CA1141189A - Photometric apparatus and method - Google Patents

Photometric apparatus and method

Info

Publication number
CA1141189A
CA1141189A CA000371609A CA371609A CA1141189A CA 1141189 A CA1141189 A CA 1141189A CA 000371609 A CA000371609 A CA 000371609A CA 371609 A CA371609 A CA 371609A CA 1141189 A CA1141189 A CA 1141189A
Authority
CA
Canada
Prior art keywords
light
intensity
postsample
sample
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000371609A
Other languages
French (fr)
Inventor
Michael Wicnienski
Richard I. Brown
Arnold C. Bilstad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxter International Inc
Original Assignee
Baxter Travenol Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxter Travenol Laboratories Inc filed Critical Baxter Travenol Laboratories Inc
Application granted granted Critical
Publication of CA1141189A publication Critical patent/CA1141189A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths

Abstract

PHOTOMETRIC APPARATUS AND METHOD

Arnold C. Bilstad Richard I. Brown Michael Wicnienski ABSTRACT OF THE DISCLOSURE

Photometric apparatus and method for determining the absorbance ratio, in a sample, of two different wave-length lights. A first light is given a reference inten-sity and is passed through the sample. A second light is passed through the sample and its intensity is varied so that the intensity of the second light that has passed through the sample is equal to the intensity of the first light that has passed through the sample. When these intensities are equal, the intensity of the second light is detected in a state wherein it has not passed through the sample, resulting in an equivalent to the ratio of the absorbance in the sample of the second light and the first light.

Description

BACKGR()UNI) OF THE INVENTI()N

The present invention concerns a novel photometer and method for determining the absorbance ratio, in a sample, of two lights of different wavelengths. The illus-trative embodiment of the invention is directed to a spec-trophotometer for determining the presence of hemoglobin in a fluid.
In various applications it is necessary to detect low levels of the various hema complexes, and most particu-larly oxyhemoglobin and free hemoglobin in a certain fluid.For example, in systems in which plasma is collected, it is often desirable to detect the presence of low levels of hemoglobin in the collected plasma.
In one prior art type of system for detecting hemo-globin in a fluid, the loss of light traveling through the ; sample is detected. To this end, the operator starts the fluid flow and the output is initially set to zero. Any change in this zero output level is detected and is consid-ered a measure of the increased level of hemolysis. One problem in connection with this prior art device is the fact that a change in turbidity might be detected as an in-creased level of hemolysls. Another problem is that this prior art system requires an initial zeroing procedure which must be handled properly by an operator. A further problem with respect to this prior art systPm is that it is subject to changes in ambient light levels.
We have discovered that a hemolysis detector can be provided by determining the red/green absorbance ratio of the sample. In this manner, the presence of even small
-2~

traces of hemoglobin can be detected in a fluid, such as plasma.
It is, therefore, an object of an aspect of the present invention to provide an apparatus and method for determining the absorbance, in a sample, of two different wavelength lights.
An object of an aspect of the present invention is to provide a hemolysis detector which operates to detect hemoglobin in a fluid by determining the red/green absorbance ratio of the fluid.
An object of an aspect of the present invention is to provide a system for determining the color of a sample by using known absorbance characteristics and passing two colors through the sample and then determining the ratio of absorbance of the two colors.
An object of an aspect of the present invention is to provide apparatus and a method for determining the color absorbance ratio of a fluid, with the apparatus and method being relatively blind to changes in turbidity.
An object of an aspect of the invention is to provide an apparatus and method for determining the color absorbance ratio of a fluid with the apparatus and method being blind to ambient light level changes.
An object of an aspect of the present invention is to provide an apparatus for determining the color absorbance ratio of a sample, with the apparatus being relatively simple in construction and easy to manufacture.
Other objects and advantages of the invention will become apparent as the description proceeds.

.

,~

~ 3 S~MM~R~ OF IH~ INVENTION
c"7 ~s,~ c,~
In accordance withlthe present invention, a photo-` metric apparatus and method are provided for determining the absorbance ratio in a sample, of two lights having dif-ferent wavelengths. The first light has a reference inten-sity or its intensity is varied so that it is equal to a reference standard. The first light and the second light are passed through the sample and their respective intensi-ties after they have passed through the sample are detected.
The int~nsity of the second light that has passed through the sample is varied so that it is equal to the intensity of the first light that has passed through the sample. When the intensities of the lights that have passed through the sample are equal, the intensity of the second light is de-tected in a state wherein it has not passed through the sam-ple. This last-mentioned intensity is equivalent to the ratio of the absorbance of the second light and the first light~
In the illustrative embodiment, the red/green ab-sorbance ratio of plasma is detected in order to determine the presenc~ of hemoglobin. A green light is provided and a red light is provided. The intensity of the green light is detected and is varied so that it is equal to a refer-ence standard. The green light and the red light are passed through the plasma and the respective intensities of the green light and the red light are detected after they have passed through the plasma. The intensity of the red light that has passed through the sample is varied so that it is equal to the intensity of the green light that ,.

