CA1078961A - Checking an identity, authority or check document or the like - Google Patents

Checking an identity, authority or check document or the like

Info

Publication number
CA1078961A
CA1078961A CA238,263A CA238263A CA1078961A CA 1078961 A CA1078961 A CA 1078961A CA 238263 A CA238263 A CA 238263A CA 1078961 A CA1078961 A CA 1078961A
Authority
CA
Canada
Prior art keywords
check
radiation
document
pulse
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA238,263A
Other languages
French (fr)
Inventor
Thor A. H. Malmberg
Knut G. Hogberg
Stig R. Sjoquist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ID-KORT AB
Original Assignee
ID-KORT AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ID-KORT AB filed Critical ID-KORT AB
Application granted granted Critical
Publication of CA1078961A publication Critical patent/CA1078961A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/12Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using a selected wavelength, e.g. to sense red marks and ignore blue marks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • G06K1/12Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/08Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means
    • G06K19/10Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards
    • G06K19/14Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards the marking being sensed by radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/086Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means by passive credit-cards adapted therefor, e.g. constructive particularities to avoid counterfeiting, e.g. by inclusion of a physical or chemical security-layer

Abstract

Abstract: A document such as an ID-card is provided with check markings compris-ing a material based upon rare earth metals and having the property that when excited by IR radiation it emits visible light. When checking the document, the document is irradiated with pulsed IR radiation, the occurrence of corresponding visible light pulses originating from said material being detected. The visible light pulses have well defined rise and decay times dictated by the check material used, which fact is used to check that out-put pulses from the detector are the correct ones for indicating the genuin-ess of the document.

Description

The pre~ent invention relates to the chec~ing of an identity, authority or check paper or document or the like.
~he invention is particularly suitable for the chec~ing Or so-called ID-cards but the expression "document" as u~ed here is intended to cover a very wide scope. Thus the invention is also suitable for the checking o~ documents such as account cards, bank cash cards, bank-notes, cheques, passports, deeds and data tapes in data-proce~sing centres.
A whole range Or dirferent solutions to the problem of checking the genuineness o~ a document have been proposed, such as marking with radioactive isotopes, mar~ing with non--radioactive tracer subatances whioh under neutron irradiat-ion partially absorb the radiation, and marking with W--fluorescing substances. All these proposed soluti~ns are accompanied by considerable drawbacks.
The ~irst mentioned proposals have the advantage, of course, that substances are being used which are difficult to obtain with the view Or forging, but which at the same time suf~er rrom the major drawback that radioactive radiation i5 being used, this on the one hand being subject to stringent regulations ana on the other hand creating considerable apprehension in a large proportion o~ the people who might come in contact therewith.
c ~ ~
The proposed solutions using W~ eee~ have amongst other~ the following drawbacks:
W-~luorescing substances are relatively easy to acquire for a ~or~er;
~the requ~site UV light ~ource requires a high voltage and is difficult to coordinate with modern electronic components; the W li~ht source is difficult to modulate. Because Or these special conditions pertaining to the W light source, it is
- 2 -r ~.

.. ..

