CA1134494A - Method and means of detecting solid particles in a fluid flowing through a conduit - Google Patents

Method and means of detecting solid particles in a fluid flowing through a conduit

Info

Publication number
CA1134494A
CA1134494A CA000318090A CA318090A CA1134494A CA 1134494 A CA1134494 A CA 1134494A CA 000318090 A CA000318090 A CA 000318090A CA 318090 A CA318090 A CA 318090A CA 1134494 A CA1134494 A CA 1134494A
Authority
CA
Canada
Prior art keywords
pulse
range
conduit
transducer means
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000318090A
Other languages
French (fr)
Inventor
Harm Mast
Jan W. Kraayeveld
Peter B. Vriezen
Gerrit J. Wunnink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Canada Ltd
Original Assignee
Shell Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Canada Ltd filed Critical Shell Canada Ltd
Application granted granted Critical
Publication of CA1134494A publication Critical patent/CA1134494A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M11/00Counting of objects distributed at random, e.g. on a surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • G01N29/046Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks using the echo of particles imparting on a surface; using acoustic emission of particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M1/00Design features of general application
    • G06M1/08Design features of general application for actuating the drive
    • G06M1/10Design features of general application for actuating the drive by electric or magnetic means
    • G06M1/108Design features of general application for actuating the drive by electric or magnetic means by electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02408Solids in gases, e.g. particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02416Solids in liquids

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

A B S T R A C T
A method of detecting solid particles in a fluid flowing through a conduit, comprising the steps of generating an electric signal by allowing particles to impinge against an acoustic transducer means, filtering said signal to pass frequency components thereof in a range that is within the frequency band of about 50 kiloherz to about 500 kiloherz, comparing the values of the amplitudes of each pulse train in the filtered signal with at least one predetermined range of values, creating an electric standard pulse when the maximum amplitude of such pulse train has a value that is within said predetermined range, and counting the number of standard pulses over a pre-determined period.

Description

1~34~9~

The invention relates to a method and means of detecting solid particles in a fluid flowing through a conduit.
The invention relates in particular to a method and means for counting the number of particles that pass through a pre-determined area of the cross-section of the conduit and for counting the particles and optionally differentiating in the size of the particles when these are of one and the same composition.
Solid particles, such as sand grains, are often entrained in a flowing fluid that is being recovered from an underground formation, such as a formation containing hydrocarbons. The sand grains entrained with the fluid (such as gas and/or liquid hydrocarbons) can cause erosion of the conduits in the well, as well as of the pipelines and fluid treating installations on the surface. In order to take timely counter-measures, an early warning of the operating personnel is required of the presence of those amounts of sand grains that can be expected to cause damage of the recovery equipment in the well or on the production site.
A method and equipment for detecting solid particles in a flowing fluid is known already, wherein at least part of the particles carried by the flowing fluid impinges against a microphonic probe. Each impact is recorded separately, since the impacts are distinguishable from background noise. Also, a method and apparatus for grain detection in a flowing fluid is known, in which the grains activate transducer means responsive to acoustic energy to generate a signal representative of said energy, wherein a frequency range around 700 kHz of the signal is q~ .

held to be representative of the kinetic energy of the total amount of grains striking the transducer means and a frequency range around 100 kHz of the signal is held to be representative of the background noise.
Further, a method and means are known for detecting individual solid particles that are being carried in a particular flow area of a flowing fluid. Herein, the grains impinge on a piezoelectric transducer. The peak value of the resulting electric output signal is detected in a pulse height discriminator after a suitable amplification of this signal. When the peak value exceeds a pre-set discrimination level, a standard output pulse is produced with a length that is greater than the typical duration of the impact signal.
The number of standard pulses is counted in a pre-determined period.
At a given impact velocity, the grain diameter can be estimated from the peak amplitude of the impact response, and a differentiation can be made between different ranges of grain sizes which will lead to a grain-size distribution of the grains that pass through a given area of the cross-section of the conduit over a given period.
It has now been found that best results will be obtained by the above method wherein counts are made of the number of grains impinging on a transducer element, when the transducer signal is selectively filtered.
According to the invention, a method of detecting solid particles in a fluid flowing through a conduit comprises the steps of generating an electric signal by allowing particles to impinge against an acoustic ~L~L3~