: `

has passed through the sample. Once the intensity of the red light that has passed through the sample is equal to the intensity of the green light that has passed through the sample, the intensity of the red light is then detected in a state wherein it has not passed through the sample.
The intensity of the red light that has not passed through the sample is equivalent to the ratio of the absorbance of the red light and the green light.
In the illustrative embodiment, the intensities of the green light and the red light passed through the plasma are averaged and this average forms a reference for the control of the intensity of the red light passing through the sample.
Other aspects of the invention are as follows:

A photometric apparatus for determining the absorb~
ance ratio in a sample of two different wavelength lights, said apparatus comprising:
means for providing a light of a first wavelength having, when said first light is energized, a constant reference presample intensity before said first light is directed through the sample and a postsample intensity after said first light is directed through the sample;
means for providing a light of a second wavelength having, when said second ligh~ is energized, presample and postsample intensities, respectively, before and after said second light is directed through the sample;
means for alternately energizing said first and second lights;
means for directing said alternately energized first and second lights through the sample;
means for detecting said postsample intensity of said first and second lights;

~41~

means for varying said postsample intensity of said second light until said postsample intensity of said second light is equal to said postsample intensit~ o said first light;
means operative, after said postsample intensity of said second light equals said postsample intensity of said first light, for detecting the then prevailing presample intensity of said second light, whereby the then prevailing presample intensity of said second light is equivalent to the .ratio of the absorbance in the sample of said second light and said first light.
A photometric apparatus for detecting the absorbance ratio in a sample of two lights having different wavelengths, said apparatus comprising:
means for providing a first light of a first wavelength having, when energized, presample and postsample intensities, respectively, before and after said first light .is directed through the sample;
means for providing a second light of a second wavelenyth having, when energized, presample and postsample : intensities, respectively, before and after said second light is directed through the sample;
means for al.ternately energizing said first and second lights;
means for detecting said presample intensity of said first light;
means for varying said presample intensity of said first light until it is equal to a predetermined constant reference intensity;
means for directing said alternately energized -5a-l89 first and second lights through the sample;
means ~or detecting said postsample intensity : of said first and second lights;
means ~or varying said postsample intensity of said second light until said postsample intensity of said second light is equal to said postsample intensity of said first light;
means operative, after said postsample intensity of said second light equals said postsample intensity of said first light, for detecting the then prevailing intensity of said second light, whereby the then prevailing presample intensity of said second light is equivalent to the ratio of the absorbance in the sample of said second light and said first light.
A photometric apparatus for detecting in a sample the ratio of the absorbance of two lights having differing wavelengths, said apparatus comprising:
means for providing a first light of a first 20 wavelength and for providing a light of a second wavelength each of said first and second lights having, when energized, presample and postsample intensities, respectively, before and after said respective light is directed through the sample;
: means for alternately energizing said first and second lights;
a beam splitter positioned adjacent said first and second lights, with each of said first and second lights beirlg directly substantially perpendicularly with respect to each other;
first photodetector means positioned on the opposite -~b-side of said beam splitter from said second light and operati.ve for detecting said presample in~ensities o~ said first and second lights;
second photodetector means positioned on the opposite side of said beam splitter from said first light and operative for detecting said postsample intensities of said First and second lights;
a sample holder located between said second detector means and said beam splitter;
means coupled to said first photodetector means and to said ~irst light means for varying said presample intensity of said first light until it is equal to a constant predetermined reference intensity;
means coupled to said second photodetector means and to said second light means for varying said postsample intensity of said second light until it equals said post-sample intensity of said first light; and means coupled to said first photodetector means operative, after said postsample intensity of said second light equals said postsample intensity of said first light, for detecting the then prevailing presample intensity of said second light, whereby the then prevailing presample intensity of said second light is equivalent to the ratio of the absorbance in the sample of said second light and said first light.
A method for determining the absorbance in a sample of two lights having different wavelengths, which comprises the steps of:
energizing a first light of a first wavelength having a constant reference intensity before it is passed through a sample;

-5c-8~

alterna-tely energizing a second light o~ a second wavelength;
directing the first light and the second light through a sample and detecting t:he intensity of the first and second lights after they have passed through the sample;
varying the intensity of the second light that has passed through the sample so that it is equal to the intensity of the first light that has passed through the sample; and detecting, after the intensity of the second light that has passed through the sample is equal to the intensity of the first light that has passed through the sample, the then prevailing intensity of the second light in a state wherein it has not passed through the sample, whereby the then prevailing intensity of the second light that has not passed through the sample is equivalent to the ratio of the absorbance of the second light and the first light.
~: A method of determining the absorbance in a sample of two lights having different wavelengths, which comprises - the steps of:
energizing a first light of a first wavelength;
alternately energizing a second light of a second ; wavelength;
detecting the intensity of said first light;
varying the intensity of said first light so that it is equal to a predetermined reference intensity;
directing the first light and the second light through a sample and detecting the intensity of the first and second lights after they have passed through th,e sample;
varying the intensity of the second light that : -5d-~' has passed through the sample so that i-t is equal to the intensity o~ the first light that has passed through the sample; and detecting, after the intensity of the second light that has passed through the sample is equal to the intensity of the first light that has passed through the sample, the then prevail.ing intensity of the second light in a state wherein it has not passed through the sample, whereby the then prevailing intensity of the second light that has not passed through the sample is equivalent to the ratio of the absorbance of the second light and the first light.
An apparatus for detecting the presence of hemo-globin in a fluid, which comprisesO
means for providing a substantially green light having, when said green light is energized, a constant reference presample intensity before said green light is directed through the fluid and a postsample intensity after said green light is directed through the fluid;
means for providing a substantially red light havingj when energized~ presample and postsample intensities, :: respectively, before and after said red light is directed through the fluid;
means for alternately energizing said green and red lights;
means for directing said alternately energized green and red ]ights through the fluid;
means for detecting said postsample intensity of said green and red lights;
means for varying said postsample intensity of said red light until said postsample intensity of said -5e-red light is equal -to said pos-tsample intensity of said green light; and means operative, after said postsample intensity of said red light is equal to said postsample intensi-ty of said green light, for detecting the then prevailing presample intensity of said red light in a state in which it has not passed through the fluid, whereb~ the then prevailing presample intensity of said red light is equivalent to the ratio of the absorbance in the fluid of said red light and said green light.
A method for detecting hemoglobin in a ~luid, which comprises the steps of:
energizing a substantially green light having a constant reference intensity before it is passed through the fluid;
alternately energizing a substantially red light;
directing the green light and the red light through the fluid and detecting the intensity of the green and red lights after they have passed through the fluid;
~ varying the intensity of the red light that has passed through the fluid so that it is equal to the intensity of the green light that has passed through the fluid; and detecting, after the intensity of the red light that has passed through the fluid is equal to the intensity of the green light that has passed through the fluid, the then prevailing intensity of the red light in a state wherein it has not passed through the fluid, whereby the then prevailing intensity of the red light that has not passed through the fluid is equivalent to the ratio of the absorbance of the red light and the green light.