1~78961 difficult to automate the check process.
Accordingly, there is a clear need for a new method ofchecking documents, which does not show the drawbacks referred to earlier but is fully acceptable to the people concerned, has a high degree of security against falsification, is readily adaptable to modern electronic systems and therefore to modern readers for the documents in question, and can easily be auto-mated. This need is fulfilled by the present invention.
The invention is based upon the marking of the document which is to be checked, with a material based upon rare earth metals, which has surprisingly been found to possess a capability in accordance with which, on excitation with radiation of longer wavelength, preferably infra-red radiation, it emits radiation or shorter wavelength, in particular visible light, especially green light; in other words, on excitation with photons of a given energy it emits photons of a specific higher energy, that i8 to say in contrast to what happens in normal fluorescence.
When checking the document, the document is irradiated by the longer wave radiation and the presence of the consequent shorter wa~e radiation is detected.
The method in accordance with the invention offers a series of advantages. The material used is dif~icult to manufact-ure, expensive and has only a ~ew fields of application, that is to say it is extremely difficult to acquire with a view to forge. Furthermore, it is a simple matter using modern electro-nic component~, both to generate the excitatory inrra-red radiation with a suitable well-defined wave length, for example using light emitting diodes, and to selectively detect visible light emitted as a consequence of the IR excitation, for example using photo-diodes. Light emitting diodes require only a low
3 -voltage and can readily be modulated, and, like photo-diodes are extremely small and readily incorporable into modern electronic equipment for reading for example coded ID-cards.
Furthermore, IR radiation has a good penetrative power which enables simple excitation from one side of the document being checked and detection at the other side, even in the cases where the check material is applied at said other side. With pulse-type IR excitation, furthermore, the emitted light pulses exhibit in respect of each specific check material, (irrespective of the concentration thereof) well defined rise and decay times which makes it possible with a high degree of reliability to differentiate between different check materials or alternatively to ascertain whether a received light pulse actually comes from the correct material. Finally, materials of the kind intended here, have shown themselves to be highly stable and resistant to influences of the kind which the document can be subjected to during manufacture and normal use.
In accordance with one aspect of the invention, thus an identity, authority or check document or the like is provided, which is characterized in that it is provided with a marking comprising a material based on rare earth metals, said material having the capability, when excited by longer wave radiation, preferably infra-red radiation, to emit shorter wave radiation, in particular visible light. The material is suitably of the green-emitting types Na Ln F4 : Yb ,Er ~Ln: Y, Gd, La) or Y F3 : Yb3 , Er . Another suitable material is La F3 : Yb3 , Er3+ The material Na Y0 57 Ybo.39 ErO.04 4 to be particularly advantageous. The material will suitably be applied in the form of a crystalline powder.
In accordance with another aspect of the invention, a method of marking and checking an identity, authority or check 10'78~61 document or the like, is provided, which method is character-ized in that at the marking the document is provided with a material based upon rare earth metals and having the capabi-lity, when excited by longer wave radiation, preverably infra--red radiation, to emit shorter wave radiation, in particular visible light; and in that at the checking at least parts of the document which carry said material are irradiated by said longer wave radiation and the occurrence of resultant shorter wave radiation is detected.
The method which is chosen to apply the material depends generally upon what type of document is involved. The effort is towards applying the material in such a fashion that it is protected against mechanical influences and that it is as difficult as possible to extract it in order to use it for forgery.
Considering for instance photo~raphically produced ID-cards, a good method is to slurry the material in a suitable binder and thereafter to apply the slurry to the ID card at that stage in its manufacture at which the photographic emuls-ion is still unprotected. Application can conveniently beperforme~ by screen printing. By using different screens, the field or fields on the card~ which contains or contain the relevant material, can be ~iven dif~erent shapes and positions, i.e. indiv idual coding of cards is possible. When the material has been applied in this way, it is protected by applying a sealing coating to the ID card in the normal way.
Another method of application is to incorporate the material in a special carrier~ for example in the form of a very thin plastic strip. The carrier is thereafter intorducc~t into the base material, for example paper or plastic of which the document is to be made.
At the time of checking of a document, the irradiation will preferably be pulsed so that the dctected radiation is also bound to be pulsed at certain instants corresponding to the instants at which irradiation i~ carried out. It is advantageous in this context to check that the rise and decay times of the detected radiation pulses, correspond with the specific rise and decay times applying to the material which has been applied to the document being checked.
The checking of a document can be performed dynamically or statically. It is advantageous to irradiate the document sequentially or simultaneously at specific points or areas, and, after detection of from which points or areas shorter wave radiation, caused by the irradiation, is obtained, to compare the information thus obtained as to the irradiated points or areas with information stemming from another source and indicating from which points or areas such detected short--wave radiation should be obtained. The information obtained elsewhere can be so obtained by means of Gther information obtained from another simultaneous r~ding of the document (for example using an algorithm or from a dataprocessing centre), or may be fixed for the apparatus in which document checking is being carried out.
In accordance with another aspect of the invention, an apparatus is provided for checking a document as described hereinbefore, which apparatus is characterized in that it comprises one or more elements for generating longer wave radiation, a corresponding number of elements for detecting shorter wave radiation, each radiation-generating element being assigned to a specific radiation-detecting element, and means for p~acing the document and the said radiation-generat-ing and radiation-detecting elements in a specific, predeterm-ined check position relatively to one another. The radiation--generating elements will conveniently be constituted by IR
light emitting diodes which are designed to emit the majority of their radiation energy within a limited wavelength range which is matched to the check material to be excited. The radiation-detecting elements will conveniently be constituted by photodiodes which are arranged or chosen in order to detect radiation largely exclusively within a narrow wavelength range determined by the shorter wave radiation which can be expected from the check material being used.
The invention will be described in more detail herein-after by way of examples Or embodiments of an apparatus for checking a document n accordance with the invention, with reference being made to the attached drawings.
Fig. 1 schematically illustrates a simple apparatus in accordance with the invention for checking ,document.
Fig. 2 illustrates how an arrangement in accordance with Fig. 1 can be used in connection with a known ID-card reader.
Fig. 3 illustrates, again schematically, another simple apparatus in accordance with the invention for checking a document.
Fig. 4 shows a block diagram of an apparatus in accord-ance with the lnvention for checking a document statically5 which apparatus operates using pulsed irradiation of the '''~
document.
Fig. 5 shows a block diagram of a preferred apparatusin accordance with the invention for dynamic document checking, which apparatus operates using pulsed irradiation of pre-1~)78961 determlned points on the document and with comparison of the point check results obtained with predetermined check information.
Figure 6 shows a block diagra~ of one embodiment of a check circuit used in the apparatuses of Figures 4 and 5.
Figure 7 is a timing chart explaining the operation of the check circuit of Figure 6.
In the different Figures, identical or corresponding elements have been given identical reference numerals.
Figure 1 schematically illustrates a simple apparatus for che~king a card-like document 1 which is provided with a check marking in the form of an area 2 located at a specifi~ position and made of a check material emitting green light, in accordance ~ with the invention. The apparatus comprises a structure 3 with :` a slot 4 into which document 1 is designed to be inserted. In the upper part, delimiting the slot, of the structure 3 a light emitting diode 5 emitting in the infra-red is located in a hole 6. In the bottom part, delimiting the slot, of structure 3 there is located centrally opposite light emitting diode 5 a filter 16 which blocks IR radiation, and a photo-diode 7 sensitive to green light, arranged in a hole 8. The light emitting diode 5 and the filter-equipped photo-diode 7 are so disposed that area 2 is located be-tween them when document 1 is properly inserted into slot 4.
` The light emitting diode 5 is connected to a circuit 9 which supplies current to it. The photo-diode 7 is connected to an indicating circuit 10 which is designed to indicate when the photo-diode 7 is producing an output signal.
When document 1 is to be checked, it is pushed fully into slot 4 whereupon light emitting diode 5 is ènergized. The diode then emits IR radiation which affects the check material 2, if included in the document, so that it emits green light. The green light is picked up by photo-diode 7 which consequently produces an output signal to circuit 10. This latter then indicates that the document checked is genuine.
If the document being checked does not contain check material o the kind which, under IR excitation, emits green light of the correct wavelength, then the photo-diode will not produce any output signal and circuit 10 will consequently indicate that the document is not genuine or correct.
Referring now to Figure 2, this figure illustrates how the invention can be used in connection with a known ID-card reader, while using an arrangement in accordance with Figure 1.
The ID-card reader advantageously is of the type disclosed in United States Patent No. 3,976,857, issued on August 24, 1976, and assigned to the same assignee as the present invention. As shown in Figure 2, light emitting diode 5 can be inserted in an upper printed circuit board 11, the location of light emitting diode 5 corresponding to the location of the area 2 on the ID-card 12, which contains check material. The photo-diode 7 (not shown) can be inserted correspondingly in a lower printed circuit board 13, said circuit board 13 also accomodating requisite electronic circuits (not shown) if not available on printed circuit board 11.
Figure 3 schematically illustrates an alternative ar-rangement for checking a document 1 having an area 2 of check material, in which IR-emitting diode 5 and cooperating photo-diode 7 are arranged at the same side of the document which is to be checked. This arrangement includes a flexible mixed fibre optics 20 one end of which is arranged in a plate 23 ; for supporting the documentlto be checked~ and the other end of which is arranged on a plate or board 24 and is split so that a first number of the fibres in the fibre optics are connected to light emitting diode 5 and a second number of the fibres are connected to filterl6 and photo-diode 7~ said diode 5, filterl6 and phot~ ~ode 7 also being carried by plate 24. As is well known, fiber optics including a light emitting diode, a filter and a photo diode mounted in a ; 10 housing is readily available on the market and, therefore~
should need no further description.
The IR radiation can thus be conducted down through the first number of fibres to document 1 where it excites the check material 2, while visible light emitted trom excited check material can be condu~ed up to photo-dio~e 7 through the second number of fibres in the fibre optics. The light emitting diode 5 and photo-diode 7 can be connected to circuits corresp-onding to those shown in Fig. 1.
The arrangement of Fig. 3 has the advantage that it en-ables simple checking of documents which cannot be insertedbetween a light emitting diode and a photo-diode in the manner shown in Fig. 1. However~ an arrangement according to Fig. 3 can also be used in connection with an ID-card reader, for instance, which cannct be modified as illustrated in Fig. 2.
In such a case, said one end of the fibre optics 20 is arrang-ed in a hole in one of the printed boards or plates between which the ID-card is to be inserted, the other end of the fibre optics including diodes 5 and 7 and filterl6 being arranged on a separate printed circuit board together with re~uisite electronic circuits. Due to the flexible fibre ` 1~)78961 optics this separate printed circuit board can be stacked witn the ID-card reader, while being suitably spaced therefrom, or located at the side thereof.
In Fig. 4 there is shown a block diagram of a more sophisticated apparatus in accordance with the invention, for a static check of a document 1 provided with an area 2 of check material. The apparatus, as before, comprises an IR--emitting diode 5 and a cooperating photo-diode 7 which5 as illustrated, are arranged to receive between each other the document 1 which is to be examined, in such a way that the area 2 on genuine documents comes to be positioned between light emitting diode 5 and photo-diode 7. The light emitting diode 5 is arranged for pulsed operation by means of an oscillator 30 and a drive stage 31. The oscillator 30 is des~gned to emit a series of control Pulses when it receives a strobe pulse from a strobe pulse generator 32. The strobe pulse generator 32 is in turn designed to emit the strobe pulse when it receives an input signal from a circuit 33 which is activated when docu-ment 1 is in the correct check position~ for example when the document has been correctly inserted into a slot as shwon in fig. 1.
The photo-diode 7, which under the correct conditions consequently will emit output pulses corresponding to the oscillator pulses, has its output connected to a circuit 34 having an amplifying and square pulse shaping function, the output of which circuit 34 is connected to a ~rst check circuit 35 via a circuit 36 which checks that the pulses obtained from photo-diode 7 have rise and decay times which fall within predetermined limits. The circuit 36 is also supplied with control pulses from oscillator 30.