transducer means, filtering said signal to pass frequency components thereof in a range that is within the frequency band or about 50 kiloherz to about 500 kiloherz, said frequency components comprising pulse trains of varying amplitude, comparing the values of the amplitudes of each pulse train in the filtered signal with at least one predetermined range of values, creating an electric standard pulse of predetermined time period when the maximum amplitude of such pulse train has a value that is within said predetermined range of values, and counting the number of standard pulses over a predetermined period.
The electric signals are preferably generated by a piezo-electric element that is activated by the particles through the intermediary of a metal body.
According to the invention, a means of detecting solid particles in a fluid flowing through a conduit comprises acoustic transducer means adapted to be positioned in a conduit through which a particle-laden fluid may pass, means for indicating the number of impacts made by particles on the acoustic transducer means, and circuitry means interconnecting said transducer means and said indicating means, said circuitry means comprising filter means for processing the electric signals generated by the transducer means to pass frequency components thereof in a range that is within the frequency band of about 50 kiloherz to about 500 kiloherz, and a pulse height discriminating means and a pulse shaper means, these two latter means being adapted to form a standard pulse of predetermined time period to be passed on to the indicating means each time when the value of the maximum amplitude of a pulse train in the filtered signal is within a range of pre-determined values.

The transducer means preferably comprise a piezo-electric element that is in contact with a metal body, which body is adapted to be arranged in the conduit to be exposed to the flow of fluid.
The invention will now be described by way of example in more detail with reference to the drawing. In the drawing, Figure 1 shows schematically an aeoustic transducer means positioned in a conduit and a block diagram of the eleetrie means used for proeessing and eounting the signals generated by the transdueer means;
Figure 2 shows sehematieally the partiele deteeting system aceording to Figure 1 but now equipped for differentiating between various partiele sizes.
Figure 3 shows schematieally the partiele deteeting system of Figure 1 in eombination with means for deteeting fluid flow velocity;
Figure 4 shows a longitudinal section over a transducer means to be used in any one of the systems of Figures 1-3;
Figure 5 shows a longitudinal section of an alternative of the transducer means of Figure 4; and Figure 6 shows an acoustie transducer means that can be used as acoustic transducer means in any one of the systems shown in 1~34~9~

Figures 1 - 3 and is adapted to be displaced vertically in a well for discriminating between the particles that enter the well at various levels.
The particle detecting system according to Figure 1 comprises an acoustic transducer means 1 arranged in a conduit 2. The transducer means comprise a piezo-electric element (not shown) that is arranged in -the transducer means 1 such that any particle impinging against the outer wall of the means 1 generates an electric signal in the form of a pulse train. This signal is subsequently supplied to the amplifier 3, which amplifier 3 is part of a circuitry system that feeds signals to the counting and display means 4. Apart from the amplifier 3 and connecting wires, the circuitry system comprises a frequency filter 5, a pulse height discriminator 6, and a pulse shaper 7.
~he signals amplified by the amplifier 3 are filtered by the f~equency filter 5 to pass only those components of the amplifieq signal that have a frequency between 100 kiloherz and 300 kiloherz. The filtered signals are subsequently supplied to the pulse height discriminator 6 where thé values ol' the amplitudes of each pulse train in the filtered signal 2re compared with the pre-determined range of values above level 8. Each pulse having an amplitude above the predetermined level 8 generates a signal that is passed to the pulse shaper 7 which in its turn generates a standard pulse 9 that is supplied to the means 4, which counts and displays the number of standard pulses supplied thereto during a pre-determined period.

