CA1125376A - Implantable demand pacemaker and monitor - Google Patents

Implantable demand pacemaker and monitor

Info

Publication number
CA1125376A
CA1125376A CA313,248A CA313248A CA1125376A CA 1125376 A CA1125376 A CA 1125376A CA 313248 A CA313248 A CA 313248A CA 1125376 A CA1125376 A CA 1125376A
Authority
CA
Canada
Prior art keywords
patient
heart
unit
signal
stimulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA313,248A
Other languages
French (fr)
Inventor
Dennis G. Hepp
Robert A. Neumann
Paul Citron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Application granted granted Critical
Publication of CA1125376A publication Critical patent/CA1125376A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3625External stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3706Pacemaker parameters

Abstract

ABSTRACT OF THE DISCLOSURE
Cardiac monitoring and pacing apparatus comprising a first external unit for transmitting electromagnetic energy within the patient's body to be received by a second, surgically implanted unit within the patient's body and adapted to be solely powered by the transmitted electromagnetic energy. The first external unit transmits electromagnetic energy within the patient's body which is sensed and used to power the implanted unit, which stimulates, via pacing electrodes, the patient's heart. The internal unit also includes a monitoring circuit connected to the same pacing electrodes coupled to the patient's heart, for providing atrial and ventrical signals to be pulse-width modulated for transmission, to the external unit. The external unit decodes the transmitted signals to provide diognostic quality signals indicative of the patient's EKG.

Description

.2~

This invention relates to electronic devices implant-able within the human body and in particuilar to apparatus for monitoring the heart's activity.
Heart pacemakers such as that described in U.S. Patent No. 3,057,356 issued in the name of Wilson Greatbatch and assigned to the assignee of this invention, are known for pro-viding electrical stimulus to the heart, whereby it is contracted at a desired rate in the order of 72 beats per minute. Such a heart pacemaker is capable of being implanted in the human body and operative in such an environment for relatively long periods of time. Typically, such pacemakers are implanted within the chest beneath the patient's skin and above the pectoral muscles or in the abdominal region by a surgical procedure wherein an incision is made in the selected region and the pacemaker is implanted within the patient's body. Such a pacemaker provides cardiac stimulation at low power levels by utilizing a small, completely implanted transistorized, battery-operated pacemaker connected via fle~ible electrode wires directly to the myocardium or heart muscle. The electrical stimulation provided by this 2Q pacemaker is provided at a fixed rate.
~ In an article by D.A. Nathan, S. Center, C.Y~ Wu and WO Keller, "An Implantable Synchronous Pacemaker for the Long Term Correction of Complete Heart Block", American Journal o~
Cardiology, 11:36~, there is described an implantable cardiac pacemaker whose rate is dependent upon the rate o~ the heart's natllral pacemaker and which operates to detect the heart beat signal as derived from the auricular sensor electrode and, after a suitable delay and amplification, delivers a corresponding stimulus to the myocardium and in particular, the ventricle to initiate each heart contraction.

Such cardiac pacemakers, separately or in combination, ténd to alleviate some examples of complete heart block. In a 112~;3 76 heart block, the normal electrical interconnection in the heart between its atrium and its ventricle is interrupted whereby the normal command signals directed by the atrium to the ventricle are interrupted with the ventricle contracting and e~panding at its own intrinsic rate in the order of 30-40 beats per minute.
Since the ventricle serves to pump the greater portion of blood through the arterial system, such a low rate does not provide sufficient blood supply. In normal heart operation, there is a natural sequence between the artial contraction and the ventri- -10cular contraction, one following the other. In heart block, : -there is an obstruction to the electrical signal due, perhaps, to a deterioration of the heart muscle or to scar tissue as a result of surgery, whereby a block in the nature of a high electrical impedance is imposed in the electrical flow from the atrium to the ventrical.
When the heart block is not complete, the heart may periodically operate for a period of time thus competing for control with the stimulation provided by the artific1al cardiac pacemaker. Potentially dan~erous situations may arise when an electronic pacemaker stimulation.~alls into the "T" wave portion ~-of each natural complete beat. As shown in Fig. 1, the "T" wave follo~s by about 0~2 seconds each major beat pulse (or "R" wave : . ., causing contraction of the ventricles of the heart). Within the :
"T" wave is a critical interval known as the "vulnerable period" ;
and, in the case of a highl~ abnormal heart, a pacemaker impulse falling into this period can conceivably elicit bursts of tachylcardia or fibrillation, which are undesirablé and may even lead to a fatal sequence of arrhythmias.
Cardiac pacemakers o~ the demand type are known in the -3~ prior art such as that disclosed by United Kingdom Patent No.

826,766 which provides electrical pulses to.stimulate the heart onl~ in the absence of normal heartbeat. As disclosed, the
-2-~L2~;37ÇE~

heartbeat is sensed by an acoustical device disposed external of the patient's body, responding to the presence of a heartbeat to provide an inhibit signal defeating the generation o~ heart stimulating pulses by the pacemaker. In the absence o~ the patient's natural heartbeat, there is disclosed that the pace-maker generates pulses at a fixed ~requency.
In U.S. Patent No. Re. 28,003, of David H. Gobeli, I assigned to the assignee of this invention, there is disclosed ¦ an implantable demand cardiac pacemaker comprising an oscillator circuit for generating a series of periodic pulses to be applied via a stimulator electrode to the ventricle of the heart. The stimulator electrode is also used to sense the "R" wave of the heart, as derived from its ventricle to be applied to a sensing `;
portion of the cardiac pacemaker wherein, i~ the se~sed signal is above a predetermined threshold lever, a corresponding output is applied to an oscillator circuit to inhibit the generation of the stimulator pulse and toreset the oscillator toinitiate timing a ~, ~ new period. The fol]owing patents, each assigned to the assignee ¦ of this invention, provide further examples of demand type heart 2~ pacemaXers: U.S. Patent No. 3,~48,707 of Wilson Greatbatch; U.S~
Patent No. 3,911,929 of David H. Gobeli; U.S. Patent No. 3,927,-677 of David H. Gobe~i et al; U.S. Patent 3,999,556 of Cli~ton Alferness; and U.S. Patent No. 3,999,557 of-Paul Citron et al.
Demand type pacemakers are particularly adapted to be used in patients having known heart problems such as arrhythmias.
For example, if such a patient's heart develops an arrhythmia, failing to beat or to beat at a rate lower than a desired minumum, the demand type pacemaker is activated to pace the patient's heart at the desired rate. O~ particular interest to
3~ the subject invention, are those patients that have recently undergone heart surgery; typically, these patients are apt to develop any and all known arrhythmias in the immediate post-~537~;

operative period. Current therapy for such patients involvesthe implanting at the time of surgery of cardiac leads with their electrodes connected to the patient's heart and the other ends of the leads being connected to an external pacemaker to provide pacing for arrhythmia management.
In addition, the same pacemaker leads that interconnect the internally planted electrodes and its external pacemaker, are also connected to an external monitoring unit for providing signals indicative of the patient's heart activity to ~he exter-nal monitoring unit. A significant advantage of such pacemakerleads is that they May be used for recording of direct epicardial electrograms, which provide high quality precision data as to the patient's heart activity. The study of such wave shapes, i.e., morphology, is an invaluable aid in a diagnosis ~f arrhythmias. In this regard, it is understood that a normal EKG
having its electrodes attached to various portions of the patient's skin does not provide the high quality output signal for diagnosis of arrhythmias as is obtained by cardiac electrodes attached directly to a patient's heart. For example, the output signal as obtained from such directly attached electrodes has a bandwidth in the order of 500 ~2 and a signal to noise ratio in ~-the order of 40 to 1, with no more than 30 db frequency loss.
Such a high quality EKG signal cannot be obtained from a standard EKG monitor as is attached only to the outer skin of the patient.
However, the use of pacemaker leads directed through the patient's skin presents certain problems~ Typically, i~ the external leads are left in the patient for any length of time, e.g., 5 to 7 days, an infection may develop at the exit side of the leads, and the leads may be accidentally pulled with subsequent damage to the patient's heart. Further, such leads presentmicroand macroshock hazards to the patient. forexample, there are small residual charges on many objects within a . .