-5f-.

A method for de-tecting the presence of hemoglobin in a fluid utilizing a ratio of absorbance of two lights having different wavelengths, which method comprises the steps of:
energizing a substantially green light;
alternately energizing a substantially red light;
detecting the intensity of said green light;
varying the intensity of said green light so that it is e~ual to ~ predetermined reference in~ensity;
directing ~he green light and the red light through the fluid and detecting the intensity of the green and red lights after they have passed through the fluid;
varying the intensity of the red light that has passed through the fluid so that it is equal to the intens.ity of the green light that has passed through the fluid; and detecting, after the intensity of the red light that has passed through the fluid is equal to the intensity of the green light that has passed through the fluid, the then prevailing intensity of the red light in a state wherein it has not passed through the fluid, whereby the intensity of the red light that has not passed through the fluid is equivalent to the ratio of the absorbance of the red light and the green light.
A more detailed explanation of the invention is provided in the following description and claims, and : is illustrated in the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
:
FIGURE 1 is a diagram of a photometer constructed in accordance with the principles of the present invention.
; 30 FIGURE 2 is a schematic circuit diagram of a control circuit for the photometer of FIGURE l; and -5g-~" .

FIGURE 3 is a timing diagram showing, in time reference, the timing pulses provided by the timing pulse generator of the control circuit of FIGUR~ 2.