3 ~ ~ 9 The length of the standard pulse 9 produced by a particle impact signal with a maximum amplitude of value that is within the range of values above level 8, may be 200 ~sec. During these 200 ~s no new standard pulses can be triggered. This prevents secondary peaks of the same impact signal from triggering new output pulses. Two particle impacts within 200 ~s will then be counted as one impact, but this has been found to raise a small error only which is negligible for the purpose of which the particle detecting system is designed.
It will be appreciated that the height of the level 8 in the pulse height discriminator 6, as well as the length of the standard pulse may be made adjustable to allou the operator to select an optimum value for the operating conditions.
It has been found that the best results are obtained by the particle detection system designed for counting the number of particles impinging against the acoustic transducer means, if the signal generated by the transducer means is filtered to pass frequency components thereof in a range that is within the 50 kHz - 500 kHz band.
This will be in particular the case when applying acoustic transducer means 1 comprising a piezo-electric element that is in contact with a metal body against which the particles impinge. Such acoustic transducer means will be described in more detail hereinafter with reference to Figures 4 and 5 of the drawing.
The particle detecting system shown in Figure 2 differs from the system shown in Figure 1 in that it comprises a pulse height 113~

discriminator 10 that is designed to differentiate between various ranges of pulse heights. The signals generated by particles impinging upon the acoustic transducer 1 arranged in the conduit 2 are first supplied to amplifier 3 and subseauently to the filter 5 wherein the frequencies outside the range of 50 kHz - 200 kHz are suppressed. The resulting pulse trains are then supplied to the pulse height discriminator 10, that can differentiate between the maximum amplitudes of the pulses that are either above the level 11, or between the levels 11 and 12, or between the levels 12 and 13.
A particle impact that generates a pulse train whereof the value of the maximum amplitude is within the range of values above the level 11, will then be passed on to the pulse shaper 14 through the electric connection 15A. The pulse shaper 14 generates a standard pulse 16A that is subsequently passed to the counting and display means 17 via the electric connection 18A. Thus all impacts on the transducer means 1, which generate a pulse train with maximum amplitude above level 11 will be separately counted by counter 17 and separately displayed thereby.
Further, all impacts that generate a pulse train with maximum amplitude in the range of values between the levels 11 and 12 will also be separately counted and displayed by the counter 17. The same applies for the impacts that generate a pulse with a maximum amplitude that has a value falling within the range of values between the levels 12 and 13.
It will be appreciated that the discriminator 10 and the pulse shaper 14 are designed such that the detection of a maximum value of 1134~
--g the amplitude of the pulse train that is within one of the pre-determined ranges of values only allows the formation of a single standard pulse to be passed on to the display means 17. Triggering of standard pulses that correspond with secondary peaks of the same pulse train may be prevented by giving the standard pulse a length that exceeds the length of the pulse trains. Each impact is counted only in that one of the three displays of means 17 that corresponds to the range reached by the maximum amplitude of the pulse train.
Such is established by blocking during the counting period the passage through those two of the electric connections 15A-C (or of the connections 18A-C) that lead to the other two displays of the means 17.
Electric circuits for such purpose are known per se and do not require a detailed description.
The levels 11, 12 and 13 may be made adjustable. The system is calibrated for a certain range of masses of the solid particles that are entrained with the fluid flow 8, and for a certain rate of this flow. The display of the counting means 17 will - over a pre-determined time interval - indicate the total amount of particles that have passed through a particular area of the cross-section of the conduit 2, as well as the distribution of these particles according to three size-ranges.
The flow rate of the fluid may be detected by the system of the present invention in the embodiment thereof that is shown in Figure 3.
This system is similar to the system shown in Figure 1, but has added thereto an electric filter 20 that is designed to suppress all frequencies outside the 50 - 10,000 Hz range. The signals generated by the transducer means 1 are supplied to this filter 20 after being ~:134~

