claim 1, in which the sleeve is provided with a plurality of slits spaced circumferen-tially from each other and each extending partially along the length of the sleeve, said slits permitting deformation of the sleeve in order to enable releasble interengagement of the sleeve about the support frame.
9. A prosthesis as claimed in claim 1, in which an annular looking ring is provided for location about the external surface of the sleeve in order to retain the sleeve in engagement with the support frame.
10. A prosthesis as claimed in claim 1, in which the support frame is entirely surrounded by a covering of tissue whereby the inner face of the covered support frame is seamless.
11. A prosthesis as claimed in claim 10, in which the base of the frame and the sleeve is covered with a continuous piece of tissue.
12. A prosthesis as claimed in claim 1, in which the sleeve is entirely surrounded by a covering of cloth.
13. A prosthesis as claimed in claim 12, in which the cloth covering has an extension formed into a sewing ring extend-ing around the outer circumference of the prosthesis.
14. A prosthesis as claimed in claim 3, in which the integral extensions of the sleeve are linked by a connecting suture to reduce the possibility of snaring during insertion of the prosthesis.
CA000491727A 1984-09-28 1985-09-27 Heart valve prosthesis Expired CA1243453A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8424582 1984-09-28
GB848424582A GB8424582D0 (en) 1984-09-28 1984-09-28 Heart valve prosthesis

Publications (1)

Publication Number Publication Date
CA1243453A true CA1243453A (en) 1988-10-25

Family

ID=10567420

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000491727A Expired CA1243453A (en) 1984-09-28 1985-09-27 Heart valve prosthesis

Country Status (8)

Country Link
US (1) US4687483A (en)
EP (1) EP0179562B1 (en)
JP (1) JPS61179147A (en)
AT (1) ATE44451T1 (en)
CA (1) CA1243453A (en)
DE (1) DE3571386D1 (en)
ES (1) ES296391Y (en)
GB (1) GB8424582D0 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163955A (en) * 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US5425741A (en) * 1993-12-17 1995-06-20 Autogenics Tissue cutting die
US5489298A (en) * 1991-01-24 1996-02-06 Autogenics Rapid assembly concentric mating stent, tissue heart valve with enhanced clamping and tissue exposure