-5h-DETAILED DESCRIPTION OF THE
ILLUSTRATIVE EMBODIME~IT

Referring to FIGURE 1, a photometer apparatus is shown therein comprising a first source of light 10 having a first wavelength, a second source of light 12 having a second wavelength, a cube beam splitter 14 having a mirror 16 which preferably reflects 50 percent of the light impinging upon it and transmits 50 percent of the light through the mirror, a collimating lens 18 for directing light from the beam splitter 14 through sample 20, a first photodetector 22 and a second photodetector 24. It should be understood that the reflection-transmission ratio of mirror 16 may be other than 50:50.
In the illustrative embodiment, the photometer system is used to detect hemoglobin in plasma that is being collected. Thus sample 20 comprises the plasma and it has been found satisfactory ~o provide light source 10 in the form of a green light emitting diode (LED) having a peak wave-length of 565 nm, and light source 12 in the form of a red ; LED having a peak wavelength of 635 nm.
Green light 10 and red light 12 are perpendicularly located with respect to each other and with respect to beam splitter 14. Photodetec~or 22 is positioned opposi~e beam split-ter 14 from recl light 12 and photodetector 24 is positioned op-posite beam splitter 14 from green light 10, with the sample 20 interposed between photodetector 24 and beam splitter 14.
Collimating lens 18 operates to direct the light from beam splitter 14 through the sample and to photodetector 24.
Since beam splitter 14 operates to reflect half the light and transmit half the light, both the red and green lights will impinge on both detectors, with photo-detector 22 receiving unabsorbed radiation and photodetec-tor 24 receiving the absorbed radiation after passing through sample 20.
In order to determine the red/green absorbance ratio of the plasma 20, the intensity of the green light from LED 10 is detected by photodetector 24 and the inten-sity of LED 10 is varied so that the intensity is equal to a predetermined reference standard. The reference green light from LED 10 and the red light from LED 12 are directed through plasma 20 and the respective intensi~ies of the red and green lights after they have passed through the plasma 20 are detected by photodetector 24. The inten-sity of LED 12 is then varied so that, as detected as photo-detector 24, it is equal to the intensity of LED 10 as detected by photodetector 24. When photodetector 24 detects that both intensities of the green light from LED 10 and the red light from LED 12 are equal, the intensity of the red light from LED 12 is detected by photodetector 22, which effectively detects the intensity of the red light in a state wherein it has not passed through plasma 20.
The intensity of the red light as detected by photodetec-tor 22 is then equivalent to the ratio of the absorbance of the red light and the green light.
The control circuit for achieving the above ob jectives is illustrated in FIGURE 2 with the timing dia-gram being illustrated in FIGURE 3. Referring now to FIGURE 2, a timing pulse generator 30 is shown therein having four outputs A, B, C and D. As illustrated in FIGURE 3, output A is the "green on" signal and output B is the "green sample" signal. It can be seen that the "green sample" signal is the trailing portion of the "green on" signal.
Signal C from the timing pulse generator 30 is the "red on" signal and signal D is the "red sample" signal which is the trailing portion of the "red on" signal. The trailing portions of the "on" signals are used as the "sample" portions to allow the waveform to stabiliæe before sampling.
The green control circuit is generally designated with reference numeral 32 within the dashed lines and the red control circuit is generally designated with reference numeral 34 within the other dashed lines. The green control signal will first be discussed.
The "green on" signal from line A is fed to the base of a PNP transistor 36. LED 10 is connected in the emitter-collector circuit of transistor 36 and thus when the base of transistor 36 is low, transistor 36 will be conducting and LED 10 will be effectively shorted. On the other hand, when the "green on" signal is fed to the base of transistor Tl, the current will flow through LED 10 turning on this green LED. The current will flow through NPN transistor 38 which has its emitter grounded through resistor 40.
The circuit functions automatically to establish a reference standard for the intensity of the green light from LED 10. As stated above, photodetector 22 detects the intensity of light ~hat is emitted by LED 10. Detec-tor 22 provides a current that is proportional to this ~ 3 light intensity. As illustrated in FIGURE ~, detector 22 is coupled to the negative input of an amplifier 42 having a feedback resistance 44, so that the current is converted to a voltage at the output of amplifier 42.
Thus the voltage at the output of ampli~ier 42 is proportional to the light intensity of L~D 10. If there is no light from LED 10, there will be a zero voltage at the output of amplifier 42 or if there is maximum light intensity there will be maximum voltage at the output of amplifier 42.
The output of amplifier 42 is coupled via line 46 to an input electrode 48 of FET 50. The output elec-trode 52 of FET 40 is coupled to the negative input of reference amplifier 54 though a resistor 56. ~mplifier 54, resistor 56 and a capacitor 58 serve as an integrator and the output of the integrator is fed via line 60 to the base of NPN transistor 38.
The frequence of the timing pulses may be 1 kilo-hertz although there is no limitation with respect thereto, other than as required by the amplifiers and photocells.
If a frequency of 1 kilohertz is selected, every millisec-ond FET 48 will operate as a closed switch and the output of amplifier 42 is sampled by the integrator 54, 56, 58.