amplified by the amplifier 3, and the filtered signal that substantially originates from the background noise in the conduit is representative of the rate of the fluid flow 8 through the conduit 2. The magnitude of the signal in the frequency range of 50-10,000 Hz is indicated by the display 21.
It is particularly advantageous to use a filter similar to the filter 20 in combination with the particle detecting system shown in Figure 2, since the output signal of the filter may then be used for adjusting the levels 11, 12 and 13 of the pulse height discriminator 10 such that the counter 17 always indicates the number of particles in three fixed size ranges independent of the magnitude of the flow rate of the fluid 8 passing through the conduit 2.
Figures 4 and 5 of the drawing show acoustic transducer means for use in the systems shown in Figures 1-3. Each transducer means comprises a housing 50 with cover 51, which housing houses a pre-amplifier 52. The output cable 53 of the amplifier passes through an opening 54 in the wall of the housing 50, and the input cable 55 is electrically connected to the piezo-electric crystal 56 that is arranged in the interior 57 of extension 58 of the housing 50.
The extension 58 is connected to the housing 50 by means of a screw thread 59.
The outer wall of the extension 58 carries a screw thread 60, for connecting the acoustic transducer means to the conduit (not shown) wherein the measurement should take place. Screw thread 60 is 1134~9~

designed for cooperation with a screw threaded opening in the wall of such conduit, such that the part 61 of extension 58 of housing 50 is within this conduit in the operative position of the transducer means.
A spring element 62 is arranged within the interior 57 of the extension 58, this spring element pressing one side of the piezo-electric crystal 56 against the bottom wall of the interior 57 of the extension 58. The extension 58 is made of metal (such as copper) and acoustic waves generated by impact of particles on the outside wall of extension 58 are consequently transmitted to the piezo-electric crystal 56 and detected thereby.
The means for detecting solid particles in a fluid flowing through a conduit as shown in Figures 1-3 of the drawing are designed for detecting these particles in a fluid flowing through a conduit wherein the acoustic transducer element can be easily mounted in the conduit. Such conduit may be a conduit leading from a well producing gaseous hydrocarbons to a treating instal-lation. The presence of solid particles in the fluid, such as gas that flows out of the well~is then detected and a warning may be given to the operator in case the amount of solid particles surpasses an undesired level.
However, the present invention may also be used for detecting the presence of solid particles in the well itself. An acoustic transducer element is then supported by a small diameter cable in which electric wires are incorporated for passing signals from the 1~4~94 transducer element to the surface. The transducer element is then lowered by the cable to a desired level in the well and the signals generated by the impacts of solid particles against the transducer element thereof are passed to the surface via the electric wires.
Preferably, the signals are amplified prior to passing them to the surface. If desired, suitable carrier waves (such as F.M. waves) may be used for transmitting these data from the transducer element to the surface.
Figure 6 shows a logging tool 65 comprising a transducer element 66, which logging tool is supported by a cable 67. This tool is in particular designed for detecting the level at which solid particles are entering a well together with hydrocarbon or other gases that enter the well via perforations in the casing that lines the well to prevent collapse thereof.
Such perforations consist of small diameter openings in the wall of the casing and depending on the degree of consolidation of the formation layers facing the perforations and the rate at which the gas flows out of the various formation layers, sand particles will be entrained with the gas entering the well. It may be found desirable to detect the level of the perforation or perforations through which sand particles are entering the well, and the logging tool shown in Figure 6 has been found to be useful for this purpose.
The logging tool 65 of Figure 6 comprises a housing 68 wherein a piezo-electric crystal 69 is supported in acoustic contact with the wall of the housing. This housing consists of metal or 1~34~

