CA1099386A - Sediment particle transport detector - Google Patents

Sediment particle transport detector

Info

Publication number
CA1099386A
CA1099386A CA300,410A CA300410A CA1099386A CA 1099386 A CA1099386 A CA 1099386A CA 300410 A CA300410 A CA 300410A CA 1099386 A CA1099386 A CA 1099386A
Authority
CA
Canada
Prior art keywords
probe member
probe
sand
transducer means
impingement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA300,410A
Other languages
French (fr)
Inventor
Arthur Nelkin
Harold D. Palmer
Dale D. Skinner
Donald G. Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of CA1099386A publication Critical patent/CA1099386A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/0006Indicating or recording presence, absence, or direction, of movement of fluids or of granulous or powder-like substances

Abstract

47,265 SEDIMENT PARTICLE TRANSPORT DETECTOR

ABSTRACT OF THE DISCLOSURE
A sand transport detector which detects the discrete impingements of sand particles on an elongated probe member inserted into the sand. A piezoelectric transducer element is cemented to the probe and produces an output signal when impingement occurs. With an electronic circuit coupled to the transducer, an indica-tion of sand transport may be obtained.

Description

BACKGROUND OF THE INVENTION
Field of the Invention:
~ he inventlon in general relates to an environ-mental monitoring system, and particularly to a system ~or detecting movement o~ sand, or ~he like.
Description of the Prior Art: I
Ocean waves and tides greatly influe~ce the topography of near shore areas by causing movement o~ rocks and sand. Thissand transport ls of interest not only to marine scientists but to the Coast Guard and ~orps of En~ineers since changes in bottom profile can have an adverse effect on shipping channels and harbors.
Studies of sand transport need some method of telling when and w~lere sand is being moved. Presently thls transport is measured by direct visual observation, radio-active or ~luorescent tracers, with photography, or is estimated from multiple bathymetric measurements.
Visual observations result in real ~ime information however such observations cannot be made when the water is turbid. Bathymetric measurements although operable in turbid water do not provide real time data whereas tracers require ~;

.

.- .. ,, .- . . :
, ~ ~ ' : .
' :. :.... .'- ' ' ' ' ' . :
- , . : . : . .:, .
. . .

.

. - ~ :.
. . : : - , 3~ ll7,265 government llcensing and stringent controls and monltoring during use.
The present invention provides a much needed detector ~or study of sand transport and is capable of pro-viding real time data in turbid waters, with tlle additional advatltage of being relatively uncompllcated and lnexpensive.
SUMMARY O~ TMEINVENTION
The detector system of the present inventlon measures sediment particle movement, such as sand transport and includes an elongated probe member made of a material which will support acoustic propagation. This probe member is positioned ln the path of expected sand transport and lncludes a transducer coupled to it so as to provide an output signal when the sand particles impinge upon the probe member with each impingement causing an acoustlc emission.
Circuit means are connected to receive the output signal from the transducer to provide an indicatlon of the lmpin~ement with the indication being indlcative of the sand transport past the probe.
For use in air the probe member may have a smooth surface, such as a pipe or rod whereas for underwater use the probe member preferably has an irregularly shaped surface so as to create a turbulent boundary layer to enhance impact frequency.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a perspective view and Figure lA is a side view of one embodiment o~ the present invention;
Figure 2 is a block diagram of electronic circuitry for the present invention;

:

47,265 $~ 3~3~

Figure 3 is a~ underwater view of the deployment of the present invention;
Figure 4 is a block diagram of receiver clrcuitry for determining net ~low into or out of a region~ and Figure 5 illustrates an alternate embodiment of the present invent~on.
DESCRIPTION OF THE PREFERRE~ EMBODIMENT
Although the present invention is applicable to various sediment particle transport, it will be described by way of example wlth respect to detection of sand transport.
In Figures 1 and lA there is i]lustrated a probe n(~nlber 10 rnade out o~ a material which will support acoustic prvpagatlon and which has a low loss to such propagation, a typical example being 6061-T6 aluminum. ~or underwater use, this material has reasonable resistance to corrosion.
In use 3 the probe member is jetted into the gran-ular bottom such that its lower half is buried while its upper half is exposed to the water medium. With sand bein~
moved by water currents, the probe member can be buried deeper~ or uncovered by the sand transport process and a reasonable choice of probe member length will permit consid-erable erosion to take place before the probe must be reposi- ;
tioned. ~his is an important consideration lf the probe is tv be left in place for considerable len~ths of time. A
typical length probe may be in the order of 2 meters while the width of the probe may be approximately 5. o8 centimeters.
Since there is a relatively small difference in density between the water and sand particles, and since the impact of sand particles are to be detected, it is important that the sand not be carried along by the water around the ~3-`;: " ':' ' ' ' ' ' ' -'' ~ 3~ 47,265 probe. Accordingly, probe member 10 for underwater use has an irre~ular surface shape that breaks up the laminar flow around the probe. The resulting turbulent boundary layer greatly increases the probability of sand particle impinge-ments. The irregularly shaped surface illustrated is by way of example star shaped, and in actual tests the probe member was constructed from finned aluminum extrusion normally sold as heat sink material for semiconductors.
Transducer means such as piezoelectric transducer 12 is coupled to the probe and is operable to provide an output signal in response to impingement of the sand particles.
It has been found that the impact noises can be transmitted conslderable distances through metals and be detected by a conventional piezoeleetric transducer. A satisfactory trans-ducer may be in the form of a poled and plated flat slab of piezoceramic cemented to the end of the probe and having approximate dimensions of 0.635 centimeters x 0.635 centimeters x 0.058 centimeters thick.
Circuit means are provided to be responsive to the output signal of the transducer so as to provide an indica tion of the impingements with the indication belng indicative o~ the sand transport past the probe member. The eleetronic eireuit paekage 14 is illustrated in Figure lA and includes an input line 16 for receiving operating potential from a re~
mote source and an output line 17 ~or providing information signals to a utilization means.
The upper part of probe member 10 including the transducer 12 and electronic circuit package 14 may be encapsulated in a suitable potting material 20, polyurethane being one example. By placing the electronic circuitry ~ 3~ ~ ~7,265 relatively close to the kransducer, lead lengths and possible inter`erence problems are minimized.
For underwater use, the transducer output signal processed by electronic circuitry may be recorded such as on tape and then recovered by diving operations. ~s another alternative the electronic signals may be provided to an on-shore station by long lines. ~igure 2 illustrates yet another scheme wherein the signals are provide~ to a telemetry unit 26 which will transmit the information to a remote receiver.
The electronic section includes an amplifier 28 which amplifies the transducer output signal and provides it to a band pass filter 30 which removes e~traneous noise signals outside the frequency range of interest, the frequency range typically being from appro~imately 10 kHz to 1 mHz. A threshold or level detector 32 may be utilized so as to provide an output signal only when the band pass filter provides an output above a predetermlned threshold.
The electronic circuitry may be designed to provlde two types of outputs, one relating to information as to whether or not sand is being transported at any given instant and the other being related to the number of impingements in a given period of tlme, this number being roughly proportional to the total amount of sand being swept past the probe. The output of level detector 32 provides the first type of output, that is whether or not sand is being transported at any given instant. To provide the second type of output, the number o~
impacts, there is provided a counter 3L~ to count the number of pulses being provided by level detector 32. The two infor-mation signals are then provided to telemetry units 26 for transmission.

, 47,265 :~LO~a~3~

If it is desired to know the direction in which the sand is being moved, a ~low meter unit 36 may additionally be included to give water veloci~y and direction in~ormation which may also be telemetered to the remote receiver station.
Figure 3 shows an in situ arrangement for the apparatus. A mounting post 40 is inserted into the sand bottom 42 and Garries the telemetry unit 26 in additlon to a power source in the form of battery 44.
The sand transport inforD~ation as well as the flow meter information is prov:Lded to t~le telemetry unit~ which m~y additionally receive information signals from other deployed sensors, and the telemetry unit is hard wired to a suitably moored surface bouy 46 having a marine whip antenna 47.
The telemetered information may be utilized in a number of ways for sand transport studies. The information from the various sensors including the sand transport detector may be provided to a computer for suitable analysis. If it is Just desired to know the net change in sand transport along a certain direction, for example to and from shore~ the ar-rangement o~ Figure 4 would be suitable.
The circuitry of Figure 4 represents the remote receiving station for receiving the telemetered in~ormation from telemetry unit 26. A telemetry receiver 50 is provided and includes the circuitry for sorting out the various infor-mation signals one of which, on line 52$ is an indicatlon of sand transport, such as would be provided by level detector 32 of Figure 2. A water flow in toward the shore may result in an output on line 54 whereas water flow away from shore will result in an output on llne 56.