.
: ~ , S3~6 surgical environment and if the leads are accidentally exposed to such a charge, it will be applied via the l.eads to the patient ' 5 heat possibly inducing an arrhythmia therein. Fur-ther, rel~-tively high voltage such as car:ried by an AC powerline are typically :Eound in -t.he operati.ng room; -the electrogram recording apparatus is so powered and tlle con-templ.ated accidental contact of -the external leads with such an AC powered line would have serious consequences for the patient. In addition, it is necessary to remove the cardiac leads approximately 5 to 7 days after their surgical implantation. Further, there is considerable electrical env]ronmental noise within an intensive care unit where a post-operative cardiac patient would be placed. Illustratively, such noise results from fluorescent lights or other elec-trical equipment typically found in an intensive care unit and is capable of inducing millivol.t signals into such cardiac leads of similar amplitude to those signals derived from -the patient's heart. Thus, such environmental noise-induced signals may serve to inhibit the external pacemaker from pacing, even though the patient's heart may not be beating. Further, it is contemplated 20 that after the surgical implantation of such demand pacemakers, ~ :
that the connections of the atrial and ventrical leads to the external pacema]~er may be reverse, with resulting pacer-induced arrhythmias.
The present invention will be illustrated by way of the accompanying drawings in which: :
Figure 1 illustrates the voltage wave produced by a human heart during one complete heartbeat;
Figure 2 is a schematic drawing above described of a demand heart pacemaker circuit of the prior art;
Figure 3 is a pictorial showing of the manner in which an artificial heart pacemaker in accordance to the teachings of this invention, is implanted within the patient's body;

B ~

.. ,, . . ` ........ .

~zs3t7~j;

Figure 4 is a block c~iayram of a transmitter or external unit and a receiver or internal ullit in accordance with the teachings of this invention;
FicJure 5 is a de-tailed circui-t diagram of the receiver as shown in Fiyures 3 and 4; and FicJures 6 and 7 comi~rise a detailed circuit diagram of the -transmitter as shown in Figures 3 and 4.
The prior art has sugyested artificial pacemakers having a transmi.tter or unit disposed externally of the patient's body and a receiver suryically i.mp]anted within the patient, having leads directly connected to the patient's heart. For example, in the West German Auslegeschrift 25 20 387, entitled Testing Arrangement for Artificial Pa emakers, there is described a pacemaker having an external transmi-tter for transmitting external energy by radio frequency (RF) waves to an internally planted unit for supplying electrical stimulation to the heart.

$ - 5a -~L~LZ~3~7~

Further, it is disclosed that the internally planted unit is capable of transmitting in~ormation to a monitoring device disposed externally of the patient's body, for indicating various characteristics oE the pacemaker.
Further, in a pair of articles entitled "A Demand Radio Frequency Cardiac Pacemaker", by W.G. Holcomb et al, appearing in Med. & Biol. Eng., Vol. VII, pp. 493-499, Pergamon Press, 1969, and "An Endocardio Demand (P&~) Radio Frequency Pacemaker", by ~.G. ~Iolcomb et al, appearing in the 21st ACEMB, page 22Al, November 18-21, 1968, there is described a demand-pacemaker including an external transmitter 10' as shown in Figure 2, labeled PRIOR A~T, for generating an RF signal from its primary coil or antenna 16' to be received by a receiver 12' internally implanted within the patient's skin 14'. In addition, the receiver 12' in turn transmits heart activity in terms of the currents of the heart's "R" wave to synchronize the activity of a pulse.generator 26 within the external transmitter 10'. As shown in Figure 2, the receiver 12' includes two separate electronic circuits each sharing common leads connected to the pacemaker electrodes, which are surgically connected to the patient's heart. The first circuit, i.e., the EKG transmitter section, consists of a rectifying circuit of diodes D20-D23 for providing power to a transistor amplifier Q10, to which is applied the EKG signalj the amplified EKG signal is applied in turn to a coil 34'a for transmittion to the transmitter 10'.
The primary coil or antenna 16' receives and applies the EKG
signal via a detector 30, to be amplified by an amplifier 30, which provides the indicated EKG signal to be analyzed upon a display not shown. ~he second electronic circuit of the receiver 12' is the stimulus receiver, which furnishes the stim-ulating pulse to the cardiac electrodes. In particular, the output of the pulse generator 26 of the transmitter 10' is :

,, . ~ - . . ~
:

applied via closed switch 24 to superimpose a high voltage pulse upon the output of the 2 MHz oscillator, which is subsequently amplified by amplifier 20 and applied via detector 18 to the antenna 16'. The high voltage pacema~er pulse as superimposed upon the RF carrier, is received by the coil 34'b and rectified by the diode D25 and the capacitor C25 to actuate an electronic switch primarily comprised of transistors Q12 and Q13, which are closed thereby to apply the high voltage pulse via FET Qll to the pacemaker electrodes, the FET Qll serving to regulate the current passing to the pacemaker electrodes. The transistors Q12 and Q13 are voltage-responsive and disconnect the coil 34'b from the pacemaker electrodes in the absence of the high voltage pace-maker pulse.
It is understood that the RF carrier as derived from the oscillator 22 is continuously applied to the coil 16'. The secondary coil 34'a receives a continuous RF wave from the prim-ary coil 16'. An EI~G signal is deri~ed from the pacemaker : electrodes and is applied to the base of the amplifier transistor Q10, which in turn provides a correspondingly varying load to the coil 34'a, whereby a corresponding voltage fluctuation of.
induced across the coil 16'. In other words, the voltage appear-ing across the coil 16' is amplitude modulated in accordance with the patient's heart activity or EI~G signal. Though the circui~ry shown in Figure 2 provides a relatively simple circuit of ener-gizing the receiver 12' implanted wi~hin the patient, the EKG
signal as derived from the patient does not contain sufficient precision to provide a diagnostic quality display of the patient's EKG. Typically, to provide a diognostic quality display of the patient's EKG it is necessary to transmit the EKG signal with a bandwidth of 100 Hz with a signal to noise ratio in the order of 40 tol and with no more than a 3 db frequency loss; the circuitry shown in Figure 2 does not provide such quality primarily due to ~.~Z~6 the amplitude modulation type of signal transmission, which is sensitive to the relative positions in terms of distance and angle of orientation between the coils 16' and 34'a. In this regard, if the distance or the angle between the axes of the coils 16' and 3~'a vary due to the patient's movement, the amplitude of the signal as seen by -the detector 18 also will vary. Thus, in an amplitude modulation system, this body movement will provide a distortion in the EKG signal detected.
In addition, the extraneous noise to which such a pacema]cer would be exposed such as radiation from fluorescent lights or AC
power lines, as well as other extraneous artifacts, may appear as amplitude modulation to introduce further errors in the signal received from the transmitter 10'.
It is therefore an object of this invention to provide an artificial heart pacemaker and monitoring system comprised of an implantable monitoring and stimulating device within the patient, capable of transmitting with high resolution the patient's EKG signal without wires extending externally of the patient's body and Eor receiving power and control signals from a unit external of the patient's body to apply stimulating `
signals selectively to the atria and ventricles o the patient's ~;
body.
In accordance with this and other objects of the invention, there is provided monitoring and stimulating apparatus comprising an external device or transmitter for transmitting an electromagnetic signal to an internal unit or receiver disposed within the patient's body, whereby power is supplied to the internal unit for stimulating the patient~s heart. The internal Ullit is coupled by electrodes to the atrial and ventricular .` ` :
portions of the patient's heart for receiving signals indicative of the heart's activity and means for pulse-width or frequency modulating and selectively transmitting the sensed atrial and .