other acoustic wave transmitting material and comprises external extensions 70 that connect the housing 68 to acoustic barrier elements 72 and 73. These acoustic barrier elements are made of suitable material, such as a resinous material incorporating heavy particles, such as metal particles (e.g. lead shot).
Openings 74 may be provided in the walls of the extensions 70 to obtain a strong connection between the housing 68 and the material of the barriers 72 and 73, which are preferably formed in-situ on the housing 68.
Electric signals are generated by the transducer element 69 by sand particles travelling in a direction substantially at right angle to the central axis of the logging tool 65 and impinging against the outer wall of the housing 68 thereof. By passing the oblong logging tool 65 through the perforated casing in a well, any particle that enters the well via a perforation on the moment that the side wall of the housing 68 faces such perforation, will generate a signal in the transducer element 69, which signal is passed on via electric cable 80 to an amplifier 75 carried in the housing 76 situated above the acoustic barrier 72 and connected thereto by means of an extension 77. The amplified signal is then passed on to the surface via the support cable 67 that has electric cables for data transmission incorporated therein. The cable 76 is connected to the logging tool by means of the screw cap 78.
Since the length of the cable 67 that supports the logging tool 65 in a well can be measured, the level at which electric signals are obtained by the impact of sand particles against the side wall of the housing 68 can easily be calculated. This level indicates the level at which the sand particles are entering the well and after removal of the logging tool corrective measures can be taken to consolidate the formation layer facing the perforation(s) at that particular level. Such consolidation treatments are known per se and do not form part of the present invention.
The cable 67 is at the surface connected to one of the electric circuits shown in Figures 1-3, which allows the operator to obtain information on the amount of sand grains that enter the well at the level at which the housing 68 of the tool 65 is situated.
The transducer element 69 further generates signals that originate from sand particles that impinge against the acoustic barrier elements 72 and 73, as well as from sand particles that travel in directions parallel to the longitudinal axis of the logging tool 65. These signals, however, have relatively low amplitudes, and by adjusting the lowest discrimination level in the discriminator 6 (see Figures 1-3) above said relatively low amplitudes, the impacts represented by these signals will not be counted by the means ~ and 17. Thus, the impacts counted by the means 4 and 17 are representative only of the impacts of those sand grains that have hit the side wall of the housing 68.
It will be appreciated that apart from the piezo-electric crystals that have been indicated hereinabove as being suitable for use as an acoustic transducer in the present invention, other types of acoustic transducer may be applied with the same favourable results.

1134~9~

Application of the invention is not restricted to the use of the bandpass filters 5 as described with reference to Figures 1 and 2 and having frequency ranges of 100 kHz - 300 kHz and 50 kHz - 200 kHz, respectively. Any other filter may be applied that is designed to pass those signal components that have a frequency within a frequency range other than the two ranges referred to above, but having a lower boundary that is above about 50 kHz and an upper boundary that is below about 500 kHz.
The filtering action to remove the high frequencies from the signals may either be performed by a specially designed filter, or take place in the transmission lines.