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK124690D0 (en) * 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5755782A (en) * 1991-01-24 1998-05-26 Autogenics Stents for autologous tissue heart valve
ES2028611A6 (en) * 1991-02-07 1992-07-01 Garcia Gonzalez Moro Jose Beni Artificial heart valve.
DE4222610A1 (en) * 1992-07-10 1994-01-13 Jansen Josef Dr Ing Support housing for flap and closing elements
WO1994004099A1 (en) * 1992-08-13 1994-03-03 Autogenics Tissue heart valve with concentric mating stents
DE4316971A1 (en) * 1993-05-21 1994-11-24 Georg Dr Berg Valve device for insertion in a hollow organ, a vessel or the like
JPH071836U (en) * 1993-06-11 1995-01-13 ナショナル住宅産業株式会社 Movable leg device
EP0853465A4 (en) 1995-09-01 1999-10-27 Univ Emory Endovascular support device and method of use
US6402780B2 (en) * 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US5928281A (en) * 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5961549A (en) * 1997-04-03 1999-10-05 Baxter International Inc. Multi-leaflet bioprosthetic heart valve
WO1999000059A1 (en) 1997-06-27 1999-01-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US5910170A (en) * 1997-12-17 1999-06-08 St. Jude Medical, Inc. Prosthetic heart valve stent utilizing mounting clips
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
US6106550A (en) * 1998-07-10 2000-08-22 Sulzer Carbomedics Inc. Implantable attaching ring
US6334873B1 (en) * 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
WO2000023008A2 (en) * 1998-10-20 2000-04-27 Tissue Engineering, Inc. Cardiovascular components for transplantation and methods of making thereof
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
AU770243B2 (en) 1999-04-09 2004-02-19 Evalve, Inc. Methods and apparatus for cardiac valve repair
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
US10327743B2 (en) 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
DK1255510T5 (en) * 2000-01-31 2009-12-21 Cook Biotech Inc Stent Valve Klapper
DE10010073B4 (en) * 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
US6378221B1 (en) 2000-02-29 2002-04-30 Edwards Lifesciences Corporation Systems and methods for mapping and marking the thickness of bioprosthetic sheet
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
US6409758B2 (en) 2000-07-27 2002-06-25 Edwards Lifesciences Corporation Heart valve holder for constricting the valve commissures and methods of use
DE10107799C2 (en) * 2001-02-16 2003-06-26 Tricumed Medizintechnik Gmbh Heart valve prosthesis with suture fastening pin
US6936067B2 (en) * 2001-05-17 2005-08-30 St. Jude Medical Inc. Prosthetic heart valve with slit stent
US6719785B2 (en) 2001-05-17 2004-04-13 St. Jude Medical, Inc. Aortic heart valve prosthesis implantation tool
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
GB0125925D0 (en) * 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US7201771B2 (en) * 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US7048754B2 (en) 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US10667823B2 (en) 2003-05-19 2020-06-02 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
EP1750592B1 (en) 2004-05-14 2016-12-28 Evalve, Inc. Locking mechanisms for fixation devices
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
US7635329B2 (en) 2004-09-27 2009-12-22 Evalve, Inc. Methods and devices for tissue grasping and assessment
US7758640B2 (en) * 2004-12-16 2010-07-20 Valvexchange Inc. Cardiovascular valve assembly
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
EP3967269A3 (en) 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
US8574257B2 (en) 2005-02-10 2013-11-05 Edwards Lifesciences Corporation System, device, and method for providing access in a cardiovascular environment
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
EP3292838A1 (en) 2005-05-24 2018-03-14 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
WO2006127985A2 (en) * 2005-05-26 2006-11-30 Texas Heart Institute Surgical system and method for attaching a prosthetic vessel to a hollow structure
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US7238200B2 (en) * 2005-06-03 2007-07-03 Arbor Surgical Technologies, Inc. Apparatus and methods for making leaflets and valve prostheses including such leaflets
US7776084B2 (en) 2005-07-13 2010-08-17 Edwards Lifesciences Corporation Prosthetic mitral heart valve having a contoured sewing ring
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
WO2007130881A2 (en) 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
US8021161B2 (en) 2006-05-01 2011-09-20 Edwards Lifesciences Corporation Simulated heart valve root for training and testing
US20080004696A1 (en) * 2006-06-29 2008-01-03 Valvexchange Inc. Cardiovascular valve assembly with resizable docking station
US8092523B2 (en) * 2007-03-12 2012-01-10 St. Jude Medical, Inc. Prosthetic heart valves with flexible leaflets
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8409274B2 (en) 2007-04-26 2013-04-02 St. Jude Medical, Inc. Techniques for attaching flexible leaflets of prosthetic heart valves to supporting structures
US7815677B2 (en) * 2007-07-09 2010-10-19 Leman Cardiovascular Sa Reinforcement device for a biological valve and reinforced biological valve
US8454686B2 (en) * 2007-09-28 2013-06-04 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US7947363B2 (en) * 2007-12-14 2011-05-24 Kennametal Inc. Coated article with nanolayered coating scheme
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US9011525B2 (en) 2008-02-29 2015-04-21 The Florida International University Board Of Trustees Catheter deliverable artificial multi-leaflet heart valve prosthesis and intravascular delivery system for a catheter deliverable heart valve prosthesis
EP2331015A1 (en) * 2008-09-12 2011-06-15 ValveXchange Inc. Valve assembly with exchangeable valve member and a tool set for exchanging the valve member
US8449625B2 (en) 2009-10-27 2013-05-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
US8591567B2 (en) 2008-11-25 2013-11-26 Edwards Lifesciences Corporation Apparatus and method for in situ expansion of prosthetic device
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
EP2633821B1 (en) 2009-09-15 2016-04-06 Evalve, Inc. Device for cardiac valve repair
CN102883684B (en) 2010-05-10 2015-04-08 爱德华兹生命科学公司 Prosthetic heart valve
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
CA2799459A1 (en) 2010-05-25 2011-12-01 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
US9358107B2 (en) 2011-06-30 2016-06-07 Edwards Lifesciences Corporation Systems, dies, and methods for processing pericardial tissue
JP2014524814A (en) 2011-07-20 2014-09-25 ボストン サイエンティフィック サイムド,インコーポレイテッド Heart valve replacement
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
US11007058B2 (en) 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
SG11201506352SA (en) 2013-03-15 2015-09-29 Edwards Lifesciences Corp Valved aortic conduits
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
US9919137B2 (en) 2013-08-28 2018-03-20 Edwards Lifesciences Corporation Integrated balloon catheter inflation system
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
SG11201508895RA (en) 2013-09-20 2015-11-27 Edwards Lifesciences Corp Heart valves with increased effective orifice area
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US20150122687A1 (en) 2013-11-06 2015-05-07 Edwards Lifesciences Corporation Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
US9572666B2 (en) 2014-03-17 2017-02-21 Evalve, Inc. Mitral valve fixation device removal devices and methods
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
CA2958061A1 (en) 2014-06-18 2015-12-23 Middle Peak Medical, Inc. Mitral valve implants for the treatment of valvular regurgitation
CA2914094C (en) 2014-06-20 2021-01-05 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
JP6740140B2 (en) 2014-06-24 2020-08-12 ポラレス・メディカル・インコーポレイテッド System and method for securing an implant
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
EP3288495B1 (en) 2015-05-01 2019-09-25 JenaValve Technology, Inc. Device with reduced pacemaker rate in heart valve replacement
US10376673B2 (en) 2015-06-19 2019-08-13 Evalve, Inc. Catheter guiding system and methods
US10238494B2 (en) 2015-06-29 2019-03-26 Evalve, Inc. Self-aligning radiopaque ring
EP3316823B1 (en) 2015-07-02 2020-04-08 Edwards Lifesciences Corporation Integrated hybrid heart valves
CR20170577A (en) 2015-07-02 2019-05-03 Edwards Lifesciences Corp Hybrid heart valves adapted for post-implant expansion.-
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US10413408B2 (en) 2015-08-06 2019-09-17 Evalve, Inc. Delivery catheter systems, methods, and devices
CA2995855C (en) 2015-09-02 2024-01-30 Edwards Lifesciences Corporation Spacer for securing a transcatheter valve to a bioprosthetic cardiac structure
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
US10238495B2 (en) 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
EP4183371A1 (en) 2016-05-13 2023-05-24 JenaValve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US10456245B2 (en) 2016-05-16 2019-10-29 Edwards Lifesciences Corporation System and method for applying material to a stent
US10736632B2 (en) 2016-07-06 2020-08-11 Evalve, Inc. Methods and devices for valve clip excision
US11071564B2 (en) 2016-10-05 2021-07-27 Evalve, Inc. Cardiac valve cutting device
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10398553B2 (en) 2016-11-11 2019-09-03 Evalve, Inc. Opposing disk device for grasping cardiac valve tissue
US10426616B2 (en) 2016-11-17 2019-10-01 Evalve, Inc. Cardiac implant delivery system
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US10314586B2 (en) 2016-12-13 2019-06-11 Evalve, Inc. Rotatable device and method for fixing tricuspid valve tissue
USD846122S1 (en) 2016-12-16 2019-04-16 Edwards Lifesciences Corporation Heart valve sizer
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
JP7159230B2 (en) 2017-03-13 2022-10-24 ポラレス・メディカル・インコーポレイテッド Devices, systems and methods for transcatheter treatment of valvular regurgitation
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
CA3060663A1 (en) 2017-04-28 2018-11-01 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US11065119B2 (en) 2017-05-12 2021-07-20 Evalve, Inc. Long arm valve repair clip
CN110831547B (en) 2017-06-21 2022-07-15 爱德华兹生命科学公司 Double-wire limited expansion heart valve
CA3082330A1 (en) 2018-01-23 2019-08-01 Edwards Lifesciences Corporation Prosthetic valve holders, systems, and methods
USD908874S1 (en) 2018-07-11 2021-01-26 Edwards Lifesciences Corporation Collapsible heart valve sizer
EP4076284A1 (en) 2019-12-16 2022-10-26 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2922437A (en) * 1955-03-16 1960-01-26 Gen Motors Corp Fluid flow control means
US3574865A (en) * 1968-08-08 1971-04-13 Michigan Instr Inc Prosthetic sutureless heart valve
AU521676B2 (en) * 1977-02-23 1982-04-22 Clark, Richard Edwin Heart valve prosthesis
US4388735A (en) * 1980-11-03 1983-06-21 Shiley Inc. Low profile prosthetic xenograft heart valve
US4470157A (en) * 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
GB8300636D0 (en) * 1983-01-11 1983-02-09 Black M M Heart valve replacements

