CA1220767A - Valve fitment for a two-chamber compressed gas packaging means - Google Patents

Valve fitment for a two-chamber compressed gas packaging means

Info

Publication number
CA1220767A
CA1220767A CA000438590A CA438590A CA1220767A CA 1220767 A CA1220767 A CA 1220767A CA 000438590 A CA000438590 A CA 000438590A CA 438590 A CA438590 A CA 438590A CA 1220767 A CA1220767 A CA 1220767A
Authority
CA
Canada
Prior art keywords
valve
discharge pipe
actuating
coupling
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000438590A
Other languages
French (fr)
Inventor
Herbert Meuresch
Wolfgang Fuhrig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Prazisions Ventil GmbH
Original Assignee
Deutsche Prazisions Ventil GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Prazisions Ventil GmbH filed Critical Deutsche Prazisions Ventil GmbH
Application granted granted Critical
Publication of CA1220767A publication Critical patent/CA1220767A/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/68Dispensing two or more contents, e.g. sequential dispensing or simultaneous dispensing of two or more products without mixing them
    • B65D83/682Dispensing two or more contents, e.g. sequential dispensing or simultaneous dispensing of two or more products without mixing them the products being first separated, but finally mixed, e.g. in a dispensing head
    • B65D83/687Dispensing two or more contents, e.g. sequential dispensing or simultaneous dispensing of two or more products without mixing them the products being first separated, but finally mixed, e.g. in a dispensing head the products being totally mixed on, or prior to, first use, e.g. by breaking an ampoule containing one of the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/42Filling or charging means
    • B65D83/425Delivery valves permitting filling or charging

Abstract

Abstract A valve fitment (3) for a two-chamber compressed gas packaging means with product components in an inner and an outer container (1, 2) for mixing thereof in the outer container (1) before discharge of the mixture has a discharge pipe (6) which is sealingly axially displaceably guided in an opening (17) in a cover (7) of the outer container (1), which is smaller than the outside diameter, for simultaneously piercing a wall portion (5) of the inner container (2), and a valve (11, 14) which is actuable to release the mixture. In order to ensure that discharge cannot take place before the mixing operation, the cover, for coupling the inner container in position, internally carries a coupling means (8) which is disposed around the discharge pipe and which has product through-flow openings (23, 27), wherein the valve can be actuated by displacement of the discharge pipe from the outer limit position in which the valve is closed, by way of an intermediate position in which the wall portion of the inner container is pierced and the valve is still closed, into the other limit position in which the valve is opened.