1~)78961 The function of circuit 36 iS thus to block any output pulse from circuit 34 ~ whose rise and decay times do not correspond with the ones specified in respect of the check material 2 used. This function is performed by exploiting the fact that each squaredoutput pulse from circuit 34 due to a certain delay of the output pulsefrom photo-diode 7 and the special rise and decay times of said last-mentioned output pulse as dictated by the check material used, will be delayed by a certain time in relation to the triggering control pulse and will have a specific duration. The circuit 36 is con-sequently designed so.that, when it has received a control pulse from oscillator 30, with a given time delay it opens a 'window" for a very short time interval, so that a pulse can pass from circuit 34 to check circuit 35. If the output pulse from circuit 34 is not the correct one~ fGr example due to field 2 containing the wrong check material, then said "window" opens at a time such that there is no pulse present to pass through to check circuit 35.
One embodiment of circuit 36 will be described in more detail later while referring to Figs. 6 and 7.
The check circuit 35 comprises a first counter 373 a second counter 3~ and a comparator 3g. The first counter 37 is arranged to count the number of control pulses supplied by the oscillator and the second counter 38 is arranged to count the number of pulses which are passed through circuit 36.
The counters have the same numbers of stages and co~paratGr 3 is arranged to compare the contents of the last stages of the registers. The counters 37, 38 and comparator 3~ are arranged to be reset to zero and cleared by each.;strobe pulse furnished b~ strobe pulse generator 32.

The function of the apparatus according to Fig. 4 is as follows:
When ~e document 1 has been brought into the proper check position relatively to the light emitting diode 5 and photo-diode 7, circuit 33 is actuated, this circuit for example containing a limit switch, and supplies a start pulse to strobe pulse generator 32.The latter responds by producing a strobe pulse of predetermined duration. The strobe pulse clears CGunters 37, 38 and comparator 39 for a check operation and releases oscillator 30 which consequently begins to emit a predetermined number of control pulses. Each control pulse acts through the drive stage 31 to pulse light emitting diode 5 which consequently emits an IR pulse to the check material 2. The latter is consequently excited and emits a corresponding pulse of visible light which is detected by phot~diode 7. The slightly time delayed corresponding output pulse from photo-diode 7 is amplified and given a squarewave form in circuit 34, and is then applied to circuit 36. The latter will somewhat earlier have received the corresponding control pulse,and guided thereof,will have determined the time pulse of a "window" through which a correct output/from circuit 34 can pass to form an input pulse to counter 38. Said control pulse also has been applied to counter 37 which consequently, under normal conditions~ will always count a control pulse slightly before the second counter 38 counts a corresponding input pulse.
When a predetermined number of control pulses have been emitted by oscillator 30 5 the strobe pulse from strobe pulse generator 32 ceases whereby oscillator 30 is blocked and the supply of control pulses ceases. When the last control pulse has been counted by counter 37, the last stage of the latter i5 activated and a pulse is emitted to comparator 39. Provided that the last stage of counter 38, too, is then activated within a predetermined time interval, for example equivalent to half a control pulse period, and emits a pulse to comparator 39, the comparator will produce an output pulse on line 40, indicating that the check has shown document 1 to be genuine, i.e. each control pulse which has pulsed light emitting diode 5 has given rise to a correct output pulse from photo-diode 7.
The apparatus according to Fig. 4 can radily be supple-mented to check a document having several check areas. This is most readily done by contriving that in respect of each check area the apparatus comprises the circuits which are enclosed by dot-and-dash lines 50. However~ other modifications are obvious. Thus, the check areas can be checked sequentially using the same circuits 30-32 and 34-39, and appropriate ; switching and control circuits. If the apparatus in accordance with Fig. 4 is modified to check several areas of which for example one or some should not contain the check material, then it is advantageous to contrieve that the apparatus contains additional comparator circuits in the manner described here-inafter in association with Fig. 4.
The apparatus according to Fig. 5 is designed to effect dynamic checking of a document 1 in four predetermined check areas, one or more of which may contain check material 2 in accordance with a specific code. The apparatus has substantial-ly the sa~e basic designs as that of Fig. 4, that is to say each check area is checked substantially in the same way as in the apparatus of Fig. 4, although dynamically instead of statically.