..

53~6 ~entricular siynals in first and second time slots to the external unit, whereby extra~eous noise or relative movement of the internal and external units does not eEfect the transmitted si~nals.

~ -8A-, ~3L2~37~;

Referring once more to the accompanying drawings and in particular to Figure 3, there is shown an artificial pace-maker and monitoring system ln accordance with tne teachings of this invention, including a transmitter or e~ternal unit 10 that yenerates st:imulating pulses l:o be applied via a pair lS of conduc-tors to an incapsul.a-ted coil 16 whereby electromagne-tic energy in the form of RF radiation is transmi-t-ted through the skin 14 of the patient to be sensed by an internal unit 12 and in particular, as shown in Figure 4, a coil 34a. The internal unit or receiver 12 is solely powered by the RF radiation transmitted to it for stimulating in various modes of operation the atrium 40 and ~-~
ventrical 42 of the patient's heart, as by leads 17 and 19, respectively.
Further, the external unit 10 is connected via con- ~-ductor 5~ to a monitoring unit 63, illustratively taking the form of a 78000 series unit of Hewlett-Packard for providing a ~ . ' - ~
'.

.

~, g . .
: .. , ~ ~ . . , ~2S376 display of the atrial and ventrical activity of the patient's heart.
~ ith reference now to Figure 4, there is shown the transmitter 10 including a control 50 for controlling a variety of selected pacing functions and capable of operating in a demand or asynchronous mode for atrial, ventrical, or atrial-ventrical sequential pacing. In an illustrative embodiment of this invention, the control 50 may be appropriately adjusted to effect asynchronous atrial pacing from 50 to 800 BPM and demand atrial pacing from 50 to 180 BPM. It is contemplated that for use with postsurgical patients, arrhythmias may readily develop and by the application of heart stimulating pulses in the range of 180 to 800 BPM that the patient's heart may be forced out of its arrhythmic beating pattern. Further, the control 50 is adapted for asynchronous or demand ventrical pacing in the range ~ -of 50 to 180 BPM. In an atrial-ventrical sequential pacing mode, the control 50 may be adjusted to provide stimulation from 50 to 180 BPM with a delay between the atrial and ventrical pulses adjustable from 0 to 300 ms. The control 50 selectively applies ~ ;
the output of an R-F transmitter 52 by an antenna switch 56 via the set 15 of leads to the primary coil or antenna 1~ ~or transmission of a corresponding electromagnetic wave to be received and detected by the receiving coil or antenna 34a.
Significantly, the transmitter or external unit 10 operates in first mode for effecting pacing and in a second mode for processing of EKG or electrograph information derived from the implanted receiver 12. In the second mode of operation, pulse width modulated data indicative of the amplitude of the heart's activity is transmitted from the coil or antenna 34b of the internal unit 12 to the coil 16 of the external unit 10 to be applied via the antenna switch 56 to a pulse widthdemodulatiQn 54 and a demultiplexer 55; As will be explained in detail later, . : ~

~LZ~i3~i the internal unit or receiver 12 is capable of sensing and monitoring the atrial and ventrical activity of the patient's heart and for transmitting pulse width modulated signals indi-cative thereof in timed sequence with a timing signal, to the transmitter or external unit 10. In this regard, the demodul-ator 5~ and the demultiplexer 55 separates the atrial and ven-trical signals transmitted from the internal unit 12, as well as demodulates the pulse width modulated signals to provide corresponding output signals indicative of the amplitude of the atr.ial and ventrical signals, via conductor 59 to the external monitoring device 63, as shown in Figure 3, whereby a graphical display thereof may be provided with a diagnostic quality, so that the attending physician may accurately analyze the patient's heart activ.ity. With such information, the physician is able to predict pending heart failure or arrhythmias. In this regard, the subject invention is capable of achieving diagnostic quality displays, i.e. is able to transmit to the receiver unit 10, heart signals with a bandwidth frequency of 100 Hz, a signal noise ratio in the order of 40 to 1 with no more than 3 db frequency loss. Further, a sensing amplifier 5~ provides an inhibit signal to the control 50 whereby the control 50 is inhibited from operation during spontaneous cardiac activity.
As shcwn in Figure 4, the receiver or internal unit 12 comprises an RF detector 60 for receiving the ~F signal as derived from the input coil or antenna 34a, which separates the detected RF signal into power and control components, the power component energizing the power storage circuit 66. As will be explained in detail later with respect to Figure 5, the power storage circuit 66 provides power for energizing the elements of the receiver 12. The RF detector 60 also provides a data signal to a pacing pulse and command decoder 62, which decodes the control signal transmitted from the transmitter lO to detect the , ,- . ;. .~ . -- .

~2537~

mode of pacing in which the receiver 12 is to be operated in and for applying energizing pulses to a pacing output circuit 64.
As shown in Figures 4 and 3, the output of the pacing output circuit 64 is connected via leads 17 and 19 to the atrial and ventrical portions ~0 and 42 of the patient's heart. In addition, the atrial and ventrical leads 17 and 19 are also connected to ! a monitoring or second portion of the internal unit 12, which comprises two operational amplifiers 68 and 70 for amplifying and applying respectively atrial and ventrical signals to a multiplexer-modulator circuit 74. As will be explained in detail with respect to Figure 5, the circuit 74 operates to energize sequentially the coil or antenna 34b and thereby trans-mit via the coil 16 to the receiver 10 signals indicative of the atrial and ventrical activity of the patient's heart, accompanied by at least one timing signal. In addition, the circuit 74 modulates the ventrical and atrial signals in a manner that is not adversely effected by environmental noise, as occurs to amplitude modulated signals. In an illustrative embodiment of this invention, circuit 74 pulse width modulates each of the ~20 signals before transmitting same to the receiver 10. It is contemplated that the circuit 74 may also frequency modulate the atrial and ventrical signals to transmit them accurately to the external unit 10.
In Figure 5, there is shown a detailed schematic diagram of the receiver 12 wherein the functional blocks as shown in Figure 4, are shown and identified with similar numbers.
The transmitter 10 transmits from its primary coil 16 to the secondary coil 34a an RF signal comprised of a train of ampli-tude modulated pulses. Each signal of such train comprises a first or power pulse that is stored in the power storage circuit 66 to provide energization for the elements of the receiver 12.

The initial power pulse has a width in the order of at least 20 .