Figure 1

Description

~ zzu~
Dcutsche Prazisions-Ventil GmbH, D-~234 }lattersheim Valve_fitment_for a_two-chamber_compressed gas packaging means The invention relates to a valve fitment or insert for a two-chamber compressed gas packaging means for separately storing two components of a product, in an inner and an outer container, and for mi~.ing the cornponents within the outer container directly before discharge of the mixture, comprising a cover which has a discharge pipe in a central through opening, for closing an opening of the outer container, which is smaller than the diameter of the outer container, canprising a resilient annular seal which seals the discharge pipe against the through opening and in which the discharge pipe is guided for axial displacernent frorn an outer limit position into an inner limit position, for piercing a wall portion of the inner container, and comprising a valve which is manually actuable for triggering discharge of the mixture.
In a known valve fitment or insert of that kind (US patent specification No 3 134 505), a valve having a valve stem and a valve seat is fonned in the outer end portion of the discharge pipe, one end of the valve stem being extended out of the discharge pipe and carrying a cap nut. Disposed one above the other between the nut and the edge of the cover are a spacer rnernber and a discharge cap which is provided with a discharge nozzle, in order to hold the discharge pipe in its outer limit position. After the spacer memker is removed, the pipe can be pushed further into the outer container, in which case the bottom pointed edge of the opening thereof pierces an upper wall portion of the inner container. In the inward limit position, the discharge cap is seated in the substantially plate-shaped cover, the cap enclosing the outer end of the discharge pipe.
In that limit position, the components which are contained in the inner and the outer containers can be mixed. Thereupon, the cap nut is at least partially slackened so that the valve stem can be displaced lZ~ 7 and the valve opened. That arrangement does not ensure that discharge of the content of the outer container is not triggered off before it is mixed with the other component of the mixture, as release of the nut and the thus opening of the valve can occur, intentionally or unintentionally, before the components of the product are mixed.
The invention is based on the problem of providing a valve fitment of the general kind set forth, which ensures that discharge of the mixture cannot take place before the components of the product are mixed.
According to the invention, that problem is solved in that, on its inside, the cover has a coupling means which is disposed around the discharge pipe and which has through openings for the components of the product, for coupling the inner container to the cover, and that the valve can be actuated by displacernent of the discharge pipe from the outer limit position in which the valve is closed, by way of an intermediate position in which the wall portion of the inner container is pierced and the valve is still closed, into the inner limit position in which the valve is opened.
With that construction, the valve can necessarily be opened only after the components of the product have been mixed.
The valve insert can therefore be used for outer containers wherein a cylindrical container portion and a substantially conically tapering upper portion of the contain~r are made in one piece, as is the case with most of the aerosol cans which are produced at the present tirne. That is possible because of the fact that th~
inner container can be coupled to the cover so that the inner container does not need to be supported and centred in the outer container. m e inner container may be of such a small di~neter that it can be passed through the opening in the outer container, which is subsequently closed by the cover. At the same time, the coupling means ensures that there is a defined distance between ~Z'~7~7 the wall portion, which is to be pierced, of the inner container, and the lower end of the discharge pipe, in the limit position thereof, irrespective of the respective axial length of the inner container.
The annular seal can then be an annular disc which is mounted between the inside of the cover and the end of the coupling means which is joined to the cover, and the discharge pipe can be guided for axial movement in the coupling means. That arrangement ensures that the annular seal is axially secured in position in a s~nple manner, with the seal being of a simple configuration. Nonetheless, a high level of sealing is ensured as the fact that the discharge pipe is guided by the coupling means prevents the discharge pipe from tipping or tilting, and thus prevents the content of the outer container from escaping before it is mixed with the other component of the product, by virtue of a leak.
Preferably, the invention then provides that the discharge pipe is closed at the end which is tcwards the inner container, and has a radial valve opening which co-operates with the annular disc as a valve means, the valve opening being disposed in the inter-mediate position of the discharge pipe in the vicinity of thein~7ard side of the annular disc.
With that construction, the annular seal acts at the sarne time as a valve closure member, so that there is no need for a valve stem.
The discharge pipe may then be provided at its inner end with a cutting disc having at least one cutting means at its peripher~l edge, the cutting means facing tcwards the inner container. The cutting disc provides for the immediate forrnation of a large hole in the wall portion of the inner container which faces tc~7ards the cutting disc, wherein the content of the inner container can rapidly issue through the hole formed in the wall portion and mix with the content of the outer container as soon as the discharge pipe has attained its inte~nediate position. The discharge pipe can accordingly be shorter than in the case of the valve fitrnent of lZZ(J7~;7 the general kind set forth above, in which the inner end portion of the discharge pipe is surrounded ky an annular disc at a spacing from the inner end of the pipe, in order to enlarge the opening formed by said end in the inner container.
A further development may then provide that the coupling means has a first coupling member which can be brought into engagement with the inner container and a second coupling member which is engaged with the cover, the first and second coupling members being axially fixedly connected, and that on its inward side the first coupling member has an undercut configuration, a corresponding undercut configuration at the periphery of the discharge pipe being urged into contact with the undercut portion on the first coupling me~ber, in the intermediate position, by the pressure of a return spring which acts in a direction towards the outer limit position. That arrangement ensures that the discharge pipe cannot be returned to the outer limit position after the irmer container has been pierced.
The invention can then provide that the first coupling member is substantially in the form of a cap member which form-lockingly or positively engages over the inner container and whichhas through openings in the end portion thereof and which at the same time forms an end portion of the second coupling member, against which the return spring bears. That kind o connection, for example a snap connection or a screw connection, ketween the first coupling member and the inner container, provides for ease of assembly of the arrangement, for example automatically, while nonetheless ensures that the two components are firmly held together. However, the content of the inner container, after the wall portion thereof has been pierced, can unimpededly discharge through the openings in the cap member, in order to mix with the content of the first container. At the same time, the end portion '767 of the cap me~ber performs a support function for the return spring.
The coupling members can be produced separately and fixedly held together by a push-in or plug-type connection.
That makes it easy to produce the coupling means from plastics material in a mould, while avoiding difficulties with regard to removing the components from the mould.
In this arrangement, the second coupling member may have through openings in the form of axially continuous slots, towards the first coupling member, and may engage by a radial spring bias action into an annular groove in the first coupling member.
In that way, the coupling members can be easily joined together by being pushed together. However, they are axially securely interconnected by a high frictional force. The slots provide on the one hand for a spring action in respect of the finger-like limb portions which remain between the slots, while on the other hand they permit the ccmponents of the product to pass therethrough.
The cutting plate or disc may also have through-flow openings which radially overlap through-flow openings which are formed on both sides of the annular groove in the end portion of the first coupling member. That ensures substantially unimpeded discharge of the content of the inner container, after that container has been opened.
The invention can then provide that an actuating cap can be fitted to the outside of the cover, by the edge of the opening of the cap, in such a way that the edge of a central outlet opening in a central actuating portion of the actuating cap is carried on the outer open end of the discharge pipe, and that the actuating member is pivotally mounted to the outer part of the actuating cap. That actuating cap permits the valve to be easily opened by pivoting the actuating member by means of the thumb or a finger of the same hand as that holding the compressed gas packaging means.
It is also particularly advantageous for a desired-rupture connection to be provided between the edge of an aperture in the end portion of the actuating cap, and the actuating portion, for a protective cap member which covers the actuating cap fixedly to surround the peripheral wall of the actuating cap by means of a tear-off portion of the edge of the opening, the axial length thereof corresponding to the stroke travel of the discharge pipe from its outer limit position into its intermediate position, and for the protective cap member to bear against the actuating member. With that arrangement, after the edge portion of the opening has been torn off by a pressure, for example a blcw, to the protective cap member, the latter can be displaced only by the above-mentioned stroke travel, and therewith the discharge pipe can be positively displaced from the limit position initially only into the intermediate position in which the inner container is pierced but the valve is not yet opened.
In that connection, the outlet opening may be formed in the b~ttom portion of a depression or recess in the inward side of the actuating member, which depression or recess pivotally engages over the outer end of the discharge pipe. On the one hand, the depression or recess provides for centering of the actuating rnember relative to the discharge pipe, and vice-versa, while on the other hand it permits pivotal movement of the actuating rnember, with a~.ial displacement of the discharge pipe, without the discharge pipe itself tilting.
The invention can also provide that the depression or recess engages rotatably over the outer end of the discharge pipe, that the actuating member has two portions which extend diametrically with respect to its axis of rotation, one said portion being of an axial 7~;7 thickness which is greater than the other portion by more than the above-mentioned stroke travel, with the thickness of said other portion being smaller than the axial stroke travel, and that the aperture in the end portion of the actuating cap extends besides that one portion over a larger range of angle of rotation of the actuating member, than said one portion. In that construction, after the actuating member has been moved by displacement of the cap member, thereby tearing its connection to the outer portion of the actuating cap, into the intermediate position, the actuating member can be rotated relative to the outer portion of the actuating cap so that the one portion of the actuating member projects further axially outwardly beyond the outer portion of the actuating cap, whereas the other portion of the actuating member lies pivotally underneath the outer portion of the actuating cap. Although the actuating member is therefore no longer connected to the actuating cap, it is nonetheless mounted pivotally only against the pressure of the return spring, in order to provide for opening of the valve by axial movement of the discharge pipe.
The periphery of the coupling end portion which is towards the cover may then be provided with axial ribs which are enclosed by an edge portion of the central through opening in the cover, which acccmmodates the discharge pipe with clearance therefrom, thereby leaving axial through-flow passages or ducts, and the end face of the one coupling end, which is tc~7ards the annular seal that is in the form of an annular disc, can be radially outwardly bevelled. That design configuration permits the outer container to be easily filled with pressure gas by connecting the filling head of a conventional filling apparatus, in which case the resilient annular seal is compressed at its outer peripheral edge and opens an inlet passage for the pressure gas.
The invention and the developments thereof will be described in greater detail hereinafter with reference to the drawings shcwing U76'~