The apparatus in accordance with Fig. 5 differs from that of Fig. 4, however, in the following respects:
The circuit 33 is designed on the one hand to produce a start pulse when the document 1 is inserted into the apparatus, and on the other hand to supply a pulse to strobe pulse generator 32 in respect of each check position which is reached whilst the document 1 is being fed through the check apparatus. The circuit, in the present example 3 therefore, sequentially produces four time-separated pulses, each of which indicates that ~e corresponding check area is located between light emitting diode 5 and photo-diode 7.
~ach such pulse thus, as before, triggers checking of the corresponding check area on the document.
Furthermore, check circuit 35 is differently designed although it is also based upon pulse counting. The check circuit 35 accordingly contains an AND-circuit 41 one input of which receives the control pulses from oscillator 30 and the ~ther input of which receives the output pulses from circuit 36, its output producing a pulse each time a received control pulse is followed within a specific time interval by a corresponding pulse from circuit 36. The AND-circuit 41 has its output connected to a counter 42 which is cleared by each strobe pulse from strobe pulse generator 32 and produces an output pulse on line 40 when it has received a predetermined number of pulses from AND-circuit 41. An output pulse on line 40 represents a logic 1 condition and indicates that the checked area on document 1 is correctly provided with check material. Correspondingly, the absence of an output pulse on line 40 represents a logic 0 condition indicating that the checked area on document 1 is not provided with , ~ - 15 -check material or alternatively is incorrectly provided with check material. The duration of each strobe pulse and the frequency of oscillator 30 are so chosen that each check area on document 1, even at the maximum speed of feed of the document in the apparatus, is between light emitting diode 5 and photo-diode 7 for a time such that a sufficient number of pulses can be fed into counter 42 if the check area carries check material in accordance with the invention.
Finally, the apparatus in accordance with Fig. 5 has a comparator circuit 43 comprising a store 44 with a number ; of storage positions corresponding to the number of check areas on the document, in the present example this is a four-stage shift register, a fixed store 45 with a like number of positions and a comparator 46 arranged to produce a signal at its output 47 when the contents of stores 44 and ~, 45 are found to coincide on comparison. The shift-register 44 and the comparator 46 are designed to be reset to zero and cleared by the start pulse from circuit 33~ via line 48. The shifting of logic ones and zeroes into shift register 44 20 from check circuit 35, is controlled by stro~e pulses from strobe pulse generator 32.
The apparatus according to Fig. 5 thus operates in the fo~owing manner: When document 1 to be checked is introduced into the apparatus, circuit 33 is activated and transmits a start pulse on line 48, so that shift register 44 and com-parator 46 acquire the zero starting position. When the document~ as feed through the apparatus continues, reaches its first check position, i.e. with its first check area between light emitting diode 5 and photo-diode 7, circuit 33 emits a first pulse to strobe pulse generator 32 which in ., 1~78961 turn supplies a first strobe pulse to zero counter 44 and tG
release or trigger oscillator 30. The oscilla~t,or then emits a first series of colltrol pulses which, as in the apparatu~
according to Fig.- 4, give rise to a corresponding series of output pulses from circuit 36 because the first check area is assumed to be provided with correct check material 2. The ''~
two series of pulses are supplied to AND-circuit 41 and give rise to a series of pulses which are counted into counter 42. -~
When a suitable, predetermined number of pulses have been counted by counter 42 5 the latter supplies an output signal representing logic 1 condition. When the first strobe pulse ceases, oscillator 30 is blocked a~ain and the check result on line 4~, in this case a logic one, is shifted into the first stage of shift register 44. This ccmpletes the first check operation.
The document feed can mea.nwhile ha've continued uninter- , ruptedly, but it is assumed that at the cessation of the first strobe pulse the document has been fed at most such that the first check area can still be regarded as being located between light emitting diode 5 and photo-diode 7.
When the document feed has continued, so that document 1 is in its second check position~ that is to say with its second check area located between light emitting diode 5 and photo-diode 7, circuit 33 supplies a second pulse to strobe pulse generator 32, thereby triggering a second check operation. In the same wayS a third and fourth check operation are also triggered.
When the fourth check operation has been completed, with the shifting of a logic one or zero into shift re~ister 44, the latter then contains a four-bit binary word which is now automatically transferred to comparator 46. The comparatcr compares said binary word with a four-bit binary check word which is obtained from store 45. If the comparison shows coincifience between the two binary wor~s, then comparator 46 supplies an accept signal through line 47, indicating that the checked document is genuine.
Referring now tG Figs. 6 and 7, one embodiment of a check circuit 36 willbe described.
The check circuit includes 2 first and a second delay circuit 61 and 62, respectively, a first and a second one shot multivibrator 63 and 64, respectively, an OR-gate 65, a differentiating circuit 66, an AND-gate 67 and a flip-flop 68. The inputs of said first and second delay circuits 61 and 62 are connected to the output of oscillator 30 to ~eceive the control pulses emitted by oscillator 30. The output of the first delay circuit 61 is connected to the input of the first one shot multivibrator 63, and the output of the second delay circuit 62 is connected to the input of the second one shot multivibrator 64. Each of the outputs of one shot multivibrators 63 and 64 is connected to a corresponding one of the two inputs of OR-gate i65. ---------------~-------The output of OR-gate 65 is connected to one input of A~lD-gate 67, the other input of which is connected to the output of differentiating circuit 66. The input of differentiating circuit 66 is connected to the output of circuit 34. Finally, the output of AND-~ate 67 is connected to the input of flip-flop 68, the output of which is connected to the input of circuit 35.
The waveforms of the sign~ls at various points A - J of Fig. 6 are depicted in Fig. 7, waveform A of Fig. 7 correspond-0 in~ to point A of Fig. 6 and so forth.- 18 -The operation of the check circuit illustrated in Figs.6 and 7 should be evident for those skilled in art and, there-for~, need no detailed explanation. However, the following description may be useful in understanding the operation of the check circuit.
The output pulses (B) from photo-diode 7 pass amplify-ing and squaring circuit 34, whereby the leading and trailing edges of the squared pulses (~) will be delayed relative to .
the leading edge of the control pulses (A) from oscillator 30 in a manner which, for a certain amplitude, is charac~ristic of the specific rise and decay times, respectively, of the ~-output pulses (B) as dictated by the check material used.
Each control pulse from oscillator 30 passes through both delay circuit 61 and delay circuit 62 to trigger cne shot multivibrators 63 and 64, respectively, at different times corresponding to the leading and the trailing edges, respect-ively, of the corresponding output pulse from circuit 34. The triggered output pulses of one shot multivibrators 63 and 64 each have a selected duration to establish "window" control pulses for the leading and trailin~ edges, respectively, of the corresponding squared pulse from circuit 34.
mhus, the delay time of delay circuit 61 and the pulse duration of the triggered output pulse of one shot multi-vibrator 63 are chosen to give a first predetermined "winaow"
pulse enabling AND-gate 67 to let the leading ed~e of a corresponding squared pulse pass to trig flip-flop 6~,~if said squared pulse originates from a check material ~iving correct rise time.

Analo~ou~y, the delay time of delay circuit 62 and the pulse duration of the triggered output pulse of one shot multivibrator 64 are chosen to give a second ---' ' ' ~ ' ; '` ' ' ;' 1' predetermined 'twindow" pulse enabling AND-gate 67 to let the trailing edge of a corresponding squared pulse pass to trigger flip-flop 68, if said squared pulse originates from a check material givin~ correct decay time.
Of course, the first and second "window" pulses are ; produced while taking into consideration acceptable variat-ions of the rise and decay times.
As far as the other elements of the circuits described are concerned, no further information or description should be required, because the circuits can readily be put together by a person skilled in the art while using conventional elements of the kind intended in the present context.
While specific embodiments of the present invention has been described hereinabove, it is intended that a]l matter contained in the above description and shown in the accompany-ing dra~ings be interpreted as illustrative and not in a limiting sense and that all modifications, constructions and arrangements which fall within the sc-ope and spirit of the invention may be made.

~ . .