~L12S3~

ms that is detected by the detector 60 in the form of a tuning capacitor Cl connected in parallel with the antenna or secondary coil 34a. A positive voltage derived from capacitor Cl is applied through a diode Dl to charge a capacitor C3 to a value determined by a zener diode D3a, illustratively a plus 10 volts.
Further, a negative volta~e is established through diode D3 to charge a capacitor C4 to a value limited by the zener diode D4a, illustratively a negative 10 volts. As a review o~ the schematic of Figure 5 indicates, these negative and positive voltages energize the elements of the receiver 12 and are applied to various points throughout the receiver 12. Illustratively, the first power pulse has a pulse width in excess of 20 ms and an amplitude in excess of 30 volts (peak to peak), whereby the capacitors C3 and C4 are charged with a voltage that will not be discharged for a period in the order of 800 ms, which is long enough to permit the monitoring portion of the receiver 12 to pick up a P wave and an ~ wave, as shown in Figure 1, of appro~imately 75 BP~. Further, the first power pulse is respect-ively derived from the control 50 of the external unit 10 once each 800 ms to continue the energization of the internal unit 12 to monitor the patient's heart. When the apparatus is oper-ating in the telemetry mode only, the pulse width of the initial power pulse is increased to about 100 ms in a manner to be -described. Similarly, during the transmition period between the pacing and telemetry mode and during the refractory period of the patient1s heart, a second power pulse, again of 100 ms length, is transmitted to power the receiver 12.
Further, as indicated in Figure 5, the train of pulses also include a series of between 0 and 3 command pulses.
If no command pulses are transmitted, the receiver 12 is comman-ded to operate in its monitoring mode and no pacing will be provided. If a single command pulse occurs within 2 ms after ~13-,_ .

~2S37~

the initial power pulse, the pacing pulse and command decoder 62 decodes such instruction -to cause the receiver 12 to pace the atrium at a pulse width equal to -the width of the command pulse.
I~ two pulses follow within 4 ms of the initial power pulse, the decoder 6~ causes the receiver 12 to pace the atrium on the occurrence of the first command pulse, and to arm the ventricular output circuit 64b on the occurrence of the second command pulse.
i If there is a third command pulse occurring within a period of ! up to 300 ms of the trailing edge of the initial power pulse, the decoder 62 will effect a corresponding delayed actuation of the ventricular output circuit 64b to apply a pacing pulse to the patient's ventricle. By providing a variable delay before the occurrence of the ventricular pacing pulse, a sequential atrial ventricular pacing mode can be effected.
The command pulses are derived from the capacitor Cl and applied to a detector circuit comprised of resistor Rl and capacitor C2 which responds only to the envelope of the power and command pulses, typically having a width in the order of 20 ms and 0.5 ms, respectively, to turn on transistor Ql, when a j 20 power or command pulse has been so detected. The voltage established upon capaci~or C4 is coupled across resistor R3 and transistor Ql, ~hereby its output as derived from its collector is limited to a value less than that to which capacitor C4 is charged. As explained, the collector of transistor Ql is turned on in response to power or command pulses, whereby positive ¦ going pulses of a duration correspondent to the power or command pulses are applied via a data line 81 to actuate the atrial and ventrical output circuits 64a and 64b in a manner to be explained.
Upon the occurrence of the initial power pulse, a corresponding negative going signal is developed at the collec-tor of the nonconductive transistor Ql and is applied via a :~l2~3~6 a diode D5 and resistor ~4 connected in parallel and NAND gate 80 to set a flipflop 82 upon the trailing edge of the initial power pulse. The resistor R4, a capacitor C5 and NAND gate 80 act as a discriminator to prevent the passage of any pulses shorter than approximately 20 ms, i.e., any command pulses. As a result, the flipflop 82 only responds to the power pulse and derives at its output terminal 13 a timing pulse of approximately 2 ms commencing at the trailing edge of the initial power pulse and being applied to input terminal 2 of the NAND gate 102, thereby enabling the NAND gate 102 for a period of 2 ms. Thus, if a command pulse appears upon ~he data line 81 within this timing window of ~ ms after the trailing edge of the initial power pulse, an output is derived from the NAND gate 102 and inverted by digital inverter 104 to actuate the atrial output circuit 64a and in particular to render conductive FET Q4, whereby a pacing pulse is applied via the lead 17 to stimulate the atrium ~0 of the patient.
In addition, the 2 ms pulse derived from pin 13 of the flipflop 82 is inverted by inverter 100 and is applied to input terminal 3 of flipflop 84, which responds to its trailing edge, that is, at the end of the window in whlch the atrial trailing pulse canbe activated. The flipflop 82 alsogeneratesat its output terminal a 4 ms negative pulse that is applied to the reset input terminal R of the flipflop 84, which in turn provides a positivè ~-output signal at its output Q following the termination of the output pulse derived from terminal 13 of flipflop 8~. This out-put pulse derived from flipflop 84 provides an enabling signal to the NAND gate 86, whereby the second, ventricular arming command pulse may be applied via the enabled NAND gate 86 to the input terminal 11 o a flipflop 88, which in turn applies a positive enabling signal from its output terminal 13 to a NAND
yate 90. In this manner, a second window is defined illustrat-, ~I~L2~;i376 ively in a period between 2 ms and 4 ms follo~ing tne trailing edge of the first power pulse, in which window the second ven-tricular arming command pulse may appear to arm the ventricular output circuit 6~b in preparation to be actuated by the third command pulse.
At this time, the NAND gate 90 is enabled or armed for a period illustratively up to 333 ms to wait the third, ventri~
cular pacing command pulse on the data line 81 and applied to pin 8 of the NAND gate 90. If the third, ventricular pace command pulse occurs during the 333 ms window, it is passed via the enabled NAND gate 90, inverted by an inverter 92 to render conductive an FET Q2 of the ventrical output circuit 64b, where-by a negative ventricular stimulating pulse is applied via the conductive FET Q2 and FET Q3, a capacitor C9 and lead 19 to energize the ventrical 42 of the patient's heart.
As a further feature of this invention, the rate at which the patient's ventrical can be paced is limited to 180 ventricular BPM by the provision of a flip~lop 106. As seen in Figure 5, the ventricular stimulating pulse as derived from the ~ ;
output of the inverter 92 is also applied to reset the flipflop 106, which responds thereto by providing a one shot output pulse of a period of 333 ms from its output terminal 10 to be applied to the reset te~~minal R of the flipflop 88 for a corres-ponding period, whereby flipflop 88 may not be set to enable the above described ventrical pulse path (including NAND gate 90 and inverter 92) for a like period. In this manner, it is assured that the patient's ventricle 42 may not be paced at a rate above 180 BPM or more often than once each 333ms. as may occur in the event of a failure of a circuit componen-t.
~hus, depending on the coded signal transmltted to the internal unit 12, the artificial pacemaker is capable of operating to apply pacing pulses to either of the pati~ent's 3~6 atrium 40 or ~entrical 42 or to operate in an atrial-ventrical sequential pacing mode, wherein the atrium 40 is first paced and after a selected time delay, the ventrical 42 is paced. In addition, if no pacing is desired, only the initial power pulse is applied, which provides a power energization for a subsequent period in wh.ich the remaining elements of the internal unit 12 remain energized, and a second monitoring portion of this circuit, as will now be described, is energized for transmitting to the external unit 10, atrial P-type and ventricular R-type waves as sensed by electrodes applied directly to the patient's heart. In the following, the monitoring portion of the receiver 12 is explained whereby the atrial and ventricular signals are time multiplexed and pulse width modulated, to provide a train of pulses energizing the coil 34b, to induce similar signals into the primary coil 16 of the external unit 10, whereby correspond-ing atrial and ventricular signals may be separated and applied to the external monitor 63, as shown in Figure 3. During periods ~:
of RF transmission when the antenna switch 56 as shown in Figure 5 is in a position to transmit only the RF transmission, the monitoring portion of the receiver~12 is not operatlve to trans-mit the atrial and ventricular signals, because the magnetic field created by the RF transmission fr~m the coil 16 is of significantly greater magnitude than that of the atrial and ventricular signals emanating from the coil 34b.
As shown generally in Figure 4 and in detail in ~1 Figure 5, the electrodes connected to the atrium 40 and ventrical 42 of the patient's heart are connected by the leads 17 and 19 to operational amplifiers 68 and 70, whereby the atrial and ventricular signals ar.e amplified and applied to the multiplexer modulator circuit 74. In particular, the atrialand ventricular/