Claims (12)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method of detecting solid particles in a fluid flowing through a conduit wherein an acoustic transducer means is located, the method comprising the steps of flowing the fluid through the conduit, generating an electric signal by allowing particles to impinge against the acoustic transducer means, filtering said signal to pass frequency components thereof in a range that is within the frequency band of about 50 kiloherz to about 500 kiloherz, said frequency components comprising pulse trains of varying amplitude, comparing the values of the amplitudes of each pulse train in the filtered signal with at least one predetermined range of values, creating an electric standard pulse of predetermined time period when the maximum amplitude of such pulse train has a value that is within said predetermined range of values, and counting the number of standard pulses over a predetermined period.
2. The method of claim 1, wherein the electric signal is generated by a piezo-electric element that is activated by the particles through the intermediary of a metal body.
3. The method according to claim 1, wherein the signal generated by the acoustic transducer means apart from being filtered in a range within the frequency band of about 50 kiloherz to about 500 kiloherz, is separately filtered to pass frequency components thereof in the range of about 100 herz to about 10,000 herz, which latter filtered signal is representative of the flow rate of the fluid.
4. The method according to claim 1, wherein the acoustic transducer means are suspended in a well penetrating a subsurface forma-tion.
5. The method according to claim 4, wherein the acoustic transducer means are being displaced in the well in a vertical sense.
6. Means for detecting solid particles in a fluid flowing through a conduit, comprising acoustic transducer means adapted to be positioned in a conduit through which a particle-laden fluid may pass, means for indicating the number of impacts made by particles on the acoustic transducer means, and circuitry means interconnecting said transducer means and said indicating means, said circuitry means com-prising filter means for processing the electric signals generated by the transducer means to pass frequency components thereof in a range that is within the frequency band of about 50 kiloherz to about 500 kiloherz, and a pulse height discriminating means and a pulse shaper means, said two latter means being adapted to form a standard pulse of predetermined time period to be passed on to the indicating means each time when the value of the maximum amplitude of a pulse train in the filtered signal is within a range of pre-determined values.
7. Means according to claim 6, wherein the time period of the standard pulse is adjustable.
8. Means according to claim 6, wherein the transducer means comprise a piezo-electric element that is in contact with a metal body, which body is adapted to be arranged in the conduit to be exposed to the flow of fluid.
9. Means according to claim 6, comprising further circuitry means comprising filter means for processing the electric signals generated by the transducer means to produce signals in the frequency range of about 100 herz to about 10,000 herz.
10. Means according to claim 9, comprising display means for displaying the signals in the frequency range of about 100 herz to about 10,000 herz.
11. Means according to claim 6, wherein the transducer means are adapted to be suspended by cable means for vertically displacing said transducer means in a well.
12. Means according to claim 11, wherein the acoustic transducer means comprise a cylindrical housing arranged between two acoustic barrier elements, the housing and the barrier elements together forming an oblong logging tool.
CA000318090A 1977-12-20 1978-12-18 Method and means of detecting solid particles in a fluid flowing through a conduit Expired CA1134494A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB52958/77 1977-12-20
GB52958/77A GB1585708A (en) 1977-12-20 1977-12-20 Method and means of detecting solid particles in a fluid flowing through a conduit

Publications (1)

Publication Number Publication Date
CA1134494A true CA1134494A (en) 1982-10-26

Family

ID=10466046

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000318090A Expired CA1134494A (en) 1977-12-20 1978-12-18 Method and means of detecting solid particles in a fluid flowing through a conduit

Country Status (7)