preferred e~bodiments. In the drawings:
Figure 1 shows a view in axial section of a two-chamber ccmpressed gas packaging means with a valve fitment according to the invention, in the rest or transportation position, Figure la shows a part of the Figure l construction on a larger scale, Figure 2 shows the two-chamber compressed gas packaging means shown in Figure 1, in an intermediate position of the discharge pipe, in w hich the components of the product are mixed, Figure 3 shows the discharge position of the two-chamber ccmpressed gas packaging means shown in Fioure 1, Figure 4 shows a view in axial section of another embodiment of a two-chamber compressed gas packaging means with a modified valve fitment according to the invention, in the rest or transportation position, Figure 5 shows the two-chamber compressed gas packaging means of Figure 4 with the discharge pipe in an intermediate position in which the components of the product are mixed, Figure 6 shows a plan view of an actuating portion of the valve fitment shown in Figure 4, and Figure 7 shows the two-chamber compressed gas packaging means of Figure l in the condition in which the outer container is being filled with pressure gas.
Referring to Figures l to 3, the two-chamber canpressed gas packaging means comprises an outer container 1, an inner container 2 which is disposed in the outer container 1, and a valve fitment 3.
The containers 1 and 2 each contain a respective fluid component 4a and 4b, which are under a gas pressure, that is to say, an active substance and an activator, in predetermined amounts. The components 4a and 4b of the product are completely mixed together before being discharged in the outer container 1 1'76'7 so that they are put to use in an accurately defined mixing ratio. In order to provide for mixing of the components, a wall portion 5, in this case a closure film or foil, of the inner container ~ is ruptured by means of the valve fitment 3 and the cc~ponent 4b is released frcm the inner container 2 into the outer container 1 which is still in a closed condition.
The valve insert or fitment 3 comprises a discharge pipe 6, a cover 7, a coupling means 8 for connecting the inner co~ainer 2 to the cover 7, a protective cap member 9, a spring 10, an annular seal 11 and an actuating cap 12 (see Figure 3).
In its outer end portion, the pipe 6 is provided with an axial outlet passage or duct 13 which, before discharge, is closed at the outer end ~y the protective cap mer~er 9~ At the other end, the passage 13 communicates with a radial valve opening 14. The protective cap mer~er 9 covers the pipe 6 approximately as far as the valve opening 14. In the middle portion, the pipe 6 has an undercut configuration as indicated at 15, in the form of an annular bead which is bevelled or chamferred at its peripheral surface. At its inward end, the pipe 6 is provided with a cutting disc or plate 16 which, at the peripheral edge, has a cutting means or cutting edge 17 which faces towards the closure film or foil 5 and which is possib:Ly interrupted in the peripheral direction. The diameter of the disc 16 is sornewhat srnaller t~n the opening of the container 2, which is closed by the closure foil 5.
The substantially plate-shaped ccver 7 (also referred to as a valve plate) is fitted into the opening of the container 1 and its outer edge is fluid-tightly and pressure-resistingly joined to the turned-over edge portion around the opening of the container 1. In the centre, the cover 7 is provided with a through opening 17 through which the pipe 6 is passed, with clearance.
The coupling means 8 comprises a first coupling member 18 which can be brought into engagement with the inner container
2, and a coupling member 19 which is engaged with the cover 7.
At the inner end, the coupling member 19 has a cap member 20 which is interrupted to form a plurality of segment-like portions, by axial slots in the side wall, the cap member 20 conprisrg a plurality of resilient holding claws 21 which are provided with an undercut configuration as a holder for mounting the container 2, the edge of the opening o which has a radially projecting annular flange 22 which engages behind the undercut configuration. The connection between the container 1 and the coupling member 18 may also be in the form of a bayonet-type connection.
Formed in the end portion or bottam of the cap member 20 are through-flow openings 23 which, when the closure foil 5 is pierced, permit the component 4b to pass into the container 1. The pipe 6 is then passed through a central bore in the end portion of the cap member 20, with the pipe 6 being guided laterally thereof.
At the free end which is towards the cover 2 (see in particular Figure la), in an inward direction, the coupling member 19 has a cylindrical recess 24 (shoulder) for carrying the annular disc ll and, on its outward side, a plurality of axial ribs 25 which are spaced apart in the peripheral direction, for the aperation of introducing the pressure gas. The end portion of the caupling memher 19, which carries the ribs 25, is enclosed by the edge portion, that adjoins the opening 17, of the cover 7, with through-flow passages or ducts being left between the ribs 25,so that ~he coupling member 19 is secured to the cover 7. On its inward side, the coupling member 19 then has an annular bead which forms an undercut configuration as indicated at 26 and the inside diameter V'76~