If the output of amplifier 42 is zero, the input to the ne-gative input of amplifier 54 will be zero which is lower than the reference input of ampli~ier 54. Thus, the out-put of amplifier 54 will be a positive voltage, biasing the base of NPN transistor 38 more positively and causing it to carry more current thereby increasing the intensity of LED 10. Each millisecond F~T 50 will efectively _9_ operate as a clo.sed switch and t:he sampling of the OUtptlt of amplifier 42 will continue urltil the intensity of LED
10 reaches the unity reference which is set with respect to the integrator.
The integrator 54, 56, 58 is used to smooth out the sampling. It can be seen that FET 50 i.s only acting as a closed switch approximately one-quarter of the cycle (see FIGURE 3) and the integrator acts to smooth out the current flow through ~e system.
Now referring to red control circuit 34 in FIGURE
2, the "red on" signal C is fed via line 64 to the base of PNP transistor 66. When the base of transistor 66 is high, the transistor will be non-conducting and the current will flow through red LED 12 which is connected in the emitter-collector circuit of transistor 66. The current flow through LED 12 is controlled by the bias on the base of NPN transistor 68. The bias on the base of transistor 68 is responsive to the intensity of the light received at photodetector 24. The output of photode~ector 24 is connected through a capacitor 70 to a preamplifier 72, the output of which is connected to electrode 74 of FET
76. The other electrode 78 of FET 76 is connected to the negative input of amplifier 80 through resistor 82.
Amplifier 80, like amplifier 54, operates as an integrator with resistor 82 and capacîtor 84.
~ t the output of amplifier 72 there is a resis-tor 86 and a capacitor 88 coupled to ground. Between resistor 86 and capacitor 88 a line 90 is coupled to the positive input of amplifier 80. Thus the positive input -lQ-of amplifier 80 is con~inuously sampling the average signal at the output of amplifier 72. This is the average of the green and the red signal.
The circuit acts to compare the red signal with the average of the green and red signals. To ~.his end, FET 76 is operated so that it acts as a closed switch only to pass the red signal to the negative input of the inte-grator 80. If the red signal is less than ~he average re-ference at the positive input of integrator 80, there will be a positive signal at the output of amplifier 80 which will render transistor 68 more conductive and thus more current will flow through LED 12 thereby increasing the intensity of the red signal. As the red signal increases, the average will also increase but since ~he green signal is not increasing at that time, the red signal will in-crease greater than the average signal will increase. Even-tually the increase of the red signal will catch up to the average so that the average signal that is sensed at the output of amplifier 72 will be equal to the red signal that ~0 is sensed at the negative input of amplifier 80. When this occurs, the red intensity detected by photodetector 24 is equal to the green intensity detected by photodetector 24.
Since the green LED and red LED are on alternately, photo-detector 24 will first receive red ligh~ of a particular intensity, then gr en light of that identical intensity, then the red light of that particular intensity, then the green light of that same intensity, etc.
It can be seen that the circuit is operating so that photodetec~or 24 eventually receives the identical
3~

intensity of both the green ligh~ and the red light through the sample. A FET 92 is operated simultaneously with FET
76 so that the red light received by photodetector 22 is sampled by bu~fer amplifier 94. The RC circuit formed of resistor 96 and capacitor 98 acts to store the average red value at photodetector 22 and this val~te is fed to buffer amplifier 94 and the output across potentiometer 100 is equal to the ratio of the red absorbance to the green absor-bance. Thus FET 92 acts as an open switch until line 102 carries the red signal.
In effect, the green intensity has been set by green control circuit 32 and the red intensity through the sample has been varied to match the green intensity through the sample by the control circuit 34. Once the red control circuit 34 provides LED 12 with the proper intensity (so that it matches the green intensity), the red intensity as detec-ted by photodetector 22 is fed via line 102 to the sample and hold circuit to be averaged.
A shutoff control circuit 104 is coupled to poten-tiometer 100 and is operable to terminate predetermined func-tions if the red/green absorbance is above a preset level.
Thus if hemoglobin is present in plasma 20 in excess of a pre-determined value, shutoff control circuit 104 will sense a hlgh red/green absorbance level and will be opèrable to terminate the collection of the plasma.
Since both the red and green lights travel identi-cal paths through the plasma 20, local disturbances such as air bubbles, fingerprints, scratches, etc. will affect both absorbances equally and will be of substantially no consequence. Also of little consequence will be the manner in which the sample holder is installed. Since the absolute quantity o:E ratio of color absorbances is the measured quantity instead of absolute level of attenua-tion, the apparatus does not require an operator zeroing procedure. The modulated nature of the LED's outputs cancels the problem of ambient light background. Of - course, turbidity can be a chromatically selective phen-omena depending upon the si~e of the particles. However, this ratio approach as described herein alleviates much of the error induced due to turbidity.
10Although an illustrative embodiment of the in-ven~ion has been shown and described, it is to be under-stood that various modifications and substitutions may be made without departing from the novel spirit and scope of the present invention.