~ 3~6 47~265 First and second gating circuits 5~ and 60 recei~e the output signal on line 52 in addition to the respective signals on lines 54 and 56. If there is sand transport toward shore, gate circuit 58 provides the impingement indications to a first counter 62. I~ the sand transport is in the opposite direction, gate circui~
60 will provide the indica~ion to counter circuit 64.
difference circuit 66 provides an output which is the difference between the counts and counter 62 and 64, and this difference is interpreted by readout circuit 68.
The arrangement thus far descrlbed is equally applicable for detecting sand transport in an air environ-ment for example to detect sand dune movement or to assist in recreational area maintenance. In the at,mospheric case there is a large difference in density between the air and sand so that sand particles are not smoothly carried around the probe body but impinge upon the metal. Accordingly a relatively simple probe member may be provided such as probe member 70 illustrated in Figure 5. The probe is ln the form of a pipe, having similar characteristics to the probe already described with respect to acoustic propagation.
A transducer 72 similar to that already described is coupled to the probe 70 such as by gluing to a pre~lously flattened area 74 on the pipe surface. The signal processing and retrie~al of information may be similar to thak previously mentioned or described and for environmental protection, the upper end of probe 70 may be encapsulated in a potting material.

Claims (8)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A sediment particle movement detector system comprising:
a) an elongated probe member of a material which will support acoustic propagation, for positioning in the path of expected sediment transport;
b) transducer means coupled to said probe member and operable to provide an output signal in response to impingement of said particles upon said probe member, each said impingement causing an acoustic emission; and c) circuit means connected to receive said output signal of said transducer means for providing an indication of said impingement, said indication being indicative of said sediment transport past said probe member;
d) the major length of said elongated probe member, which is exposed to said sediment transport having an irreg-ularly shaped surface to break up laminar flow around said probe;
e) said irregularly shaped surface being so shaped as to increase the impingement of said sediment particles on said probe member.
2. Apparatus according to claim 1 wherein a) said probe member includes a plurality of radially extending fin members.
3. Apparatus according to claim 1 wherein a) said probe member is made of aluminum.
4. Apparatus according to claim 1 wherein a) said transducer means is connected -to said probe member at one end thereof.
5. Apparatus according to claim 4 wherein a) said circuit means is positioned relatively close to said transducer means, at said one end to minimize transducer lead lengths.
6. Apparatus according to claim 4 wherein a) said transducer means and said one end of said probe member are encapsulated in a potting material.
7. Apparatus according to claim 1 wherein said circuit means includes a) an amplifier for amplifying the output signal of said transducer means;
b) a band pass filter for passing output signals only within a certain frequency band; and c) a level detector operable to pass only ampli-fied output signals above a predetermined threshold value.
8. Apparatus according to claim 7 which includes a) a counter;
b) said counter being responsive to the signal provided by said level detector to provide an indication of the number of said impingements.
CA300,410A 1977-04-27 1978-04-04 Sediment particle transport detector Expired CA1099386A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/791,434 US4114063A (en) 1977-04-27 1977-04-27 Piezoelectric sediment particle transport detector
US791,434 1977-04-27

Publications (1)

Publication Number Publication Date
CA1099386A true CA1099386A (en) 1981-04-14

Family

ID=25153715

Family Applications (1)

Application Number Title Priority Date Filing Date
CA300,410A Expired CA1099386A (en) 1977-04-27 1978-04-04 Sediment particle transport detector

Country Status (2)