of which is slightly smaller than the outside diameter of the annular bead 15. Therefore, the annular beads 15 and 26 can be moved past each other, undergoing deformation when that happens, upon inward displacement of the pipe 6. In addition, the coupling member 19 is provided with through-flow openings 27 in the form of axial slots.
As shown in Figure 2, the closure foil or fi~n 5 is pierced by the pipe 6 being pressed thereinto, by a pressure or a striking force being applied to the protective cap member 9 in the direction indicated by the arrow 28, until the edge of the opening of the protective cap member 9 bears against the edge 29 of the opening 17 so that the content of the container 2 issues in the direction indicated by the arrows 30, flowing past the cutting plate 16 (or through through-flc~l openings which are possibly formed therein) and through the flow openings 23 into the container 1, and can be completely mixed with the content of the container 1 by shaking the container 1 in the inverted position shown in Figure 2.
With the pipe 6 in the outward limit position shown in Figure 1, the spacings of the protective cap member 9 and the valve opening 14 from the edge 29 of the ccver 7 and the spacing of the undercut portions 15 and 16 from each other are approximately equal and are of such a magnitude that, in the intermediate position shown in Figure 2, on the one hand the closure foil or film 5 is pierced and on the other hand the portions 15 and 16 are latched together, wherein the spring 10 w~lich is disposed around the pipe 6 and which bears at one end against the annular bead 15 and at the other end against the bottom or end portion of the cap member 20 urges the portions 15 and 26 together and the valve opening 14 still remains outside the inward side of the annular disc 11. With the pipe 6 in that intermediate position, the valve which is formed ky the annular disc ll and the valve opening 14 is consequently stiil closed so that the product mixture still cannot iZ'~)767 issue from the container 1.
It is only after the protective cap member 9 which is a frictional fit on the outer end of the pipe 6 has been removed, the actuating cap 12 (see Figure 3) has been fitted on to the outer edge of the cover 7 by a snap fit, and a central actuating portion 32 of the cap 12, which actuating portion is mounted in an opening 31 in the end portion of the actuating cap 12, has been depressed in the direction indicated by the arrow 33, that the mixture is free to issue from the containers 1 and 2 in the direction indicated by the flow arrows 34 as soon as the valve opening 14 takes up a position on the inward side of the annular disc 11. For that purpose, on its inward side, the actuating cap 12 has an insertion depression or recess 35 having an outlet opening 36 which receives the outer end of the pipe 6 and which communicates with a discharge duct or conduit 37 which extends the pipe 6.
In the second embcdiment shown in Figures 4 to 7, the two-chamber comFressed gas packaging means comprises an outer container (not shown) which corresponds to the outer container 1 shown in Figure 1, an inner container 52 which is disposed in t~e outer container, and a valve insert or fitment 53.
m e containers also each contain a respective fluid component (not shown) which is under a gas pressure, for example an active substance and an activator, in predetermined amounts, with those components being completely mixed togethe:r in the outer container before discharge thereof, so that they are put to use with the components in a precisely defined mixing ratio. In order to permit the components to be mixed, the wall portion 5, in this case once again a closure film or foil, of the inner container 52, is ruptured by means of the valve fitment 53 and the ccmponents of the product are discharged from the inner container 52 into the outer container which is still in a closed condition.

lZ~(~';'67 The valve fitment 53 comprises a discharge pipe 56, the cover 7, a coupling means 58 which connects the inner container 52 to the cover 7, a protective cap member 59, the spring 10, the annular seal 11 and an actuating cap member 62.
In its outer end portion, the pipe 56 is provided with an axial discharge passage or duct 13 which is open at the outer end and which ccmmunicates with the radial valve opening 14.
The protective cap member 59 covers the actuating cap 62 which in turn is carried on the outer edge of the cover 7 and is latched thereto. In the central region, the pipe 56 has an undercut portion 15 in the form of an annular bead which is bevelled or chamferred at the peripheral surface thereof. At the inner end, the pipe 56 is provided with a cutting disc or plate 66 which, at the peripheral edge, has the cutting edge or cutting means 16a which faces towards the closure foil 5 and which is possibly interrupted in the peripheral direction. The diameter of the cutting disc 66 i5 somewhat smaller than the opening of the container 52,which is covered by the foil 5, and it has ~hrough-flow openings 67.
The cover 7 is mounted to the outer container in the sameway as in the embodiment shown in Figure 1 and is provided at its centre with the through opening 7 through which the pipe 56 is passed, with clearance.
The coupling means 58 comprises a first coupling member 68 which can be brought into engagement with the inner container 52, and a coupling member 69 which is engaged with the ccver 7. At its inner end, the couplin~ member 68 has a cap mem~er 70 with internal screwthread 71 as a holder for carrying the inner container 52, the edge of the opening of which has an external screwthread 72 which engages into the internal screwthread.