Claims (28)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A checkable document, characterized in that it is provided with a marking comprising a material based upon rare earth metals, with the property that when excited by longer wave radiation it emits shorter wave radiation.
2. A document as claimed in claim 1, characterized in that said material is IR-excitable to emit visible light.
3. A document as claimed in claim 1, characterized in that said material is of the type Na Ln F4 : Yb3+ , Er3+ (Ln: Y, Gd, La).
4. A document as claimed in claim 1, characterized in that said material is of the type Ln F3 : Yb3+ , Er3+ (Ln: Y, La).
5. A document as claimed in claim 1, characterized in that the said material is applied in the form of a crystalline powder.
6. A document as claimed in claim 1, characterized in that the said material is applied in a predetermined pattern.
7. A document as claimed in claim 6, characterized in that said material is applied in a coded pattern of areas.
8. A method of marking and checking a document, the method comprising the steps of at the time of marking providing the document with a material based on rare earth metals, which has the property that when excited by longer wave radiation, it emits shorter wave radiation; and at the time of checking, irradiating at least parts of the document which are provided with said material by said longer wave radiation, and detecting the presence of consequent shorter wave radiation.
9. A method as claimed in claim 8, characterized in that said marking step includes applying said material in the form of a crystalline powder.
10. A method as claimed in claim 8, applied to a document produced by photographic techniques, characterized in that said marking step includes applying said material to a photographic emulsion.
11. A method as claimed in claim 8, characterized in that said marking step includes applying said material by applying a slurry thereof in a pre-determined pattern using a screenprinting process.
12. A method as claimed in claim 8, characterized in that said check-ing step includes irradiating the document by using IR radiation produced by at least one light emitting diode.
13. A method as claimed in claim 8, characterized in that said checking step includes irradiating in pulsed fashion and determining the rise and decay times of corresponding detected pulses of shorter wave radiation in order to check that the said shorter wave radiation originates from a predetermined material.
14. A method as claimed in claim 8, characterized in that said checking step includes irradiating the document in accordance with a pre-determined pattern of areas; detecting from which areas shorter wave radiation produced by the radiation excitation is received; and comparing information about the areas thus obtained with information obtained from another source and pertaining to the areas from which shorter wave radiation should be received, when irradiated with longer wave radiation.
15. An apparatus for checking a document, which document is provided with a marking comprising a check material based upon rare earth metals and having the property that when excited by longer wave radiation, it emits shorter wave radiation, the apparatus comprising means for receiving the document to be checked and for holding the received document in at least one predetermined check position, at least one means for generating longer wave radiation for irradiation of the document when in said at least one predetermined check position, at least one means for detecting shorter wave radiation emitted from check material as a consequence of said irradiation, each of said at least one radiation-generating means being assigned to a specific one of said at least one radiation-detecting means, means for selectively operating said at least one radiation-generating means, and means for detecting the output from said at least one radiation-detecting means.
16. An apparatus as claimed in claim 15, characterized in that each radiation-generating means includes an IR light emitting diode.
17. An apparatus as claimed in claim 15, characterized in that each radiation-generating means is arranged to emit the major part of its radiation energy within a limited wavelength range which is appropriate in view of the check material which said means is to excite.
18. An apparatus as claimed in claim 15, characterized in that each radiation-detecting means includes a photo-diode.
19. An apparatus as claimed in claim 15, characterized in that each radiation-detecting means is arranged to detect radiation largely exclusive-ly within a limited wavelength range determined by the shorter wave radiation which is to be received from the check material and which said radiation-detecting means is to detect.
20. An apparatus as claimed in claim 15, characterized by pulse control means and first check means, said pulse control means being arranged to pulse operate said radiation-generating means and said first check means, said first check means being arranged also to receive check pulses correspond-ing to output pulses from said radiation-detecting means assigned to said radiation-generating means, and if control and check pulse influencies coincide, to produce a pulse.
21. An apparatus as claimed in claim 20, characterized by means for statically holding the document and said radiation-generating and radiation-detecting means in a predetermined check position relatively to one another, said pulse control means comprising an oscillator for supplying a pulse train to said radiation-generating means and to said first check means when the predetermined check position is achieved, said first check means being arranged to check, in respect of each pair of radiation-generating and radia-tion-detecting means, that the number of pulses received in the pulse train corresponds with the number of check pulses also received at the same time.
22. An apparatus as claimed in claim 21, characterized in that said first check means comprise a first counter for counting the pulses in the pulse train; a second counter for counting the check pulses; and com-parator means for comparing the counts of the two counters.
23. An apparatus as claimed in claim 20, characterized by means which, with dynamically executed checking, control the document and said radiation-generating and radiation-detecting means in relation to one another, said pulse control means being arranged to produce a control pulse in respect of each check position.
24. An apparatus as claimed in claim 20, characterized in that second check means are arranged to check that the output pulses received from said radiation-detecting means have rise and decay times which fall within predetermined limits.
25. An apparatus as claimed in claim 24, characterized in that said second check means are arranged to pass check or control pulses to said first check means, only if the rise and decay times of the output pulses fall within the predetermined limits.
26. An apparatus as claimed in claim 24, characterized in that said second check means are arranged to inhibit corresponding pulses from said first check means, if the output pulses have rise and decay times which do not fall within the predetermined limits.
27. An apparatus as claimed in claim 15, for checking a document carrying markings in the form of a coded pattern of areas, characterized by comparator means for comparing the result of the check on the areas in the pattern with check information concerning the areas, which has been ob-tained from a different source.
28. An apparatus as claimed in claim 27, characterized by means con-nected to an output of the comparator means for the permanent storage of check information.
CA238,263A 1974-10-25 1975-10-24 Checking an identity, authority or check document or the like Expired CA1078961A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7413480A SE399602B (en) 1974-10-25 1974-10-25 IDENTITY, COMPETENCE OR CONTROL ACTION

Publications (1)

Publication Number Publication Date
CA1078961A true CA1078961A (en) 1980-06-03

Family

ID=20322535

Family Applications (1)

Application Number Title Priority Date Filing Date
CA238,263A Expired CA1078961A (en) 1974-10-25 1975-10-24 Checking an identity, authority or check document or the like

Country Status (7)

Country Link
US (1) US4047033A (en)
JP (1) JPS5848948B2 (en)
BR (1) BR7506964A (en)
CA (1) CA1078961A (en)
DE (2) DE2559430C2 (en)
FR (1) FR2289976A1 (en)
SE (1) SE399602B (en)