Country Link
US (1) US4240287A (en)
CA (1) CA1134494A (en)
DE (1) DE2854589A1 (en)
FR (1) FR2412840A1 (en)
GB (1) GB1585708A (en)
IT (1) IT1108519B (en)
NL (1) NL7812249A (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1153459A (en) * 1979-06-26 1983-09-06 Paulus A. Stuivenwold Sensor for detecting particles in a fluid flow
GB2052060B (en) * 1979-06-26 1983-04-27 Shell Int Research Detecting particles carried by a fluid flow
FR2480947A1 (en) * 1980-04-21 1981-10-23 Elf Aquitaine EROSION PROBE WITH QUICK RELEASE
FR2557297B1 (en) * 1983-12-27 1986-04-18 Gaz De France DEVICE FOR DETECTING PARTICLES, IN PARTICULAR SOLID PARTICLES IN A GASEOUS FLUID FLOWING IN A PIPELINE
US4538451A (en) * 1984-03-09 1985-09-03 Sugar Research Limited Machine for detecting sugar crystals in molasses
DE3419884A1 (en) * 1984-05-28 1985-11-28 Amazonen-Werke H. Dreyer Gmbh & Co Kg, 4507 Hasbergen METHOD AND DEVICE FOR THE ACOUSTIC NUMBER OF PARTICLES
GB8903320D0 (en) * 1989-02-14 1989-04-05 Mahgerefteh Haroun Particle sizer
NO176292C (en) * 1990-10-17 1995-03-08 Norsk Hydro As Equipment and method for determining the amount of particulate material in a liquid and / or gas stream
GB9111008D0 (en) * 1991-05-21 1991-07-10 Rig Technology Ltd Improvements in and relating to particle detection and analysis
US5257530A (en) * 1991-11-05 1993-11-02 Atlantic Richfield Company Acoustic sand detector for fluid flowstreams
US5633462A (en) * 1994-07-19 1997-05-27 Apa Systems Method and apparatus for detecting the condition of the flow of liquid metal in and from a teeming vessel
US6539805B2 (en) 1994-07-19 2003-04-01 Vesuvius Crucible Company Liquid metal flow condition detection
JPH09113434A (en) * 1995-10-20 1997-05-02 Ngk Insulators Ltd Axial particle sensor
NL1003595C2 (en) * 1996-04-10 1997-10-14 Tno Method and device for characterizing suspensions.
JP3299131B2 (en) * 1996-05-16 2002-07-08 日本碍子株式会社 Particle sensor
JPH1062331A (en) * 1996-08-20 1998-03-06 Ngk Insulators Ltd Particle sensor
US20010037883A1 (en) * 1998-11-18 2001-11-08 Anthony F. Veneruso Monitoring characteristics of a well fluid flow
US6467340B1 (en) * 1999-10-21 2002-10-22 Baker Hughes Incorporated Asphaltenes monitoring and control system
US6893874B2 (en) * 2000-10-17 2005-05-17 Baker Hughes Incorporated Method for storing and transporting crude oil
US6601464B1 (en) 2000-10-20 2003-08-05 John P. Downing, Jr. Particle momentum sensor
US7200539B2 (en) * 2001-02-21 2007-04-03 Baker Hughes Incorporated Method of predicting the on-set of formation solid production in high-rate perforated and open hole gas wells
US7308941B2 (en) * 2003-12-12 2007-12-18 Schlumberger Technology Corporation Apparatus and methods for measurement of solids in a wellbore
CA2620006C (en) * 2005-08-22 2013-09-24 Rosemount Inc. Industrial field device with automatic indication of solids
US7463158B2 (en) * 2005-10-19 2008-12-09 Linear Measurements, Inc. Acoustic particle alarm including particle sensor
US8364421B2 (en) * 2008-08-29 2013-01-29 Schlumberger Technology Corporation Downhole sanding analysis tool
CN101581220B (en) * 2009-06-23 2012-06-27 西安石油大学 Built-in signal detection sensor for sand production of oil-gas wells
EP2444799B1 (en) * 2010-10-25 2014-07-02 Vetco Gray Controls Limited Sand detector calibration
US8615370B2 (en) 2011-06-02 2013-12-24 Baker Hughes Incorporated Sand detection using magnetic resonance flow meter
US10054537B2 (en) 2016-06-28 2018-08-21 Schlumberger Technology Corporation Phase fraction measurement using continuously adjusted light source
US9995725B2 (en) 2016-06-28 2018-06-12 Schlumberger Technology Corporation Phase fraction measurement using light source adjusted in discrete steps
US10698427B2 (en) 2016-10-31 2020-06-30 Ge Oil & Gas Pressure Control Lp System and method for assessing sand flow rate
US11808615B2 (en) 2018-07-26 2023-11-07 Schlumberger Technology Corporation Multiphase flowmeters and related methods
EA037843B1 (en) 2019-04-19 2021-05-26 Общество С Ограниченной Ответственностью "Сонограм" Method for detecting solid particle entrainment zones in a well
RU2749589C1 (en) * 2020-07-27 2021-06-15 Общество с ограниченной ответственностью «ТГТ Сервис» (ООО «ТГТ Сервис») Method for detecting zones of solids discharge through an impermeable barrier in a well
US11965298B2 (en) 2021-12-01 2024-04-23 Saudi Arabian Oil Company System, apparatus, and method for detecting and removing accumulated sand in an enclosure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760184A (en) * 1952-08-22 1956-08-21 Tidewater Oil Company System for detecting solids in gaseous streams
US3271672A (en) * 1961-09-20 1966-09-06 Coulter Electronics Particle studying device control circuit
US3563311A (en) * 1969-09-02 1971-02-16 Mobil Oil Corp Investigating a well to determine sand entry
US4016766A (en) * 1971-04-26 1977-04-12 Systron Donner Corporation Counting accelerometer apparatus
FR2157092A5 (en) * 1971-10-18 1973-06-01 Commissariat Energie Atomique
US3816773A (en) * 1972-10-12 1974-06-11 Mobil Oil Corp Method and apparatus for detecting particulate material in flow stream
US3841144A (en) * 1972-10-12 1974-10-15 Mobil Oil Corp Sand detection probe
US3834227A (en) * 1973-05-02 1974-09-10 Shell Oil Co Method for determining liquid production from a well
US3989965A (en) * 1973-07-27 1976-11-02 Westinghouse Electric Corporation Acoustic transducer with damping means
NO140838C (en) * 1973-12-07 1979-11-21 Mobil Oil Corp DEVICE FOR DETECTING PARTICULAR MATERIAL IN A FLUID CURRENT
US3854323A (en) * 1974-01-31 1974-12-17 Atlantic Richfield Co Method and apparatus for monitoring the sand concentration in a flowing well
FR2316594A1 (en) * 1975-07-02 1977-01-28 Gaz De France Detection of solids entrained in a gas - e.g. sand in natural gas from underground storage, using vibration transmitter in gas stream and transducer outside pipe
US4065960A (en) * 1976-12-13 1978-01-03 Krautkramer Gmbh Method and apparatus for monitoring the operation of ultrasonic testing of tubes and bars
US4131815A (en) * 1977-02-23 1978-12-26 Oceanography International Corporation Solid piezoelectric sand detection probes