lZ~767 The through o~enings 23 are again formed in the bottom or end portion of the cap member 70. The pipe 56 is passed through a central bore in the bottom or end portiorl of the cap member 70, with the pipe 56 being guided at its sides. The bore is delimited by radial ribs or web portions 65 wnich delimit further axial through-flow openings 63. Both the openings 23 and the openings 63 are radially overlapped by the openings 67.
At the free end which is towards the cover 7, the coupling member 69 has an inwardly bevelled or chamferred conical end surface 74 for contacting the annular disc 11, while on its outside, it has a plurality of axial ribs 75 which are spaced apart in the peripheral direction, for the operation of introducing the pressure gas. The end portion of the coupling member 69, which bears the ribs 75, is enclosed by the edge portion of the cover 7, which adjoins the opening 17, leaving the through-flow passages between the ribs 75,so that the coupling member 69 is secured to the cover 7. The couplin~ member 69 also has the undercut portion or configuration 26 on its inside. In addition, the coupling me~ber 19 is provided with througn openings 77 in the form of axially continuous slots which, by virtue of radial spring biasing, engage into an annular groove 78 on the top side of the coupling member 68, between the openings 23 and 63, so that the coupling members 68 and 69 are connected together by a frictional lock. It is however also possible to use a latching push-in type connection, instead of the frictionally locking push-in connection just described above.
As shown in Figure 4, the protective cap member 59 has a tear-off edge portion 79 around its opening, which is connected to the main portion of the protective cap member 59 by a desired-rupture connecting means indicated at 80 in the form of desired-~Z~J767 rupture web portions. The axial length of the edge portion 79approximately corresponds to the spacing of the valve opening 14 from the annular disc 11 in the outward limit position of the pipe 56. In addition, on its inside, the protective cap member 59 has projections 59a and 59b in the form of ribs. The ribs bear against an actuating member 82 which is secured in an opening 81 in the actuating cap 62 by means of a desired-rupture connecting means 83 in the form of desired-rupture web portions. In that arrangement, the projections 59a and 59b, radially outwardly of the actuating member 82 in the limit position shown in Figure 4, are at an axial spacing A from the actùating cap 62 which is at least equal to the axial length of the edge portion 79. On its inside, the actuating member 82 has a depression or recess 85, in the bottom of which is formed the outlet opening 36 for the product mixture. The recess 85 engages rotatably over the outer end of the pipe 56, with clearance therein, and is extended in a discharge pipe or conduit 87 which extends the pipe 56. m e protective cap member 59 is also supported with its end or bottom portion by way of the conduit 87 on the actuating portion 82 so that the projections 59a and 59b can be omitted. However, they assist with centering of the protective cap member 59, particularly after the edge portion 79 has keen removed. Conversely, the conduit 87 could also be omitted and the protective cap member could be supported on the actuating portion 82 directly or by ~7ay of correspondingly shorter projections.
The protective cap member 59 is axially secured on the actuating cap 62 by an annular bead 84 (see Figure 4) which engages into an annular groove 86 on the outside of the peripheral wall of the actuating cap 82.
As shown in Figures 4 to 6, more particularly Figure 6, the actuating member 82 has two portions 89 and 90 which extend diametrically with respect to its axis of rotation and of which ~Z~(~76'~