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101072A (en) * 1976-10-21 1978-07-18 The Singer Company Data-gathering device for scanning data having a variable amplitude modulation and signal to noise ratio
JPS53108832U (en) * 1977-02-08 1978-08-31
DE2747076C3 (en) * 1977-10-20 1984-10-04 Interflex Datensysteme Gmbh & Co Kg, 7730 Villingen-Schwenningen Photoelectric code card reader
DE2752106A1 (en) * 1977-11-22 1979-05-23 Bsg Schalttechnik Vehicle door lock with alarm circuit - have key with non-mechanical track scanned by sensor in lock assembly
CA1108666A (en) * 1978-01-18 1981-09-08 Aubrey D. Walker Identification matter
JPS5814706B2 (en) * 1978-07-03 1983-03-22 日本電信電話株式会社 optical character input device
US4239562A (en) * 1979-04-10 1980-12-16 Dayco Corporation Apparatus for and method of detecting release tape sandwiched between layers of a carpeting strip
DE2936409A1 (en) * 1979-09-08 1981-03-19 Hermann 7742 St. Georgen Stockburger METHOD FOR BACKING UP DATA
US4298118A (en) * 1979-12-10 1981-11-03 Champion International Corporation Stick separating apparatus with improved radiation counter
NL8000734A (en) * 1980-02-06 1981-09-01 Houtum & Palm Papierfab IDENTIFIABLE PAPER BY PHYSICAL ROAD.
ES503112A0 (en) * 1980-05-30 1982-04-01 Gao Ges Automation Org IMPROVEMENTS IN THE MANUFACTURE OF CURRENCY AND SIMI-LARES PAPER
DE3121523A1 (en) * 1980-05-30 1982-04-15 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Securities with originality features in the form of luminescent substances, method and device for determining originality
DE3121484A1 (en) * 1980-05-30 1982-04-29 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Securities with substances, method and device for testing the latter
DE3020652A1 (en) * 1980-05-30 1981-12-10 GAO Gesellschaft für Automation und Organisation mbH, 8000 München SECURITY PAPER WITH CHARACTERISTICS IN THE FORM OF LUMINESCENT SUBSTANCES AND METHOD FOR MODIFYING THE SAME
ES503245A0 (en) * 1980-05-30 1982-05-16 Gao Ges Automation Org IMPROVEMENTS IN THE MANUFACTURE OF PAPER FOR BANK AND SIMILAR BANKNOTES
ES8204668A1 (en) * 1980-05-30 1982-05-16 Gao Ges Automation Org Paper securities with authenticity mark of luminescent material.
US4476382A (en) * 1980-10-21 1984-10-09 Intex Inc. Encoding scheme for articles
US4445225A (en) * 1980-10-21 1984-04-24 Intex Inc. Encoding scheme for articles
JPS57166529A (en) * 1981-04-07 1982-10-14 Omron Tateisi Electronics Co Method and device for measuring temperature
US4392056A (en) * 1981-04-27 1983-07-05 Automated Packaging Systems, Inc. Control marking detector
JPS58184967A (en) * 1982-04-23 1983-10-28 Ricoh Co Ltd Preventing method of duplication of confidential document
JPS6036539U (en) * 1983-08-18 1985-03-13 いすゞ自動車株式会社 adiabatic engine
FR2557329A1 (en) * 1983-10-28 1985-06-28 Abc Realisations False credit card detector
FR2554121B1 (en) * 1983-11-02 1985-12-06 Rhone Poulenc Spec Chim NOVEL "ANTI-STOKES" LUMINESCENT SUBSTANCES, THEIR MANUFACTURING PROCESS AND THEIR APPLICATION IN ANY SYSTEM USING LUMINESCENCE IN THE SPECTRAL REGION CONCERNED
FR2554122B1 (en) * 1983-11-02 1987-03-20 Rhone Poulenc Spec Chim NOVEL COMPOSITION FOR MARKING DOCUMENTS AND METHOD FOR VERIFYING THE AUTHENTICITY OF SUCH DOCUMENTS
JPS60134845U (en) * 1984-02-21 1985-09-07 株式会社小松製作所 engine cylinder device
GB2190996B (en) * 1986-05-23 1990-07-18 Michael Anthony West Article verification
DE3636921A1 (en) * 1986-10-30 1988-05-05 Interflex Datensyst COUNTERFEIT-PROOF OPTOELECTRIC CODE CARD READER
JPS63130651U (en) * 1987-02-18 1988-08-26
FR2642545B1 (en) * 1989-01-31 1993-02-19 Gallia Diffusion Service APPARATUS FOR CHECKING IDENTITY DOCUMENTS
CA2108823C (en) * 1992-10-23 1999-09-14 Shinobu Arimoto Image processing apparatus and method therefor
CA2108811C (en) * 1992-10-23 2000-05-16 Toshio Hayashi Image reading apparatus, copying apparatus, image processing apparatus, and image processing method
JP3391825B2 (en) * 1992-10-26 2003-03-31 キヤノン株式会社 Non-visualization information recording medium and detection device
FR2698971A1 (en) * 1992-12-03 1994-06-10 Arufog Surveillance security device - has light source passing digitally coded light through fibre optic cable to detector
FR2716554B1 (en) * 1994-02-22 1996-04-26 Salm Sa Method and installation for marking a part with a view to recognizing it and identifying one or more treatments to be applied to it.
US5548106A (en) * 1994-08-30 1996-08-20 Angstrom Technologies, Inc. Methods and apparatus for authenticating data storage articles
US7253557B2 (en) * 1996-02-08 2007-08-07 Bright Solutions, Inc. Light source provided with a housing enclosing voltage regulator means and method of manufacturing thereof
US6590220B1 (en) * 1996-02-08 2003-07-08 Bright Solutions, Inc. Leak detection lamp
US7157724B2 (en) * 1996-02-08 2007-01-02 Bright Solutions, Inc. Detection lamp
WO1998039392A1 (en) * 1997-03-05 1998-09-11 Riedel-De Haen Gmbh Non-green anti-stokes luminescent substance
US6264107B1 (en) 1997-09-26 2001-07-24 Iomega Corporation Latent illuminance discrimination marker system for authenticating articles
US6359745B1 (en) 1997-09-26 2002-03-19 Iomega Corporation Latent illuminance discrimination marker system for data storage cartridges
US6091563A (en) * 1997-09-26 2000-07-18 Iomega Corporation Latent illuminance discrimination marker system for data storage cartridges
US6201662B1 (en) 1998-09-25 2001-03-13 Iomega Corporation Latent illuminance discrimination marker with reflective layer for data storage cartridges
US6181662B1 (en) 1997-09-26 2001-01-30 Iomega Corporation Latent irradiance discrimination method and marker system for cartridgeless data storage disks
US7809642B1 (en) 1998-06-22 2010-10-05 Jpmorgan Chase Bank, N.A. Debit purchasing of stored value card for use by and/or delivery to others
US6615189B1 (en) 1998-06-22 2003-09-02 Bank One, Delaware, National Association Debit purchasing of stored value card for use by and/or delivery to others
US6307987B1 (en) * 1998-09-01 2001-10-23 Nec Corporation Optical luminescent display device
US6297924B1 (en) 1998-11-13 2001-10-02 Iomega Corporation System and method for cartridge detection and verification using signal comparison
US7660763B1 (en) 1998-11-17 2010-02-09 Jpmorgan Chase Bank, N.A. Customer activated multi-value (CAM) card
US6032136A (en) 1998-11-17 2000-02-29 First Usa Bank, N.A. Customer activated multi-value (CAM) card
EP1043681A1 (en) * 1999-04-07 2000-10-11 Sicpa Holding S.A. Method and device for exciting a luminescent material
DE19920311A1 (en) * 1999-05-03 2000-11-09 Sick Ag Luminescence switch
US6882984B1 (en) 1999-06-04 2005-04-19 Bank One, Delaware, National Association Credit instrument and system with automated payment of club, merchant, and service provider fees
US7370004B1 (en) 1999-11-15 2008-05-06 The Chase Manhattan Bank Personalized interactive network architecture
US8793160B2 (en) 1999-12-07 2014-07-29 Steve Sorem System and method for processing transactions
US6615190B1 (en) 2000-02-09 2003-09-02 Bank One, Delaware, National Association Sponsor funded stored value card
US6941279B1 (en) * 2000-02-23 2005-09-06 Banke One Corporation Mutual fund card method and system
US7113914B1 (en) 2000-04-07 2006-09-26 Jpmorgan Chase Bank, N.A. Method and system for managing risks
PT1158459E (en) * 2000-05-16 2009-02-02 Sicpa Holding Sa Method, device and security system, all for authenticating a marking
DE10027726A1 (en) * 2000-06-03 2001-12-06 Bundesdruckerei Gmbh Sensor for the authenticity detection of signets on documents
WO2002011019A1 (en) 2000-08-01 2002-02-07 First Usa Bank, N.A. System and method for transponder-enabled account transactions
US6631849B2 (en) * 2000-12-06 2003-10-14 Bank One, Delaware, National Association Selectable multi-purpose card
US7433829B2 (en) 2000-12-12 2008-10-07 Jpmorgan Chase Bank, N.A. System and method for managing global risk
US6765220B2 (en) * 2001-01-10 2004-07-20 Lockheed Martin Corporation Infrared scene generator using fluorescent conversion material
US6985873B2 (en) * 2001-01-18 2006-01-10 First Usa Bank, N.A. System and method for administering a brokerage rebate card program
DE10113266B4 (en) 2001-03-16 2011-08-11 Bundesdruckerei GmbH, 10969 Value and / or security document
DE10113267B4 (en) 2001-03-16 2019-05-09 Bundesdruckerei Gmbh Use of an anti-Stokes phosphor in security documents
US7313546B2 (en) * 2001-05-23 2007-12-25 Jp Morgan Chase Bank, N.A. System and method for currency selectable stored value instrument
US20020188497A1 (en) * 2001-06-12 2002-12-12 Cerwin Francis Anthony System and method for customer knowledge respository
WO2003010701A1 (en) 2001-07-24 2003-02-06 First Usa Bank, N.A. Multiple account card and transaction routing
US7809641B2 (en) 2001-07-26 2010-10-05 Jpmorgan Chase Bank, National Association System and method for funding a collective account