Claims (19)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A photometric apparatus for determining the absorb-ance ratio in a sample of two different wavelength lights, said apparatus comprising:
means for providing a light of a first wavelength having, when said first light is energized, a constant reference presample intensity before said first light is directed through the sample and a postsample intensity after said first light is directed through the sample;
means for providing a light of a second wavelength having, when said second light is energized, presample and postsample intensities, respectively, before and after said second light is directed through the sample;
means for alternately energizing said first and second lights;
means for directing said alternately energized first and second lights through the sample;
means for detecting said postsample intensity of said first and second lights;
means for varying said postsample intensity of said second light until said postsample intensity of said second light is equal to said postsample intensity of said first light;
means operative, after said postsample intensity of said second light equals said postsample intensity of said first light, for detecting the then prevailing presample intensity of said second light, whereby the then prevailing presample intensity of said second light is equivalent to the ratio of the absorbance in the sample of said second light and said first light.
2. An apparatus according to claim 1 and further including means for averaging said postsample intensities of said first and second lights, and wherein said postsample intensity varying means is operative for equalizing said postsample intensity of said second light with said average until said postsample intensity of said second light equals said postsample intensity of said first light.
3. A photometric apparatus for detecting the absorbance ratio in a sample of two lights having different wavelengths, said apparatus comprising:
means for providing a first light of a first wavelength having, when energized, presample and postsample intensities, respectively, before and after said first light is directed through the sample;
means for providing a second light of a second wavelength having, when energized, presample and postsample intensities, respectively, before and after said second light is directed through the sample;
means for alternately energizing said first and second lights;
means for detecting said presample intensity of said first light;
means for varying said presample intensity of said first light until it is equal to a predetermined constant reference intensity;
means for directing said alternately energized first and second lights through the sample;
means for detecting said postsample intensity of said first and second lights;
means for varying said postsample intensity of said second light until said postsample intensity of said second light is equal to said postsample intensity of said first light;
means operative, after said postsample intensity of said second light equals said postsample intensity of said first light, for detecting the then prevailing intensity of said second light, whereby the then prevailing presample intensity of said second light is equivalent to the ratio of the absorbance in the sample of said second light and said first light.
4. An apparatus according to claim 3 and further including means for averaging said postsample intensities of said first and second lights, and wherein said postsample intensity varying means is operative for equalizing said postsample intensity of said second light with said average until said postsample intensity of said second light equals said postsample intensity of said first light.
5. A photometric apparatus for detecting in a sample the ratio of the absorbance of two lights having differing wavelengths, said apparatus comprising:
means for providing a first light of a first wavelength and for providing a light of a second wavelength each of said first and second lights having, when energized, presample and postsample intensities, respectively, before and after said respective light is directed through the sample;
means for alternately energizing said first and second lights;
a beam splitter positioned adjacent said first and second lights, with each of said first and second lights being directly substantially perpendicularly with respect to each other;
first photodetector means positioned on the opposite side of said beam splitter from said second light and operative for detecting said presample intensities of said first and second lights;
second photodetector means positioned on the opposite side of said beam splitter from said first light and operative for detecting said postsample intensities of said first and second lights;
a sample holder located between said second detector means and said beam splitter;
means coupled to said first photodetector means and to said first light means for varying said presample intensity of said first light until it is equal to a constant predetermined reference intensity;
means coupled to said second photodetector means and to said second light means for varying said postsample intensity of said second light until it equals said post-sample intensity of said first light; and means coupled to said first photodetector means operative, after said postsample intensity of said second light equals said postsample intensity of said first light, for detecting the then prevailing presample intensity of said second light, whereby the then prevailing presample intensity of said second light is equivalent to the ratio of the absorbance in the sample of said second light and said first light.
6. An apparatus according to claim 5 and further including means for averaging said postsample intensities of said first and second lights, and wherein said means for varying said postsample intensity of said second light is operative for equalizing said postsample intensity of said second light with said average until said postsample intensity of said second light equals said postsample intensity of said first light.
7. A method for determining the absorbance in a sample of two lights having different wavelengths, which comprises the steps of:
energizing a first light of a first wavelength having a constant reference intensity before it is passed through a sample;
alternately energizing a second light of a second wavelength;
directing the first light and the second light through a sample and detecting the intensity of the first and second lights after they have passed through the sample;
varying the intensity of the second light that has passed through the sample so that it is equal to the intensity of the first light that has passed through the sample; and detecting, after the intensity of the second light that has passed through the sample is equal to the intensity of the first light that has passed through the sample, the then prevailing intensity of the second light in a state wherein it has not passed through the sample, whereby the then prevailing intensity of the second light that has not passed through the sample is equivalent to the ratio of the absorbance of the second light and the first light.
8. A method according to claim 7 and further including the step of averaging the intensities of the first light and the second light that have passed through the sample, and wherein said step of varying the intensity of the second light includes utilizing this average as a reference for the control of the intensity of the second light passing through the sample until equalization between the first and second lights occurs.
9. A method of determining the absorbance in a sample of two lights having different wavelengths, which comprises the steps of:
energizing a first light of a first wavelength;
alternately energizing a second light of a second wavelength;
detecting the intensity of said first light;
varying the intensity of said first light so that it is equal to a predetermined reference intensity;
directing the first light and the second light through a sample and detecting the intensity of the first and second lights after they have passed through the sample;
varying the intensity of the second light that has passed through the sample so that it is equal to the intensity of the first light that has passed through the sample; and detecting, after the intensity of the second light that has passed through the sample is equal to the intensity of the first light that has passed through the sample, the then prevailing intensity of the second light in a state wherein it has not passed through the sample, whereby the then prevailing intensity of the second light that has not passed through the sample is equivalent to the ratio of the absorbance of the second light and the first light.
10. An apparatus for detecting the presence of hemo-globin in a fluid, which comprises:
means for providing a substantially green light having, when said green light is energized, a constant reference presample intensity before said green light is directed through the fluid and a postsample intensity after said green light is directed through the fluid;
means for providing a substantially red light having, when energized, presample and postsample intensities, respectively, before and after said red light is directed through the fluid;
means for alternately energizing said green and red lights;
means for directing said alternately energized green and red lights through the fluid;
means for detecting said postsample intensity of said green and red lights;
means for varying said postsample intensity of said red light until said postsample intensity of said red light is equal to said postsample intensity of said green light; and means operative, after said postsample intensity of said red light is equal to said postsample intensity of said green light, for detecting the then prevailing presample intensity of said red light in a state in which it has not passed through the fluid, whereby the then prevailing presample intensity of said red light is equivalent to the ratio of the absorbance in the fluid of said red light and said green light.
11. An apparatus according to claim 10 and further including means for averaging said postsample intensities of said green and red lights, and wherein said postsample intensity varying means is operative for equalizing said postsample intensity of said red light with said average until said postsample intensity of said red light equals said postsample intensity of said green light.
12. An apparatus according to claim 1 or 3 or 5 and further including means responsive to the ratio of the absorbance of said lights for operating a predetermined function.
13. A method for detecting hemoglobin in a fluid, which comprises the steps of:
energizing a substantially green light having a constant reference intensity before it is passed through the fluid;
alternately energizing a substantially red light;
directing the green light and the red light through the fluid and detecting the intensity of the green and red lights after they have passed through the fluid;
varying the intensity of the red light that has passed through the fluid so that it is equal to the intensity of the green light that has passed through the fluid; and detecting, after the intensity of the red light that has passed through the fluid is equal to the intensity of the green light that has passed through the fluid, the then prevailing intensity of the red light in a state wherein it has not passed through the fluid, whereby the then prevailing intensity of the red light that has not passed through the fluid is equivalent to the ratio of the absorbance of the red light and the green light.
14. A method according to claim 13 and further including the step of averaging the intensities of the green light and the red light that have passed through the fluid, and wherein said step of varying the intensity of the red light utilizes this average as a reference for the control of the intensity of the red light passing through the fluid until equalization between the red and green lights occurs.
15. A method for detecting the presence of hemoglobin in a fluid utilizing a ratio of absorbance of two lights having different wavelengths, which method comprises the steps of:
energizing a substantially green light;
alternately energizing a substantially red light;
detecting the intensity of said green light;
varying the intensity of said green light so that it is equal to a predetermined reference intensity;
directing the green light and the red light through the fluid and detecting the intensity of the green and red lights after they have passed through the fluid;
varying the intensity of the red light that has passed through the fluid so that it is equal-to the intensity of the green light that has passed through the fluid; and detecting, after the intensity of the red light that has passed through the fluid is equal to the intensity of the green light that has passed through the fluid, the then prevailing intensity of the red light in a state wherein it has not passed through the fluid, whereby the intensity of the red light that has not passed through the fluid is equivalent to the ratio of the absorbance of the red light and the green light.
16. A method according to claim 15 and further including the step of averaging the intensities of the green light and red light that have passed through the fluid, and wherein said step of varying the intensity of the red light utilizes this average as a reference for the control of the intensity of the red light passing through the fluid.
17. A method according to claim 7 or 9 or 13 and further including a step of operating a predetermined function in response to the ratio of the absorbance of the lights.
18. An apparatus according to claim 10 and further including means responsive to the ratio of the absorbance of said lights for operating a predetermined function.
19. A method according to claim 15 and further including a step of operating a predetermined function in response to the ratio of the absorbance of the lights.
CA000371609A 1980-03-06 1981-02-24 Photometric apparatus and method Expired CA1141189A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US127,732 1980-03-06
US06/127,732 US4305659A (en) 1980-03-06 1980-03-06 Photometric apparatus and method