one portion 90 is of an axial thickness which is greater than the thickness of the other portion 89 (see Figure 5) ~y more than the above-mentioned distance (A) or stroke travel movement of the pipe 56 bet~1een the outer limit position and the intermediate position. The thickness of the portion 89 is less than the above-mentioned axial stroke travel and the opening 81 in the bottom of the actuating cap 62 extends beside the portion 90 over a greater rotary angular region of the actuating member 82, than said portion 90.
During storage or transportation, the actuating cap 62 and the protective cap member 59, which is in an intact condition, are fitted to the cover 7 in the position shown in Figure 4, so that the pipe 56 is in the outward limit position shown in Figure 4.
In order for mixing of the ccmponents contained in the containers to occur, the edge portion 79 is first torn off the protective cap member 59 and the protective cap member 59 is pressed tcwards the cover 7, finally coming to bear on the outer part of the actuating cap 62. In that inward ~ovement, the actuating member 82 and the pipe 56 are simultaneously displaced inwardly, with the web portions 83 being torn off as that happens, while the cutting disc 66 pierces the cover foil 5 in the vicinity of the inner edge of the opening of the inner container 52. After that first inward movement, the parts 59, 82 and 56 are in the intermediate position shown in Figure 5, in which the valve 11, 14 is still closed but the content of the c~ntainer 52 can pass out into the outer container and can be completely mixed therewith by shaking. No further in~7ard movement is possible with the arrangement in the intermediate position, as long as the protective cap mRmber 59 is supported on the outer part of the actuating cap 62 and, by way thereof, on the cover 7. It is only after the protective cap member 59 has been removed from the actuating cap 62 that the actuating member lZ'~767 82 can be pressed further inwardly. However, before the actuating member 82 is pressed further inwardly, it can be rotated, in the intermediate position shcwn in Figure 5, approximately through 90, into the position shown in broken lines in Figure 6. In that position, the portion 89 is underneath the bottom or end portion of the cap 62. If nc~7 a pressure is applied to the portion 90 of the actuating member 82, the actuating rnember is pivoted, while the portion 89 bears against the underside of the bottom or end portion of the cap 62. The pivotal movement of the actuating member 82 causes axial displacement of the pipe 56 which is guided on the one hand by the annular disc 11 and on the other hand by the coupling member 68 between the ribs 65, until the pipe 56 moves into an inward limit position (not shown) in which the valve cpening 14 is disposed cn the inside of the annular disc ll and the valve is opened. The content of the outer container can then issue unimpededly by way of the slots 77, the valve opening 14, the passage 13 and the pipe 37, as long as a pressure is applied to the portion 90 of the actuating member 82.
For the purposes of fitting the valve insert or fitment 59, the pipe 56 is first pre-assembled, with the annular disc 11 and the spring 10, and then ~with the arrangement in the inverted position) inserted into the hole 17 in the cover 7. After the coupling member 69 which is completely open downwardly has been fitted into place, the cover 7 is c~pressed beneath the wider part of the ribs 75 so that the cover 7 engages around that part of the ribs. The inner part of the pipe 56 which carries the cutting disc 66 is then initially pre-assembled, with the cap member 70 of the coupling member 68, with that part of the pipe being held in the cap member 70 by friction. That pre-assembled unit is then pressed with the pointed end of the lower part of the pipe leading, into an axial bore in the upper part of the pipe, in which case the pointed end is fixed in the bore by a frictional lock (in addition or instead hc~7ever, it is also possible to provide a 7~7 latching or detent-type connection). At the same time, the end portion of the coupling member 69, which has the slots 77, engages into the annular groove 68 where it is secured by frictional lock. If desired, that frictional lock could be further strengthened for example by ultrasonic welding of the coupling members which comprise plastic synthetic material.
With the arrangement in that condition, the pre-assembled valve insert or fitment is packaged and supplied to the filling station.
There, the inner container 52 is filled with one component of the mixture and then its threaded neck is closed with a closure foil or film which is for example aluminium-lined, by adhesive or by welding. The filling station now fills the outer container with the second component of the mixture and then fits the valve insert or fitment in the opening of the outer container after the inner container 52 has been fixed to the cap member 70 by screwing.
The unit ~hich is fixedly closed by the outer edge of the cover 7 being turned or flanged cver around the edge of the opening of the outer container now moves into position in the filling station, under the conventional propellant gas filling means.
As shown in Figure 7, a filling head 91of the propellant gas filling means is of such a size that the pipe 56 is not depressed by the operation of fitting the filling head to the arrangement.
m e propellant gas is then urged by way of the opening 17 and the deforming annular disc 11 between the ribs 75 and into the outer container, as shown by the flow lines in Figure 7.
Directly after the c~ntainer has been filled with propellant gas, the filling station fits the ccmbination of the actuating cap 62 and the protective cap member 59 on to the edge of the cover 7.
The packaging means is then protected and is rendered secure for transportation thereof. As long as the tear-off edge portion 79 is irtact, the customer additionally enjoys a guarantee that the container is still in its original closed condition. m e contents 7~

of the container can then be discharged in the manner already described above.
Modifications in the illustrated embodiments are within the scope of the invention.

Claims (14)