Country Link
US (1) US4114063A (en)
CA (1) CA1099386A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835435A (en) * 1988-01-19 1989-05-30 Hewlett-Packard Company Simple, sensitive, frequency-tuned drop detector
ATE155601T1 (en) * 1990-04-09 1997-08-15 Siemens Ag FREQUENCY SELECTIVE ULTRASONIC SLIM TRANSDUCER
US5207090A (en) * 1991-03-25 1993-05-04 Downing Jr John P Particle sensor for stream bed
JP3323343B2 (en) * 1994-04-01 2002-09-09 日本碍子株式会社 Sensor element and particle sensor
US5681986A (en) * 1996-05-07 1997-10-28 Auburn International, Inc. Acoustic sensing
US6601464B1 (en) 2000-10-20 2003-08-05 John P. Downing, Jr. Particle momentum sensor
US7122944B2 (en) * 2004-01-16 2006-10-17 Tangidyne Corporation Signal generation system and method for generating signals
JP4497370B2 (en) * 2005-05-31 2010-07-07 日本碍子株式会社 Flying state detection device for minute object and flying state detection method for minute object
US9564681B2 (en) * 2013-11-11 2017-02-07 Gogo Llc Radome having localized areas of reduced radio signal attenuation
CN108317994A (en) * 2018-01-12 2018-07-24 中建六局土木工程有限公司 A method of it is monitored for underground pipeline settlement and foundation pit deformation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746291A (en) * 1950-09-08 1956-05-22 Robert C Swengel Fluid velocity measuring system
US3034001A (en) * 1958-05-21 1962-05-08 Bendix Corp Vibration detector
US3218852A (en) * 1962-04-04 1965-11-23 Edison Instr Inc Flowmeters
US3391571A (en) * 1965-04-22 1968-07-09 Jaeger Machine Co Apparatus for and method of determining the operational effectiveness of vibratory-type devices
US3517316A (en) * 1966-03-22 1970-06-23 Res Instr & Controls Inc Surveillance equipment and system
US3557616A (en) * 1967-09-29 1971-01-26 Combustion Eng Particle flow sensing device
JPS5113428B1 (en) * 1970-05-09 1976-04-28
US3816773A (en) * 1972-10-12 1974-06-11 Mobil Oil Corp Method and apparatus for detecting particulate material in flow stream
US3908454A (en) * 1972-10-12 1975-09-30 Mobil Oil Corp Method and apparatus for logging flow characteristics of a well
US4013905A (en) * 1974-01-09 1977-03-22 Exxon Nuclear Company, Inc. Remote acoustic probe

Also Published As

Publication number Publication date
US4114063A (en) 1978-09-12

Similar Documents

Publication Publication Date Title
JP3658595B2 (en) GPS wave height / flow direction flow velocity measuring device and GPS wave height / flow direction flow velocity measuring system
Wolk et al. A new free-fall profiler for measuring biophysical microstructure
Zedel et al. Organized structures in subsurface bubble clouds: Langmuir circulation in the open ocean
D'Asaro et al. Internal waves and mixing in the Arctic Ocean
Moum et al. Mixing in the main thermocline
Lemon et al. Acoustic measurements of wind speed and precipitation over a continental shelf
CA1099386A (en) Sediment particle transport detector
McMillan et al. Rates of dissipation of turbulent kinetic energy in a high Reynolds number tidal channel
Gross et al. Long‐term in situ calculations of kinetic energy and Reynolds stress in a deep sea boundary layer
US5504714A (en) Acoustic and environmental monitoring system
Anderson et al. Open water test of the SonTek acoustic Doppler velocimeter
Sotirin et al. Large aperture digital acoustic array
Thorne et al. Acoustic detection of seabed gravel movement in turbulent tidal currents
Kawai et al. 2010 Chilean Tsunami Observed on Japanese Coast by NOWPHAS GPS Buoys, Seabed Wave Gauges and Coastal Tide Gauges
Imberger et al. Djinnang II: A facility to study mixing in stratified waters
RU2488844C2 (en) Passive method and system for detecting objects moving in water
Draper INSTRUMENTS FOR MEASUREMENT OF WAVE HEIGHT AND DIRECTION IN AND AROUND HARBOURS.
Zhao et al. Ocean Current Velocity Measuring Device Based on Acoustic Time Difference Current Meter.
Barton Passive acoustic monitoring of course bedload in mountain streams
US7120089B1 (en) Self-contained ambient noise recorder
Di Iorio et al. A self-contained acoustic scintillation instrument for path-averaged measurements of flow and turbulence with application to hydrothermal vent and bottom boundary layer dynamics
JP2780157B2 (en) A method for observing the dynamics of a brackish layer by acoustic waves
Vakkayil et al. Oceanic winds estimated from underwater ambient noise observations in SWADE
Heinmiller Instruments and methods
Buchan et al. A shallow water directional wave recorder

Legal Events

Date Code Title Description
MKEX Expiry