Publications (1)

Publication Number Publication Date
CA1141189A true CA1141189A (en) 1983-02-15

Family

ID=22431655

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000371609A Expired CA1141189A (en) 1980-03-06 1981-02-24 Photometric apparatus and method

Country Status (10)

Country Link
US (1) US4305659A (en)
EP (1) EP0047292A4 (en)
JP (1) JPS57500305A (en)
BE (1) BE887806A (en)
BR (1) BR8107264A (en)
CA (1) CA1141189A (en)
ES (1) ES8205312A1 (en)
IT (1) IT1194762B (en)
WO (1) WO1981002633A1 (en)
ZA (1) ZA811173B (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350441A (en) * 1980-06-30 1982-09-21 Baxter Travenol Laboratories, Inc. Photometric apparatus and method
US4609628A (en) * 1982-05-03 1986-09-02 Owens-Corning Fiberglas Corporation Method for determining binder content and degree of cure in a fibrous mat
JPH06105256B2 (en) * 1983-06-14 1994-12-21 株式会社東芝 Immunoassay method
NL8400380A (en) * 1984-02-07 1985-09-02 Optische Ind De Oude Delft Nv DEVICE FOR DETECTING COLOR DIFFERENCES.
DE3615260C2 (en) * 1986-05-06 1994-09-01 Krieg Gunther Method and system for the detection of optically absorbing compounds in a medium by optical transmission measurement
DE3726524A1 (en) * 1987-08-10 1989-02-23 Fresenius Ag HAEMOGLOBIN DETECTOR
US4810090A (en) * 1987-08-24 1989-03-07 Cobe Laboratories, Inc. Method and apparatus for monitoring blood components
DE3819531A1 (en) * 1988-06-08 1989-12-14 Reiner Dipl Phys Szepan SIGNAL PROCESS AND OPERATING TECHNOLOGY FOR LASER SPECTROSCOPIC QUANTITY DETERMINATION OF AMMONIA IN GAS MIXTURES
US5064282A (en) * 1989-09-26 1991-11-12 Artel, Inc. Photometric apparatus and method for measuring hemoglobin
US5185645A (en) * 1990-02-22 1993-02-09 Heinrich-Hertz-Institut Fur Nachrichtentechnik Berlin Gmbh Measurement method for the determination of low levels of optical absorption
US5291884A (en) * 1991-02-07 1994-03-08 Minnesota Mining And Manufacturing Company Apparatus for measuring a blood parameter
GB9212060D0 (en) * 1992-06-04 1992-07-22 Appleby David Obscuration sensor
EP0629983A1 (en) * 1993-06-02 1994-12-21 David Appleby Obscuration type smoke detector
US5774213A (en) * 1995-04-21 1998-06-30 Trebino; Rick P. Techniques for measuring difference of an optical property at two wavelengths by modulating two sources to have opposite-phase components at a common frequency
GB9702018D0 (en) * 1997-01-31 1997-03-19 Univ London Determination of the ratio of optical absorbtion coefficients at different wavelengths in a scattering medium
FR2792725B1 (en) * 1999-04-23 2001-12-07 Junior Instruments METHOD AND DEVICE FOR DETECTING VARIATIONS IN OPTICAL PROPERTIES OF A LIQUID SAMPLE IN AN ANALYSIS PROCESS
US6563585B1 (en) 1999-11-24 2003-05-13 University Of Maryland Biotechnology Institute Ratiometric fluorometer
US6678542B2 (en) 2001-08-16 2004-01-13 Optiscan Biomedical Corp. Calibrator configured for use with noninvasive analyte-concentration monitor and employing traditional measurements
FR2829286B1 (en) * 2001-09-03 2008-04-04 Ge Med Sys Global Tech Co Llc DEVICE AND METHOD FOR TRANSMITTING X-RAYS
US7061593B2 (en) * 2001-11-08 2006-06-13 Optiscan Biomedical Corp. Device and method for in vitro determination of analyte concentrations within body fluids
US6958809B2 (en) 2001-11-08 2005-10-25 Optiscan Biomedical Corporation Reagent-less whole-blood glucose meter
US7050157B2 (en) * 2001-11-08 2006-05-23 Optiscan Biomedical Corp. Reagent-less whole-blood glucose meter
US6989891B2 (en) 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
US7211037B2 (en) 2002-03-04 2007-05-01 Therakos, Inc. Apparatus for the continuous separation of biological fluids into components and method of using same
US7186230B2 (en) * 2002-03-04 2007-03-06 Therakos, Inc Method and apparatus for the continuous separation of biological fluids into components
US7479123B2 (en) * 2002-03-04 2009-01-20 Therakos, Inc. Method for collecting a desired blood component and performing a photopheresis treatment
US20040127840A1 (en) * 2002-03-04 2004-07-01 Steve Gara Blood separation apparatus and method of using the same
FR2845777B1 (en) * 2002-10-11 2005-01-07 Commissariat Energie Atomique OPTICAL DEVICE PRODUCING TWO BEAMS CAPABLE OF REACHING A COMMON DETECTOR
US20040132168A1 (en) * 2003-01-06 2004-07-08 Peter Rule Sample element for reagentless whole blood glucose meter
US20060194325A1 (en) * 2005-02-14 2006-08-31 Gable Jennifer H Fluid handling cassette with a fluid control interface
US8251907B2 (en) 2005-02-14 2012-08-28 Optiscan Biomedical Corporation System and method for determining a treatment dose for a patient
WO2006127567A2 (en) * 2005-05-20 2006-11-30 Bio/Data Corporation Aggregometer with near ultraviolet light source
US8003405B2 (en) * 2005-12-16 2011-08-23 Artel, Inc. Calibrating dispensing device performance for complex and/or non-aqueous liquids
US7772008B2 (en) * 2006-01-06 2010-08-10 Artel, Inc. Method and apparatus for determining liquid volume
US7998747B2 (en) * 2006-09-15 2011-08-16 Artel, Inc. Quantitative dual-dye photometric method for determining dilution impact
US20080144005A1 (en) * 2006-12-19 2008-06-19 Cytyc Corporation Method for analyzing blood content of cytological specimens
US7561271B2 (en) * 2007-11-01 2009-07-14 Davis James E Source adjusted colorimeter
US7791716B2 (en) * 2008-04-07 2010-09-07 Artel, Inc. System and method for liquid delivery evaluation using solutions with multiple light absorbance spectral features
US8404158B2 (en) 2008-04-07 2013-03-26 Artel, Inc. System and method for liquid delivery evaluation using solutions with multiple light absorbance spectral features
US8114003B2 (en) * 2009-04-15 2012-02-14 Caridianbct, Inc. Methods for hemolysis detection in centrifugal blood separator
WO2011156522A1 (en) 2010-06-09 2011-12-15 Optiscan Biomedical Corporation Measuring analytes in a fluid sample drawn from a patient
US10041960B2 (en) * 2013-05-10 2018-08-07 University Of Utah Research Foundation Devices, systems, and methods for measuring blood loss
US10285596B2 (en) 2016-04-11 2019-05-14 Majelco Medical, Inc. Apparatus and system for measuring volume of blood loss
US10690684B2 (en) 2013-05-10 2020-06-23 Majelco Medical, Inc. Apparatus and system for measuring volume of blood loss
JP6246376B2 (en) * 2013-09-30 2017-12-13 ハッハ ランゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングHach Lange Gmbh Nephelometric turbidimeter and method for detection of contamination of a nephelometric turbidimeter sample cuvette
US11313788B2 (en) 2018-06-15 2022-04-26 Genial Light Co., Ltd. Body fluid analysis device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1894132A (en) * 1931-08-10 1933-01-10 Gen Electric Color analyzer
US2358992A (en) * 1941-06-28 1944-09-26 Glenn A Millikan Oxygen meter
US2640389A (en) * 1950-10-31 1953-06-02 Perkin Elmer Corp Oximeter
US2803752A (en) * 1953-09-22 1957-08-20 Perkin Elmer Corp Apparatus for compensating radiant beams
US3332313A (en) * 1962-04-02 1967-07-25 Du Pont Apparatus for absorption spectra analysis
US3522739A (en) * 1968-10-28 1970-08-04 Princeton Applied Res Corp Spectrophotometer apparatus utilizing a ratio measuring circuit
US3647299A (en) * 1970-04-20 1972-03-07 American Optical Corp Oximeter
US3684378A (en) * 1970-09-04 1972-08-15 Joseph S Lord Dark current correction circuit for photosensing devices
US3720813A (en) * 1971-08-23 1973-03-13 Damon Corp Interpolative readout apparatus
US3730627A (en) * 1971-09-22 1973-05-01 Damon Corp Signal processor
US3847482A (en) * 1972-07-10 1974-11-12 Bio Data Corp Apparatus for detecting a change in turbidity of a solution
US3799672A (en) * 1972-09-15 1974-03-26 Us Health Education & Welfare Oximeter for monitoring oxygen saturation in blood
US3787124A (en) * 1972-09-21 1974-01-22 Baxter Laboratories Inc Dual wavelength photometer for absorbance difference measurements
US3804535A (en) * 1972-10-13 1974-04-16 Baxter Laboratories Inc Dual wavelength photometer response circuit
US3952206A (en) * 1974-05-09 1976-04-20 Coulter Electronics, Inc. Photometer circuit
US3972614A (en) * 1974-07-10 1976-08-03 Radiometer A/S Method and apparatus for measuring one or more constituents of a blood sample
US4136818A (en) * 1977-10-25 1979-01-30 Union Carbide Corporation Light-shielding tube holder for use with blood washing apparatus