Claims:
1. A valve fitment for a two-chamber compressed gas packaging means for separately storing two components of a product in an inner container and an outer container and for mixing the components within the outer container directly before discharge of the mixture, comprising a cover which has a discharge pipe in a central through opening, for closing an opening of the outer container, which is smaller than the diameter of the outer contai-ner, comprising a resilient annular seal which seals the discharge pipe against the through opening and in which the discharge pipe is guided for axial displacement from an outer limit position into an inner limit position, for piercing a wall portion of the inner container, and comprising a valve which is manually actuable for trig-gering discharge of the mixture, said cover having, on its inside, a coupling means which is disposed around the dicharge pipe and which has through openings for the components of the product, for coupling the inner container to the cover, and said valve being actuable by displacement of the discharge pipe from the outer limit position in which the valve is closed, by way of an intermediate position in which the wall portion of the inner container is pierced and the valve is still closed, into the inner limit position in which the valve is opened.
2. A valve fitment according to claim 1 wherein the annular seal is an annular disc which is mounted between the inside of the cover and the end of the coupling means which is joined to the cover and wherein the discharge pipe is axially displaceably guided in the coupling means.
3. A valve fitment according to claim 2 wherein the dis-charge pipe is closed at the end which is towards the inner container and has a radial valve opening which co-operates with the annular disc as a valve, the valve opening being disposed in the intermediate position of the discharge pipe in the vicinity of the inward side of the annular disc.
4. A valve fitment according to any one of claims 1 to 3 wherein the discharge pipe is provided at the inner end with a cutting disc having at least one cutting means at its peripheral edge, said cutting means facing towards the inner container.
5. A valve fitment according to claim 1 wherein the coup-ling means comprises a first coupling member which can be brought into engagement with the inner container, and a second coupling member which is engaged with the cover, the first and second coupling means being axially fixedly connected, and wherein, on its inward side, the first coupling member has an undercut configuration, a corres-ponding undercut configuration at the periphery of the discharge pipe being urged into contact with the under-cut configuration of the first coupling member, in the intermediate position, under the pressure of a return spring which acts in a direction towards the outer limit position.
6. A valve fitment according to claim 5 wherein the first coupling member is substantially in the form of a cap member which form-lockingly engages over the inner container and which has through-flow openings in the end portion thereof and which at the same time forms an end portion of the second coupling member, against which the return spring bears.
7. A valve fitment according to claim 5 wherein the coupling members are produced separately and are fixedly held together by a push-in connection.
8. A valve fitment according to claim 7 wherein the second coupling member has through openings in the form of axially continuous slots, towards the first coupling member, and engages with a radial spring bias action into an annular groove in the first coupling member.
9. A valve fitment according to claim 8 wherein the cutting disc has through-flow openings which radially overlap through-flow openings which are formed on both sides of the annular groove in the end portion of the first coupling member.
10. A valve fitment according to claim 1 wherein an actuating cap can be fitted on the outside of the cover, with the edge of the opening of the cap, in such a way that the edge of a central outlet opening in a central actuating member of the actuating cap is carried on the outer open end of the discharge pipe and wherein the actuating member is pivotally mounted to the outer part of the actuating cap.
11. A valve fitment according to claim 10 wherein a desired-rupture connection is provided between the edge of an aperture in the end portion of the actuating cap, and the actuating member, that a protective cap member which covers the actuating cap fixedly surrounds the peripheral wall of the actuating cap by means of a tear-off edge portion of the opening, the axial length thereof corresponding to the stroke travel movement of the dis-charge pipe from its outer limit position into the inter-mediate position, and that the protective cap member bears against the actuating member.
12. A valve fitment according to claim 10 wherein the outlet opening is formed in the bottom of a depression on the inward side of the actuating member, which depression pivotally engages over the outer end of the discharge pipe.
13. A valve fitment according to claim 12 wherein the depression rotatably engages over the outer end of the discharge pipe, that the actuating member has two portions which extend diametrically with respect to its axis of rotation, of which one portion is of an axial thickness which is greater than the other portion by more than the above-mentioned stroke travel, with the thickness of the other portion being smaller than the axial stroke travel, and wherein the aperture in the end portion of the actu-ating cap extends besides that one portion over a large region of angle of rotation of the actuating member, than said one portion.
14. A valve fitment according to any one of claims 1 to 3 wherein the periphery of the coupling end portion which is towards the cover is provided with axial ribs which are enclosed by an edge portion of the central through opening in the cover, which accommodates the discharge pipe with clearance therefrom, thereby leaving axial through-flow passages, and wherein the end face of the one coupling end, which is towards the annular seal that is in the form of an annular disc, is radially outwardly bevelled.
CA000438590A 1982-10-08 1983-10-07 Valve fitment for a two-chamber compressed gas packaging means Expired CA1220767A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823237263 DE3237263A1 (en) 1982-10-08 1982-10-08 VALVE SYSTEM FOR COMPRESSED GAS PACKING WITH TWO-COMPONENT PRODUCT
DEP3237263.9 1982-10-08

Publications (1)

Publication Number Publication Date
CA1220767A true CA1220767A (en) 1987-04-21

Family

ID=6175222

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000438590A Expired CA1220767A (en) 1982-10-08 1983-10-07 Valve fitment for a two-chamber compressed gas packaging means

Country Status (8)