signals are applied to a time multiplexing portion of the circuit 74 for placing these signals in a desired time sequence, along .253~7~

with a timing si~nal. In particular, the circuit 74 comprises an operational amplifier 94 having internal feed back and oper-ated as a free-running oscillator to provide a square wave output that is applied to a counter 110, from whose three output terminals are derived in se~uence three timing signals, which are applied in turn to our corresponding FET's Q6, Q7, and Q8 sequentially enablin~ the three FET's in a timed sequence. In particular, the output of the atrial operational amplifier 68 is applied to the FET Q6, while the output of the ventricular operational amplifier 70 is applied to the FET Q7. A negative voltage, as derived from the capacitor C3 is applied to the FET
Q8 to provide the desired timing signal. Thus, the multiplexer modifies the square wave output of the oscillator 94 to provide therefrom in sequence a first signal indicative of the atrial activity of the patient's heart, a second signal indicative of the ventricular activity of the patient's heart and a third positive going timing pulse to be applied to a pulse width modulating circuit essentially comprised of the operational amplifier 98.
In an illustrative embodiment of this invention, the three timing outputs of the counter 110 are 1.0 ms in width, occurring every 3 ms to thereby sample the P-wave signal appear~
ing at the patient's atrium 40 or the R-wave signal appearing at the patient's ventrical 42. In the illustrative embodiment, the sampling frequency is 333 Hz. Thus, with the average P-wave signal lasting longer than 20 ms, the P-wave is sampled about six times as it rises and f.alls to provide about six sample amplitudes of signals to be applied to the amplifier 98. In similar fashion, a number of sampled amplitudes of the R-wave are derived and applied in sequence with the pulses .indicative of instantaneous P-wave amplitudes to the amplifier 9~. The instantaneous sampled ampli-tudes are transformed into pulse , . . .

~1253~

width modulated signals by amplifier 98.
In particular, the output of the square wave generator formed by the oscillator 94 is applied to a second free running oscillator 96, which in turn generates a triangle wave output to be applied via resistor R16 to a first input of the opera-tionalamplifier98 acting as a comparator and pulse width modu-lator. A second input to be summed with the first, is derived via a resistor R15 from the commonly connected output electrodes of the FET's Q6, Q7 and Q8. Thus, when no signal is derived from either the atrial or ventricular amplifier 68 or 70, only the triangular output of the oscillator 96 is applied to the amplifier 98, which in turn produces a square wave output of a first fixed period indicating a zero amplitude signal. The out-put of the amplifier 98 is limited to fixed voltages set by the zener diodes Dll and D12, 3.3 volts illustratively. In addition, resistors R17 and R18 along with diodes D9 and D10 provide a source of power for the signals applied to the coil 34b, whereby the operational amplifier 98 is essentially used as a comparator :~
or pulse width modulator and not a power amplifier. ;
20 ~ The sampled amplitudes of the atrial and ventricular si~nals are summed with the triangular wave output derived from the oscillator 96. Summing these two voltages allows the rising . :
triangular wave derived from the oscillator 96, to exceed the :~
reference potential as applied to pin 3 of the amplifier 98, whereby the amplifier 98 is turned "on" earlier and "off" later in time, thus widening the output pulse of the amplifier 98. In this manner, each of the atrial and ventricular signals whose ~-amplitude indicate the intensity of the corresponding atrial and ventrical heart activity, are sampled pulse-width modulated and ~-applied as energizing signals to the coil 34b.
Thus, there is provided a three-phase timing or multi-plexing function, whereby a first pulse~width modulated signal - ~.

~2~376 indicative of a signal appearing at the atrial electrode is - provided, followed by a second, pulse-width modulated signal indicative of the signal appearing at the ventrical electrode, ~ollowed by a l00% positive indicating signal. The third phase signal is used as a timing reference, whereby the demodulator 54 within the transmitter 10 determines the presence of and demodu-I lates the atrial and ventricular signals.
Referring now to Fig. 6, there is shown a detailedcircuit diagram of the timing and mode control circuit 50 and the RF oscillator 52 of the transmitter 10 as generally shown in functional block diagrams in Figs. 4. The timing function of the control circuit 50 is implemented by a multivibrator 128 which provides a square-wave clock signal whose rate is deter-mined by the vaxiable capacitor 122. ~he square-wave clock signal is applied therefrom to a divider circuit 130, whose out-put is applied in turn via a standby switch 12~b, which is a portion of the mode sequence switch 124 as generally shown in Fig. 4, to a series of one-shot multivibrators from which the various control signals for effecting the actuation of the RF
oscillator 52 are derived to provide RF signal via the antenna switch 56 to the antenna or primary coil 16, whereby similar RF
signals are applied to control and energize the receiver 12, as explained above. As seen in Fig. 6, the square-wave clock signal is applied via the standby switch 124b to a first, 10 ms one shot multivibrator 163 and then to a second 20 ms one-shot multi-vitrator 165,whose output is applied via a NORgate 167,a NOP~gate 182 and aninverter 184toexcitethe RF oscillator 52toprovidethe 20ms first power pulse to the receiver 12. Further, the output of the 20 ms one-shot multivibrator 165 is also applied to a 1 ms one-shot multivibrator 132 and then to a one-shot multivibrator 134, from whose Q output terminal a 1 ms pulse is applied via a closed, atrial control switch 126g, the NOR gate 182 and inverter .

37~

184 to energize the RF oscillator 52 to provide the first common pulse. In similar fashion, the Q output of the one-shot multi-vibrator 134 is applied to a further one~shot multiplier 136, whose Q output in turn is applied to a one-shot multiplier 138, whose Q output provides after the 1 ms delay provided b~ the one-shot multiplier 136, an arming control pulse. The arming control pulse is applied via the NOR gates 174, 176 and 182, and the inverter ]84 to the RF oscillator 52 to generate the second command pulse.
In similar fashion, the output of the one-shot multi- -plier 138 is applied to the inputs of a pair of one-shot multipliers 140 and 142. If the gang connected AV (atrial-ventrical) sequential switch 126e-1 and e-2 are disposed in their uppermost position as seen in Fig. 6, the output of the one-shot multiplier 140 is applied to a ventrical one-shot multiplier 144, whose Q output is applied via NOR gate~ 174 and -176, a closed ventrical switch 126f, and NOR gate 182 to excite the RF oscillator 52 to transmit the third control or ventrical ~ pulse to 32 the receiver 12. If, on the other hand, the switches 126e-1 and e-2 are in their lowermost position and switch 126f is in its open position, the output of the variable, one-shot multiplier 142 actuates the ventrical one-shot multiplier 144 to apply via the NOR gates 174, 176 and 178, the inverter 180 and the closed AV sequential switch 126e-2, whereby the first control or actual pulse and a second control or actual pulse are applied, with a selectable period therebetween as determined by the setting of the potentiometer 120, to excite the RF oscillator 52 for corresponding first and second pulses of RF energy.
In order to operate the transmitter 10 and the receiver 12 in a demand mode, the demand mode control switch 126d is disposed to its lower position (the other switches remaining in the positions shown in Fig. 6), whereby a NOR gate ~21-~ ~ .