US8800857B1 (en) 2001-08-13 2014-08-12 Jpmorgan Chase Bank, N.A. System and method for crediting loyalty program points and providing loyalty rewards by use of an electronic tag
US6945453B1 (en) 2001-08-13 2005-09-20 Bank One Delaware N.A. System and method for funding a collective account by use of an electronic tag
US7306141B1 (en) 2001-08-13 2007-12-11 Jpmorgan Chase Bank, N.A. System and method for funding a collective account by use of an electronic tag
US8020754B2 (en) 2001-08-13 2011-09-20 Jpmorgan Chase Bank, N.A. System and method for funding a collective account by use of an electronic tag
US7512566B1 (en) 2001-12-11 2009-03-31 Jpmorgan Chase Bank, N.A. System and method for using a stored value account having subaccount feature
US7756896B1 (en) 2002-03-11 2010-07-13 Jp Morgan Chase Bank System and method for multi-dimensional risk analysis
US7899753B1 (en) 2002-03-25 2011-03-01 Jpmorgan Chase Bank, N.A Systems and methods for time variable financial authentication
US20180165441A1 (en) 2002-03-25 2018-06-14 Glenn Cobourn Everhart Systems and methods for multifactor authentication
WO2003083619A2 (en) 2002-03-29 2003-10-09 Bank One, Delaware, N.A. System and process for performing purchase transaction using tokens
US20040210498A1 (en) 2002-03-29 2004-10-21 Bank One, National Association Method and system for performing purchase and other transactions using tokens with multiple chips
US8239304B1 (en) 2002-07-29 2012-08-07 Jpmorgan Chase Bank, N.A. Method and system for providing pre-approved targeted products
US7809595B2 (en) 2002-09-17 2010-10-05 Jpmorgan Chase Bank, Na System and method for managing risks associated with outside service providers
US20040073497A1 (en) * 2002-10-15 2004-04-15 Hayes Mark R. Method and system for automated linkable promotions
DE10322794B4 (en) * 2003-05-19 2011-08-11 Bundesdruckerei GmbH, 10969 Sensor for authenticating a luminescent security element of a value document, value document and method for producing a value document
US8306907B2 (en) 2003-05-30 2012-11-06 Jpmorgan Chase Bank N.A. System and method for offering risk-based interest rates in a credit instrument
US7606727B1 (en) 2003-06-16 2009-10-20 Jpmorgan Chase Bank, N.A. System and method for identifying optimal marketing offers
US7256398B2 (en) * 2003-06-26 2007-08-14 Prime Technology Llc Security markers for determining composition of a medium
US20060180792A1 (en) * 2003-06-26 2006-08-17 Prime Technology Llc Security marker having overt and covert security features
US20060118739A1 (en) * 2003-06-26 2006-06-08 Ncr Corporation Security markers for marking pharmaceuticals
US20060131517A1 (en) * 2003-06-26 2006-06-22 Ross Gary A Security markers for controlling operation of an item
US7488954B2 (en) * 2003-06-26 2009-02-10 Ncr Corporation Security markers for marking a person or property
US7501646B2 (en) * 2003-06-26 2009-03-10 Ncr Corporation Security markers for reducing receipt fraud
US7378675B2 (en) * 2003-06-26 2008-05-27 Ncr Corporation Security markers for indicating condition of an item
US20050143249A1 (en) * 2003-06-26 2005-06-30 Ross Gary A. Security labels which are difficult to counterfeit
US20060219961A1 (en) * 2003-06-26 2006-10-05 Ross Gary A Security markers for controlling access to a secure area
US20060118738A1 (en) * 2003-06-26 2006-06-08 Ncr Corporation Security markers for ascertaining navigational information
GB0314883D0 (en) * 2003-06-26 2003-07-30 Ncr Int Inc Security labelling
US7800088B2 (en) * 2003-06-26 2010-09-21 Ncr Corporation Security markers for identifying a source of a substance
US7086586B1 (en) 2003-08-13 2006-08-08 Bank One, Delaware, National Association System and method for a card payment program providing mutual benefits to card issuers and cardholders based on financial performance
US7953663B1 (en) 2003-09-04 2011-05-31 Jpmorgan Chase Bank, N.A. System and method for financial instrument pre-qualification and offering
US8239323B2 (en) 2003-09-23 2012-08-07 Jpmorgan Chase Bank, N.A. Method and system for distribution of unactivated bank account cards
DE102004022995A1 (en) * 2004-05-10 2005-12-08 Bundesdruckerei Gmbh Method and device for authentication of security features on value and / or security documents
US7467106B1 (en) 2004-06-18 2008-12-16 Jpmorgan Chase Bank, N.A. System and method for offer management
US8429006B1 (en) 2004-06-18 2013-04-23 Jpmorgan Chase Bank, N.A. System and method for offer targeting
US7392222B1 (en) 2004-08-03 2008-06-24 Jpmorgan Chase Bank, N.A. System and method for providing promotional pricing
GB0501568D0 (en) 2005-01-25 2005-03-02 Innovative Technology Ltd Improvements relating to banknote validation
US8630898B1 (en) 2005-02-22 2014-01-14 Jpmorgan Chase Bank, N.A. Stored value card provided with merchandise as rebate
US7401731B1 (en) 2005-05-27 2008-07-22 Jpmorgan Chase Bank, Na Method and system for implementing a card product with multiple customized relationships
DE102005028741A1 (en) 2005-06-21 2007-01-11 Anton Mayer Optical coding and method for its production
US7462840B2 (en) * 2005-11-16 2008-12-09 Ncr Corporation Secure tag reader
US8408455B1 (en) 2006-02-08 2013-04-02 Jpmorgan Chase Bank, N.A. System and method for granting promotional rewards to both customers and non-customers
US7784682B2 (en) 2006-02-08 2010-08-31 Jpmorgan Chase Bank, N.A. System and method for granting promotional rewards to both customers and non-customers
US7753259B1 (en) 2006-04-13 2010-07-13 Jpmorgan Chase Bank, N.A. System and method for granting promotional rewards to both customers and non-customers
US7495234B2 (en) * 2006-05-17 2009-02-24 Ncr Corporation Secure tag validation
US7505918B1 (en) 2006-05-26 2009-03-17 Jpmorgan Chase Bank Method and system for managing risks
US20080129037A1 (en) * 2006-12-01 2008-06-05 Prime Technology Llc Tagging items with a security feature
US8676642B1 (en) 2007-07-05 2014-03-18 Jpmorgan Chase Bank, N.A. System and method for granting promotional rewards to financial account holders
US8417601B1 (en) 2007-10-18 2013-04-09 Jpmorgan Chase Bank, N.A. Variable rate payment card
US9734442B2 (en) * 2007-10-31 2017-08-15 Ncr Corporation LumID barcode format
RU2379194C1 (en) * 2008-11-18 2010-01-20 Федеральное Государственное Унитарное Предприятие "Гознак" (Фгуп "Гознак") Valuable document with counterfeit protection (versions), method for counterfeit protection of valuable document (versions), device for visualisation and protective element (versions)
RU2379192C1 (en) * 2008-11-18 2010-01-20 Федеральное Государственное Унитарное Предприятие "Гознак" (Фгуп "Гознак") Valuable document with counterfeit protection, method for verification of valuable document authenticity and device for verification of counterfeit-protected valuable document authenticity
PL220030B1 (en) 2009-08-11 2015-08-31 Nano Tech Spółka Z Ograniczoną Odpowiedzialnoscią Method for manufacturing nanocrystalline luminophores to record information and method for reading the information
EP2570468B1 (en) 2011-09-13 2013-11-27 Bundesdruckerei GmbH Anti-stokes luminescent substances and use thereof in security documents
DE102016120979A1 (en) 2016-11-03 2018-05-03 Bundesdruckerei Gmbh Method for checking the authenticity of a security feature and arrangement for checking the authenticity of a security document with a security feature
EP3566010A4 (en) * 2017-01-25 2020-09-09 Glasspoint Solar, Inc. Thin film housing structures for collecting solar energy, and associated systems and methods
RU2720464C1 (en) * 2019-04-02 2020-04-30 Общество с ограниченной ответственностью "Группа "ЭПОС" Method of marking anti-counterfeit object, method of identifying marking and marking identification device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105908A (en) * 1963-10-01 burkhardt etal
US3070698A (en) * 1959-04-17 1962-12-25 Schlumberger Well Surv Corp Quantummechanical counters
US3452332A (en) * 1965-01-05 1969-06-24 Ibm Memory device and method of information handling utilizing charge transfer between rare earth ions
NL6603007A (en) * 1965-03-08 1966-09-09
US3486006A (en) * 1966-02-09 1969-12-23 American Cyanamid Co Coded ink recording and reading
US3586640A (en) * 1968-04-24 1971-06-22 Us Navy Far-infrared photodetector
US3539941A (en) * 1968-08-22 1970-11-10 American Cyanamid Co Liquid lanthanide chelate luminescent system with synergic agent
US3564215A (en) * 1969-05-15 1971-02-16 Gen Nuclear Inc Identification device
US3654463A (en) * 1970-01-19 1972-04-04 Bell Telephone Labor Inc Phosphorescent devices
US3663813A (en) * 1970-01-19 1972-05-16 American Cyanamid Co Optical reader for luminescent codes luminescing in different wavelengths
US3958970A (en) * 1970-02-10 1976-05-25 Auzel Francois E Method of casting fluorescent lenses
US3764807A (en) * 1972-05-04 1973-10-09 Trw Inc System for converting infrared into shorter wavelength radiation
US3793527A (en) * 1972-11-02 1974-02-19 Zenith Radio Corp Method for analyzing rare earth-activated rare earth oxide and oxysulfide phosphors