Country Link
US (1) US4613061A (en)
EP (1) EP0106280B1 (en)
JP (1) JPS59501661A (en)
AU (1) AU546160B2 (en)
CA (1) CA1220767A (en)
DE (2) DE3237263A1 (en)
WO (1) WO1984001557A1 (en)
ZA (1) ZA837433B (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405064A1 (en) * 1984-02-13 1985-08-14 F.P.D. Future Patents Development Co. S.A., Luxemburg/Luxembourg Device for producing and spraying a mixture consisting of at least two components, e.g. liquids, and a propellant gas
EP0131204B1 (en) * 1983-06-29 1987-03-25 F.P.D. Future Patents Development Company S.A. Device for mixing and distributing a mixture composed of two elements, e.g. liquids, and a propelling gas
DE3535908A1 (en) * 1985-10-08 1987-04-09 Aerosol Inventions Dev DEVICE FOR SEALINGLY FASTENING AN APPARATUS IN THE NECK OF A CONTAINER AND AEROSOL BOTTLE EQUIPPED WITH SUCH A DEVICE
FR2610602B1 (en) * 1987-02-09 1989-07-21 Sofab Ste Fse Aerosol Bouchage DISPENSING MIXER PACKAGING
US5018643A (en) * 1987-05-14 1991-05-28 Bolduc Lee R Aerosol dispenser with sealed actuator and aerosol dispensing method
US4979638A (en) * 1987-05-14 1990-12-25 Bolduc Lee R Aerosol dispenser with sealed actuator
US5064121A (en) * 1988-10-03 1991-11-12 Bolduc Lee R Dispenser
US4941615A (en) * 1988-10-03 1990-07-17 Bolduc Lee R Aerosol dispenser
US5012978A (en) * 1988-10-03 1991-05-07 Bolduc Lee R Aerosol dispenser and method
US5052585A (en) * 1988-10-24 1991-10-01 Bolduc Lee R Dispenser
IT1259853B (en) * 1992-12-09 1996-03-28 Bernardino Parise CONTAINER FOR CONCENTRATED SUBSTANCES IN POWDER OR LIQUID TO BE PUT IN SOLUTION WITHIN A WRAPPER AT THE TIME OF USE
DE59307272D1 (en) * 1993-05-18 1997-10-09 Bruno Jesswein Two-component pressure cell
US6290100B1 (en) 2000-06-30 2001-09-18 Canberra Corporation Concentrate cartridge for a diluting and dispensing container
DE10114624B4 (en) * 2001-03-23 2006-05-04 Peter Kwasny Gmbh Pressure cell and its use for 2-component systems
DE10144133A1 (en) 2001-09-07 2003-03-27 Peter Kwasny Gmbh Two-component paint-spray can, especially e.g. for repairing cars, contains a curable epoxy resin stock component, solvent and propellant gas, with a hardener in a separate, externally-activated tube inside the can
US6848601B2 (en) * 2002-03-14 2005-02-01 Homax Products, Inc. Aerosol systems and methods for mixing and dispensing two-part materials
US7063236B2 (en) * 2002-03-14 2006-06-20 Homax Products, Inc. Aerosol systems and methods for mixing and dispensing two-part materials
DE10260117A1 (en) * 2002-12-19 2004-07-01 Peter Kwasny Gmbh Pressure can for mixing and dispensing two-component materials
CA2532878A1 (en) * 2003-07-28 2005-02-10 Bryan James Larkin A spray applicator
US8157131B2 (en) * 2008-10-15 2012-04-17 Sim Jae K Spray bottle with refill cartridge
US8302816B2 (en) * 2008-10-15 2012-11-06 Sim Jae K Spray bottle with refill cartridge
US8528784B2 (en) * 2008-10-15 2013-09-10 Jae K. Sim Spray bottle with refill cartridge
US8430137B2 (en) 2010-08-24 2013-04-30 Jae K. Sim Refill cap cartridge
EP2957347B1 (en) 2014-06-18 2017-02-22 Albea Thomaston Inc. System for dispensing a mixture of a first product and a second product
US10384859B2 (en) * 2015-10-07 2019-08-20 Daizo Corporation Discharge container and method of reusing the same
CN105819077B (en) * 2016-06-12 2018-04-10 云和漫行者玩具有限公司 A kind of industrial chemicals flexible package that can reduce ingress of air feeding
MX2021005952A (en) * 2018-11-26 2021-08-11 Dispensing Tech Bv System and method for dispensing a mixture of a liquid and an additive and cartridge for use therein.
CN109625625B (en) * 2018-12-14 2023-09-26 重庆医科大学 Packaging box for preparing yoghurt product
WO2023055228A1 (en) * 2021-09-30 2023-04-06 Samurai 2K Aerosol Sdn. Bhd. Multi-function aerosol valve assembly
WO2023195843A1 (en) * 2022-04-04 2023-10-12 Samurai 2K Aerosol Sdn Bhd An aerosol container with aerosol valve assemblies

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3080094A (en) * 1958-04-29 1963-03-05 Modern Lab Inc Compartmented pressurized container valve assembly and a cutter therefor
US3134505A (en) * 1960-04-28 1964-05-26 Modern Lab Inc Pressurized dispensing device
FR1308036A (en) * 1961-09-21 1962-11-03 Tap-striker
US3255924A (en) * 1964-04-08 1966-06-14 Modern Lab Inc Pressurized dispensing device
FR1586587A (en) * 1968-12-05 1970-02-20
US4340155A (en) * 1979-08-24 1982-07-20 Aerosol Service Ag Two-compartment pack
US4469252A (en) * 1981-04-10 1984-09-04 Aerosol Service Ag Two-compartment package

Also Published As

Publication number Publication date
ZA837433B (en) 1984-06-27
JPS59501661A (en) 1984-10-04
AU2075383A (en) 1984-05-04
EP0106280A1 (en) 1984-04-25
AU546160B2 (en) 1985-08-15
WO1984001557A1 (en) 1984-04-26
US4613061A (en) 1986-09-23
DE3237263A1 (en) 1984-04-12
EP0106280B1 (en) 1986-01-02
DE3361726D1 (en) 1986-02-13
JPH0139825B2 (en) 1989-08-23

Similar Documents

Publication Publication Date Title
CA1220767A (en) Valve fitment for a two-chamber compressed gas packaging means
JP2513813Y2 (en) Spout for bottles and similar containers having a penetrating member for penetrating the lid on the neck of the container
JP3415161B2 (en) Device for mixing fluid and liquid
US6129247A (en) Seal arrangements for pressurized dispensing containers
JP3312734B2 (en) Multi-compartment distributor for storing and mixing contents.
EP0553956B1 (en) Improvements in and relating to dispensing taps
US4340147A (en) Cap with built in piercing device
EP2139806B1 (en) Child resistant concentrate cartridge and associated diluting and dispensing container
US6609634B2 (en) Dispensing device and methods
US4440316A (en) Combined piercer and valve for flexible bag
US5531363A (en) Dispensing closure cartridge valve system
US5954233A (en) Sealed container
US7490719B2 (en) Volumetric dispenser
US4349135A (en) Aerosol container valve mounting
US4778087A (en) Dispensing package
EP0046754A4 (en) Combined piercer and valve for flexible bag.
JPH0737261B2 (en) Bottom automatic shut-off valve for container for taking out pasty or liquid substances
CA2010476A1 (en) Packages for liquids and particularly but not exclusively packages for harmful liquids
EP2043924B1 (en) Inserts for multiple component containers
CA2327307C (en) Dispensing nozzle for multi-compartment container
GB2156949A (en) Combined piercer and valve for flexible bag
JPH0215579Y2 (en)
GB2023556A (en) Child-Resistant Dispenser and Closure
GB2307903A (en) Container closure with integral storage cell
JPH11147555A (en) Liquid ejection cock device of container

Legal Events

Date Code Title Description
MKEX Expiry