r 1 ~L Z ~ 37 6 153 is permitted to respond to a sensed R-wave signal as received at a first lnput of NOR gate 153. In addition, NOR gate 153 may be also enabled by the end of the timing sequence signal as derived from the Q output of the ventrical one-shot multiplier 144. As seen in Fig. 6, the output of the NOR gate 153 energizes a sensing one-shot multivibrator 154 to apply an output via NOR
I gate 155 to successively energize a 100 ms one-shot multivibrator 150 and a 10 ms one-shot multivibra-tor 152. The output of the 100 ms one-shot multivibrator 150 is applied throush NOR gate 167 and serves to disable the NOR gate 182 for a corresponding period of time and thereby turn on the RF oscillator 52, for a 100 ms period following a delày after a normal patient's heart activity is sensed or when a timing period has been completed.
Duxing ~he 100 ms period, which falls within the refractory period of the patient's heart, the oscillator 52 is turned on and a 100 ms power pulse is transmitted to provide additional --power to the receiver 12. The output of the 10 ms multivibrator 152 is applied to a multivibrator 148 whose 1 ms output is applied to the antenna switch 56 to permit the signals as derived from the receiver 12 indicative of the atrial and vent-ricular signals o~ the patient's heart and a timing signal, to be applied to the pulse~width modulator 54 and the multiplexer 55, as will be explained with regard to Fig. 7. In similar fashion, a telemetry switch 124a may be closed whereby a one-shot multivibrator 156 is energized to provide from its output Q a 4 ms inhibit signal via the NOR gate 158, the inverter 160, the NOR gate 162 and the inverter 164 to the divider circuit 130, whereby the energization of the RF oscillator 52 is texminated for a corresponding period to permit the atrial and ventricular signals as derived from the receiver 12 to be monitored. In a further feature of the timing and mode control circuit 50, a high rate control switch 126c may be depressed to apply a first ~2~3~Çi signal via the inverter 168 and a second signal via NOR gate 170, NOR gate 162 and inverter 164 to the divider circuit 130, where-by the divider circuit 130 operates to divide the output of the multivibrator 128 by a smaller factor to effect the actuation of the RF oscillator 152 at a higher rate, e.g., by a factor of 4, whereby the patient's heart may be stimulated at the higher rate.
In addition, there is provided a standby switch 124b (as a part of the mode sequence switch 124) which, when disposed in its standby, lower position, applies the output of the divider circuit 130 via an inverter 166 and the NOR gate 155 to excite a 100 ms multivibrator 150, whereby its output is applied -via a NOR gate 167, and the NOR gate 182 to excite the RF
oscillator 52 for a corresponding period of 100 ms so that only a first power pulse of 100 ms duration is applied to energize the receiver 12.
In a further feature of this invention, a one-shot multivibrator 1~6 is provided that is responsive to the output of the ventrical one-shot multivibrator 144, to provide at its Q
output a signal for a period illustratively of 333 ms to disable the NOR gate 176 thus preventing the application of a ventrical pulse to the patient's heart for a corresponding period. By the provision of the one-shot multivibrator 146, the repeated application of pacing pulses to the patient's ventricular is prevented within the aforementioned period, e.g., 333 ms; thus in the event of a circuit element failure, a higher rate of -;
pacing pulses may not be applied to the patient's ventrical.
Referring now to Fig. 7, there is shown a detailed schematic circuit diagram of the elements of the pulse-width modulator 54, the amp 53, the antenna switch 56 and the demulti-plexer 55. In particular, the antenna switch 56 is comprised ofa relay 200 that is responsive to the presence of an RF signal as derived from the RF oscillator 52, to apply the RF signal to ~23-the antenna or coil 16 as shown in Fig. 4. In the absence of the RF signal, the relay 200 is thrown to its uppermost position whereby the signals in the orm of positive and negative going spikes corresponding to the leading and trailing edges of the pulses transmitted from the transmit-ter 12 via the antenna 16, are applied to the amp 53 comprised of a plurality of serially connected operational amplifiers 202, 204 and 206. The output of the operational amplifier 206 is applied via a 60 Hz filter 208 to a positive buffer 210 and therefrom to a negatlve buffer 212. As shown in Fig. 7, the output of the positive buffer 210 is applied to a comparator 214b to be compared with a signal developed by a 50 K potentiometer. In similar fashion, the output of the negative buffer 212 is applied to a comparator 214a to be compared with a signal developed by the 50 K potentiometer.
The outputs of the comparators 214a and 214b are applied respect-ively to the clock (cl) and reset (R) inputs of a flip-flop 216 and have a width corresponding to the aforementioned negative and positive spik~s as derived from the coil 16. It is understood that a pulse as generated by the receiver 12indicative of either an atrial, ventrical or timing signal will appear at the termin- `-als of the coil 16 as the positive and going spikes. In parti-cular, a positlve going spike (corresponding to the leading edse of the pulse) above a predetermined lever provides an output from the comparator 214b to reset the flip-flop 216, whereas a negative going spike (corresponding to the trailing edge of the pulse) above the predetermined lever provides a signal to clock the flip-flop 216.
The pulse as derived from the flip-flop 216 is applied as a clock signal to a second flip-flop 218 for a purpose to be described and also to the demodulator 54, which comprises an FET

221 which turns on and off in response to its input pulse signal to thereby control the timing period of an integrator essentially ~2S3~7~

comprised of an operational amplifier 222. The output of the operational amplifier 222 is a signal of an amplitude correspon-ding to the width of the pulse applied to the FET 220. In turn, the output o~ the operational amplifier 222 is applied to a DC
level remover circuit comprised essentially of the operational amplifier 224, whose output has an amplitude that is independent of any DC level and is further applied to the multiplexer 55 to be described.
A further comparator 214c is provided that is respon-sive to the output of the FET 221 to compare that signal with a reference level whereby an output is developed therefrom in the presence of a timing pulse as derived from the receiver 12 via the antenna 16. It is understood that the timing pulse has a width that is greater than the width of the atrial and ventrical pulses to provide at the output of the FET 221 a signal of greater amplitude, which the comparator 214c recognizes as the timing signal to reset a flip-flop 218. As a result, an output is developed from the Q terminal of the flip-flop 218 to trigger one-shot multivibrators 220 and 222, whose Q and Q outputs develop four timing signals to be applied to actuate in timed sequence two distinct sample and hold circuits 236 and 238 corresponding, respectively, to the atrial and ventrlcal electro- -~
grams of the patient. In particular, the Q and Q outputs of the flip-flop 220 are applied respectively to FET's 228 and 230 to apply at a predetermined time interval an atrial indicating pulse as amplified by amplifier 224 to the sample and hold 236 to provide therefrom a signal whose amplitude is indicative of the patient's atrial electrogram. In similar fashion, the Q and Q outputs of the one-shot multivibrator 222 are applied to FET's 232 and 234 to apply the ventrical indicating signal as derived from the DC level remover circuit and as amplified by an amplifier 226 to the sample and hold amplifier 238, to provide .

~LZ~376 from its output and a signal indicative of the patient's ventrical electrogram.
Numerous changes may be made in the above-described apparatus and the different embodiments of the invention may be made without departing from the spirit thereof; therefore, it is intended that all matter contained in the foregoing description and in the accompanying drawings shall be interpreted as illustra-tive and not in a limiting sense.