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531784A (en) * 1991-01-24 1996-07-02 Autogenics Test device for and method of testing rapid assembly tissue heart valve
US5326370A (en) * 1991-01-24 1994-07-05 Autogenics Prefabricated sterile and disposable kits for the rapid assembly of a tissue heart valve
US5326371A (en) * 1991-01-24 1994-07-05 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US5423887A (en) * 1991-01-24 1995-06-13 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US5489298A (en) * 1991-01-24 1996-02-06 Autogenics Rapid assembly concentric mating stent, tissue heart valve with enhanced clamping and tissue exposure
US5163955A (en) * 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US5571174A (en) * 1991-01-24 1996-11-05 Autogenics Method of assembling a tissue heart valve
US5584878A (en) * 1991-01-24 1996-12-17 Autogenics Test device for and method of testing rapid tissue heart valve
US5653749A (en) * 1991-01-24 1997-08-05 Autogenics Prefabricated, sterile and disposable kits for the rapid assembly of a tissue heart valve
US5662705A (en) * 1991-01-24 1997-09-02 Autogenics Test device for and method of testing rapid assembly tissue heart valve
US5425741A (en) * 1993-12-17 1995-06-20 Autogenics Tissue cutting die
US5588967A (en) * 1993-12-17 1996-12-31 Autogenics, Inc. Tissue cutting die
US5609600A (en) * 1993-12-17 1997-03-11 Autogenics Tissue cutting die