Also Published As

Publication number Publication date
DE2547768A1 (en) 1976-07-15
FR2289976B1 (en) 1980-02-22
SE7413480L (en) 1976-04-26
JPS5848948B2 (en) 1983-11-01
DE2547768C2 (en) 1986-02-13
DE2559430A1 (en) 1977-05-26
BR7506964A (en) 1976-08-17
SE399602B (en) 1978-02-20
US4047033A (en) 1977-09-06
JPS5188300A (en) 1976-08-02
FR2289976A1 (en) 1976-05-28
DE2559430C2 (en) 1986-04-03

Similar Documents

Publication Publication Date Title
CA1078961A (en) Checking an identity, authority or check document or the like
US3959630A (en) Identity card having radioactive isotope of short half-life
US4853525A (en) Forgery proof optoelectric code card reader
EP0268602B1 (en) Article verification
US4926031A (en) Token such as credit or identification card and an apparatus for testing the token or card
US4862143A (en) Method and apparatus for detecting counterfeit articles
US4742340A (en) Method and apparatus for detecting counterfeit articles
US4445225A (en) Encoding scheme for articles
US3051836A (en) Coded document reader
US3485358A (en) Dollar bill collector
AU743312B2 (en) Latent illuminance discrimination marker and system for data storage cartridges
US4476382A (en) Encoding scheme for articles
US6264107B1 (en) Latent illuminance discrimination marker system for authenticating articles
US4863196A (en) Certification identifying medium
US3691350A (en) System for verifying authorized use of a credit card or the like
WO2016069858A1 (en) Authentication systems, authentication devices, and methods for authenticating a value article
US3483388A (en) Apparatus for generating signals indicative of the persistence characteristics of substances made radiant by energizing radiation
JP2011502594A (en) Coded playing card
US4105333A (en) Method of identifying fluorescent materials
US3457421A (en) Radiation sensitive paper security validation apparatus
AU759064B2 (en) Information carrier medium and reader for reading the information carrier medium
EP1094603A1 (en) A random pulse generator, a random number generator and a probability random event generator
JP2760876B2 (en) Card, card identification method and card identification device
WO2007072796A1 (en) Card capable of performing authentication by radio-active material chip
EP3213303B1 (en) Authentication systems, authentication devices, and methods for authenticating a value article

Legal Events

Date Code Title Description
MKEX Expiry