.`

, . ~

Claims (10)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. Cardiac stimulating and monitoring apparatus for monitoring a patient's heart activity and for applying first and second stimulating pulses to different first and second portions of the patient's heart, said cardiac apparatus comprising:
(a) a first unit disposed externally of the patient's body and including means for transmitting electromagnetic energy not greater than a first duration within the patient's body; (b) a second unit adapted to be surgically implanted within the patient's body, said second unit including first means responsive to the externally generated electromagnetic energy for providing the sole energization of said second unit, said first means providing a first relatively short power signal and a second relatively long power signal greater than the first duration, second means coupled to sense a condition of the patient's heart for providing a first electrical signal indicative of the sensed heart condition-, third means energized by said second power signal for modulating and transmitting said first electrical signal externally of the patient's body to said first unit with-out distortion, and fourth means energized by said first power signal for respectively applying the first and second stimulating pulses to the first and second portions of the patient's heart;
and (c) said first unit comprising decoding means responsive to the modulated first electrical signal from said second unit for providing a second signal indicative of the sensed heart condi-tion, and means responsive to said second signal for providing a manifestation of the patient's heart activity.
2. Cardiac monitoring and stimulating apparatus as claimed in Claim 1, wherein said first unit further comprises switch means and antenna means, said switch means disposable from a first position wherein electromagnetic energy emanates from said antenna means, to a second position wherein said antenna means couples the first modulated electrical signal transmitted from said third means of said second unit and received by said antenna means, to said decoding means.
3. Cardiac monitoring and stimulating apparatus as claimed in Claim 1, wherein said second unit comprises limiting means for preventing the application of the second stimulating pulse to the patient's heart at a rate greater than a predeter-mined maximum rate.
4. Cardiac stimulating and monitoring apparatus as claimed in Claim 1, wherein said first means detects the exter-nally generated electromagnetic energy for providing and applying detected signals to said fourth means and to storage means for storing and developing the second relatively long power signal.
5. Cardiac stimulating and monitoring apparatus as claimed in Claim 4, wherein said fourth means is responsive to said first power signal for applying the first and second stim-ulating pulses to the first and second portions of the patient's heart.
6. Cardiac stimulating and monitoring apparatus as claimed in Claim 5, wherein the second relatively long power signal is applied to energize said second means and also said fourth means of said second unit.
7. Cardiac monitoring and stimulating apparatus for monitoring the activity of and for applying respectively first and second stimulating pulses to the atrial and ventricular portions of a patient's heart, said apparatus comprising: (a) a first unit disposed externally of the patient's body and including means for transmitting electromagnetic energy within the patient's body; (b) a second unit adapted to be surgically implanted within the patient's body, said second unit including means responsive to the externally generated energy for providing the sole energization of said second unit, second means including first and second electrodes coupled to sense the atrial and ventricular activity of the patient's heart for providing first and second electrical signals indicative of the atrial and ventricle conditions of the patient's heart, third means for sequentially transmitting said first and second signals externally in first and second time slots, respectively, and fourth means for respectively applying the first and second stimulating pulses to the atrial and ventricular portions of the patient's heart; and (c) said first unit comprising decoding means responsive to the transmitted first and second electrical signals indicative of the atrial and ventricle conditions of the patient's heart for providing decoded third and fourth output signals, and means responsive to said third and fourth output signals means for providing manifestations of the atrial and ventrical activity of the patient's heart.
8. Cardiac stimulating and monitoring apparatus for monitoring a patient's heart activity and for applying first and second stimulating pulses to different first and second portions of the patient's heart, said cardiac apparatus comprising: (a) a first unit disposed externally of the patient's body and including means for generating RF signals, and bidirectional coupling means for RF coupling the RF electromagnetic signals into patient's body; (b) a second unit adapted to be surgically implanted within the patient's body, said second unit including first means responsive to the externally generated RF electro-magnetic signals for providing the sole energization of said second unit, second means coupled to sense a condition of the patient's heart for providing a first signal indicative of the sensed heart condition, third means for modulating said first signal, fourth means connected to said third means for induc-tively coupling the modulated first signal to said bidirectional coupling means, and fifth means for respectively applying the first and second stimulating pulses to the first and second portions of the patient's heart; and (c) said first unit com-prising decoding means coupled to said bi-directional coupling means and responsive to the modulated first signal for providing a second signal indicative of the sensed heart condition, and means responsive to said second signal for providing a manifes-tation of the patient's heart activity.
9. Cardiac stimulating and monitoring apparatus claimed in Claim 8, wherein said bi-directional coupling means comprises a first coil coupled to said generating means for transmitting RF signals to said second unit and for receiving the inductively coupled first signal from said second unit, said first means of said second unit comprising a second coil RF
coupled to said first coil for receiving the RF electromagnetic signal, and said fourth means comprising a third coil trans-mitting the modulated first signal to said first unit.
10. Cardiac stimulating and monitoring apparatus as claimed in Claim 9, wherein said third means pulse-width modulates the first signal to be coupled with said third coil.
CA313,248A 1977-10-17 1978-10-12 Implantable demand pacemaker and monitor Expired CA1125376A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US842,389 1977-10-17
US05/842,389 US4187854A (en) 1977-10-17 1977-10-17 Implantable demand pacemaker and monitor

Publications (1)

Publication Number Publication Date
CA1125376A true CA1125376A (en) 1982-06-08

Family

ID=25287186

Family Applications (1)

Application Number Title Priority Date Filing Date
CA313,248A Expired CA1125376A (en) 1977-10-17 1978-10-12 Implantable demand pacemaker and monitor

Country Status (2)