Also Published As

Publication number Publication date
DE2854589C2 (en) 1988-11-10
DE2854589A1 (en) 1979-06-21
IT7869882A0 (en) 1978-12-18
FR2412840B1 (en) 1982-02-19
IT1108519B (en) 1985-12-09
US4240287A (en) 1980-12-23
NL7812249A (en) 1979-06-22
GB1585708A (en) 1981-03-11
FR2412840A1 (en) 1979-07-20

Similar Documents

Publication Publication Date Title
CA1134494A (en) Method and means of detecting solid particles in a fluid flowing through a conduit
US3841144A (en) Sand detection probe
US3816773A (en) Method and apparatus for detecting particulate material in flow stream
US3906780A (en) Particulate material detection means
US5131477A (en) Method and apparatus for preventing drilling of a new well into an existing well
US4674337A (en) Particle detector
US5753818A (en) Method and apparatus for measuring scour around bridge foundations
US20100057378A1 (en) Downhole sanding analysis tool
RU2749589C1 (en) Method for detecting zones of solids discharge through an impermeable barrier in a well
Leach et al. Particle size determination from acoustic emissions
US4410398A (en) Method and apparatus for monitoring the cutting of coke in a petroleum process
GB2360357A (en) Slag detector for molten steel transfer operations
DE2260352C2 (en) Device for detecting damage to glass panes or the like
DE102008055995A1 (en) Method of performing deep drilling and spade detector therefor
US3361225A (en) Sonic testing device
US7213475B2 (en) Measurements of particle size in pneumatic flows
CA1153459A (en) Sensor for detecting particles in a fluid flow
EP0006315B1 (en) Method and system for detecting plate clashing in disc refiners
US3892633A (en) Coke cutting with aid of vibration detectors
EP0254882B1 (en) Particle detector
WO1992013167A1 (en) Method and apparatus for preventing drilling of a new well into an existing well
US4538451A (en) Machine for detecting sugar crystals in molasses
CN113565490B (en) Water damage microseism early warning method
JP2758315B2 (en) Automatic diagnosis method for secondary cooling nozzle of continuous casting equipment
EP0448290A2 (en) Intrusion detection system and signal processing circuitry therefor

Legal Events

Date Code Title Description
MKEX Expiry