Also Published As

Publication number Publication date
EP0047292A1 (en) 1982-03-17
ZA811173B (en) 1982-03-31
US4305659A (en) 1981-12-15
IT1194762B (en) 1988-09-28
ES500134A0 (en) 1982-06-01
WO1981002633A1 (en) 1981-09-17
ES8205312A1 (en) 1982-06-01
JPS57500305A (en) 1982-02-18
BR8107264A (en) 1982-01-05
EP0047292A4 (en) 1982-07-19
IT8120156A0 (en) 1981-03-05
BE887806A (en) 1981-07-01

Similar Documents

Publication Publication Date Title
CA1141189A (en) Photometric apparatus and method
US4350441A (en) Photometric apparatus and method
CA1256179A (en) Device for detecting differences in color
US3761724A (en) Double beam hydrocarbon gas detector
GB1531844A (en) Method and device for the non-dispersive optical determination of the concentration of gas and smoke components
JPS6222092B2 (en)
EP0670143A4 (en) Blood sugar level non-invasion measuring method and measuring instrument therefor.
JPH031625B2 (en)
CA1117788A (en) Method and apparatus for detecting a blood leak in a hemodialysis system
US3495089A (en) Alignment sensing devices utilizing light-emitting semi-conductors
AU7038481A (en) Photometric apparatus and method
GB1176902A (en) Spectrophotometer
JPS5912132B2 (en) A device that detects the presence of a specific substance in a gas stream
CA2062550A1 (en) Optical distance measuring apparatus
JPS58178243A (en) Optical apparatus for measuring suspended substance concentration
JPS5941129B2 (en) color difference measuring device
US5170224A (en) Laser wavelength measuring device
SU1753377A1 (en) Method of monitoring spot defects on the surface of flat materials in motion and device for realization
JPS649341A (en) Method for preventing interference of laser gas sensor
RU2682566C2 (en) Dust formation detection device for printed circuit boards of radio electronic equipment
JPS63167242A (en) Fire judging device
SU1497530A1 (en) Moisture meter
SU1723455A1 (en) Method for determining optical characteristics of sample and device
SU1543248A1 (en) Method of determining temperature of moving particles of disperse medium
SU746257A1 (en) Optical humidity meter

Legal Events

Date Code Title Description
MKEX Expiry