Country Link
US (1) US4187854A (en)
CA (1) CA1125376A (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312354A (en) * 1980-02-04 1982-01-26 Arco Medical Products Company Pacemaker with circuit for pulse width modulating stimulus pulses in accordance with programmed parameter control states
US4793353A (en) * 1981-06-30 1988-12-27 Borkan William N Non-invasive multiprogrammable tissue stimulator and method
US4459989A (en) * 1981-06-30 1984-07-17 Neuromed, Inc. Non-invasive multiprogrammable tissue stimulator and methods for use
US4677982A (en) * 1981-12-31 1987-07-07 New York University Infrared transcutaneous communicator and method of using same
US4758836A (en) * 1983-06-20 1988-07-19 Rockwell International Corporation Inductive coupling system for the bi-directional transmission of digital data
US4782341A (en) * 1983-07-01 1988-11-01 Rockwell International Corporation Meter data gathering and transmission system
US4628934A (en) * 1984-08-07 1986-12-16 Cordis Corporation Method and means of electrode selection for pacemaker with multielectrode leads
US4705043A (en) * 1985-07-05 1987-11-10 Mieczslaw Mirowski Electrophysiology study system using implantable cardioverter/pacer
WO1988005672A1 (en) * 1987-01-29 1988-08-11 S.B.M. Società Brevetti Per La Medicina Epi-cardial electrode with an incorporated cardiac radio-frequency receiver (crr) for temporary heart stimulation from the outside, pre-arranged for permanent stimulation
US5423334A (en) * 1993-02-01 1995-06-13 C. R. Bard, Inc. Implantable medical device characterization system
US5383912A (en) * 1993-05-05 1995-01-24 Intermedics, Inc. Apparatus for high speed data communication between an external medical device and an implantable medical device
US5755748A (en) * 1996-07-24 1998-05-26 Dew Engineering & Development Limited Transcutaneous energy transfer device
US6058330A (en) * 1998-03-06 2000-05-02 Dew Engineering And Development Limited Transcutaneous energy transfer device
US6016442A (en) 1998-03-25 2000-01-18 Cardiac Pacemakers, Inc. System for displaying cardiac arrhythmia data
US6047214A (en) * 1998-06-09 2000-04-04 North Carolina State University System and method for powering, controlling, and communicating with multiple inductively-powered devices
EP1131133A4 (en) 1998-10-27 2004-07-28 Richard P Phillips Transcutaneous energy transmission system with full wave class e rectifier
US6193743B1 (en) 1999-02-18 2001-02-27 Intermedics Inc. Apparatus for manufacturing an endocardial defibrillation lead with multi-lumen lead body and method
US6104961A (en) 1999-02-18 2000-08-15 Intermedics Inc. Endocardial defibrillation lead with looped cable conductor
US6287252B1 (en) * 1999-06-30 2001-09-11 Monitrak Patient monitor
US6415175B1 (en) 1999-08-20 2002-07-02 Cardiac Pacemakers, Inc. Interface for a medical device system
US6449504B1 (en) 1999-08-20 2002-09-10 Cardiac Pacemakers, Inc. Arrhythmia display
US6418340B1 (en) * 1999-08-20 2002-07-09 Cardiac Pacemakers, Inc. Method and system for identifying and displaying groups of cardiac arrhythmic episodes
US6289248B1 (en) 1999-08-20 2001-09-11 Cardiac Pacemakers, Inc. System and method for detecting and displaying parameter interactions
US6721594B2 (en) 1999-08-24 2004-04-13 Cardiac Pacemakers, Inc. Arrythmia display
US6665558B2 (en) * 2000-12-15 2003-12-16 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US8548576B2 (en) 2000-12-15 2013-10-01 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US6626940B2 (en) * 2001-06-15 2003-09-30 Scimed Life Systems, Inc. Medical device activation system
EP1465700A4 (en) * 2001-11-20 2008-06-11 California Inst Of Techn Neural prosthetic micro system
US7191006B2 (en) * 2002-12-05 2007-03-13 Cardiac Pacemakers, Inc. Cardiac rhythm management systems and methods for rule-illustrative parameter entry
US7751892B2 (en) * 2003-05-07 2010-07-06 Cardiac Pacemakers, Inc. Implantable medical device programming apparatus having a graphical user interface
US7720546B2 (en) * 2004-09-30 2010-05-18 Codman Neuro Sciences Sárl Dual power supply switching circuitry for use in a closed system
US9168383B2 (en) 2005-10-14 2015-10-27 Pacesetter, Inc. Leadless cardiac pacemaker with conducted communication
US8457742B2 (en) * 2005-10-14 2013-06-04 Nanostim, Inc. Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator
US8046060B2 (en) * 2005-11-14 2011-10-25 Cardiac Pacemakers, Inc. Differentiating arrhythmic events having different origins
US7613672B2 (en) 2006-04-27 2009-11-03 Cardiac Pacemakers, Inc. Medical device user interface automatically resolving interaction between programmable parameters
WO2008078251A1 (en) 2006-12-21 2008-07-03 Koninklijke Philips Electronics N.V. Wireless interventional device and a system for wireless energy transmission
JP2010540037A (en) * 2007-09-20 2010-12-24 ナノスティム インコーポレイテッド Leadless cardiac pacemaker with secondary fixation capability
US8214045B2 (en) * 2008-04-30 2012-07-03 Medtronic, Inc. Lead implant system
US8527068B2 (en) 2009-02-02 2013-09-03 Nanostim, Inc. Leadless cardiac pacemaker with secondary fixation capability
US20110077708A1 (en) * 2009-09-28 2011-03-31 Alan Ostroff MRI Compatible Leadless Cardiac Pacemaker
US20110218622A1 (en) * 2010-03-05 2011-09-08 Micardia Corporation Induction activation of adjustable annuloplasty rings and other implantable devices
US8594806B2 (en) 2010-04-30 2013-11-26 Cyberonics, Inc. Recharging and communication lead for an implantable device
US9060692B2 (en) 2010-10-12 2015-06-23 Pacesetter, Inc. Temperature sensor for a leadless cardiac pacemaker
WO2012051237A1 (en) 2010-10-12 2012-04-19 Nanostim, Inc. Temperature sensor for a leadless cardiac pacemaker
JP2013540022A (en) 2010-10-13 2013-10-31 ナノスティム・インコーポレイテッド Leadless cardiac pacemaker with screw anti-rotation element
EP2651494B1 (en) 2010-12-13 2017-02-15 Pacesetter, Inc. Delivery catheter
EP3090779B1 (en) 2010-12-13 2017-11-08 Pacesetter, Inc. Pacemaker retrieval systems
EP2654889B1 (en) 2010-12-20 2017-03-01 Pacesetter, Inc. Leadless pacemaker with radial fixation mechanism
US9511236B2 (en) 2011-11-04 2016-12-06 Pacesetter, Inc. Leadless cardiac pacemaker with integral battery and redundant welds
WO2014022661A1 (en) 2012-08-01 2014-02-06 Nanostim, Inc. Biostimulator circuit with flying cell
AU2013387134B2 (en) * 2013-04-15 2017-01-19 T&W Engineering A/S ECG monitor with an implantable part
US11478646B2 (en) * 2016-07-14 2022-10-25 Board Of Regents, The University Of Texas System Method and apparatus for monitoring a patient
EP3982513B1 (en) * 2020-10-08 2022-12-14 Melexis Technologies NV Transmitter for power line communication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3057356A (en) * 1960-07-22 1962-10-09 Wilson Greatbatch Inc Medical cardiac pacemaker
US3667477A (en) * 1966-11-25 1972-06-06 Canadian Patents Dev Implantable vesical stimulator
US3648707A (en) * 1969-07-16 1972-03-14 Medtronic Inc Multimode cardiac paces with p-wave and r-wave sensing means
US3747604A (en) * 1969-12-15 1973-07-24 American Optical Corp Atrial and ventricular demand pacer with separate atrial and ventricular beat detectors
GB1424355A (en) * 1972-03-11 1976-02-11 Kent Cambridge Medical Ltd Cardiac pacers
US3898984A (en) * 1974-02-04 1975-08-12 Us Navy Ambulatory patient monitoring system
US3911929A (en) * 1974-05-20 1975-10-14 Medtronic Inc Demand cardiac pacer
US3927677A (en) * 1974-07-12 1975-12-23 Medtronic Inc Demand cardiac pacer
US3999556A (en) * 1974-12-16 1976-12-28 Medtronic, Inc. Demand cardiac pacemaker with input circuit portion of increased sensitivity
US3999557A (en) * 1975-07-11 1976-12-28 Medtronic, Inc. Prophylactic pacemaker

Also Published As

Publication number Publication date
US4187854A (en) 1980-02-12

Similar Documents

Publication Publication Date Title
CA1125376A (en) Implantable demand pacemaker and monitor
CA1123059A (en) Cardiac monitoring apparatus
US4166470A (en) Externally controlled and powered cardiac stimulating apparatus
CN106456012B (en) Method and apparatus for adjusting blanking interval during the transformation in Medical Devices between mode of operation
JP2655204B2 (en) Implantable medical device
US7328067B2 (en) Cardiac rhythm management system and method
US6584352B2 (en) Leadless fully automatic pacemaker follow-up
US5458623A (en) Automatic atrial pacing threshold determination utilizing an external programmer and a surface electrogram
US6381494B1 (en) Response to ambient noise in implantable pulse generator
WO2007117826A2 (en) Implantable medical device system and method with signal quality monitoring and response
EP2282812A2 (en) Extra-cardiac implantable device with fusion pacing capability
CN106456976A (en) Systems and methods for treating cardiac arrhythmias
EP0001708B1 (en) Heart pacemaker and monitor
JP2008538989A (en) Level crossing detector that detects noise, sinus rhythm, and ventricular fibrillation in subcutaneous or body surface signals
US20070135851A1 (en) Implantable pulse generator and method having adjustable signal blanking
US20200289828A1 (en) Impingement detection for implantable medical devices
Xie et al. Permanent cardiac pacing
SU1590068A1 (en) Method of determining function of automatism and conduction of heart
US20060149320A1 (en) Implantable cardiac stimulator

Legal Events

Date Code Title Description
MKEX Expiry