Also Published As

Publication number Publication date
GB8424582D0 (en) 1984-11-07
EP0179562A1 (en) 1986-04-30
EP0179562B1 (en) 1989-07-12
ES296391Y (en) 1988-03-16
JPS61179147A (en) 1986-08-11
US4687483A (en) 1987-08-18
JPS6359702B2 (en) 1988-11-21
DE3571386D1 (en) 1989-08-17
ES296391U (en) 1987-08-16
ATE44451T1 (en) 1989-07-15

Similar Documents

Publication Publication Date Title
CA1243453A (en) Heart valve prosthesis
CA1229202A (en) Stent covering for tissue valves
US10238486B2 (en) Heart valve with integrated stent and sewing ring
US4816029A (en) Stent for aortic heart valve
US6254636B1 (en) Single suture biological tissue aortic stentless valve
AU562543B2 (en) Method of leaflet attachment for prosthetic heart valves
US6074417A (en) Total mitral heterologous bioprosthesis to be used in mitral or tricuspid heart replacement
EP0125393B1 (en) Prosthetic heart valve
EP0986348B1 (en) Natural tissue heart valve prosthesis
US4441216A (en) Tissue heart valve and stent
US4626255A (en) Heart valve bioprothesis
US8845721B2 (en) Collapsible prosthetic heart valves
CA2733211C (en) Prosthetic repair fabric with erosion resistant edge
CA1237557A (en) Low-profile biological bicuspid valve
EP1429690B1 (en) Low-profile heart valve sewing ring
US20030023302A1 (en) Sewing cuff assembly for heart valves
JP2003504116A (en) Polymer heart valve with fabric sewn cuff inserted during molding.
CA2257205C (en) Prosthetic heart valve
CA2407200C (en) Method and system for providing a biologically covered heart valve prosthesis
CA1184703A (en) Low profile prosthetic xenograft heart valve
SU1718900A1 (en) Method for manufacturing heart valve prostheses

Legal Events

Date Code Title Description
MKEX Expiry