CA1060549A - Bio-potential sensing electrode - Google Patents

Bio-potential sensing electrode

Info

Publication number
CA1060549A
CA1060549A CA215,993A CA215993A CA1060549A CA 1060549 A CA1060549 A CA 1060549A CA 215993 A CA215993 A CA 215993A CA 1060549 A CA1060549 A CA 1060549A
Authority
CA
Canada
Prior art keywords
metal
conductor
electrode
conductive
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA215,993A
Other languages
French (fr)
Other versions
CA215993S (en
Inventor
James V. Cartmell
Albert M. Hall
Robert P. Monter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDM Corp
Original Assignee
NDM Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDM Corp filed Critical NDM Corp
Application granted granted Critical
Publication of CA1060549A publication Critical patent/CA1060549A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/252Means for maintaining electrode contact with the body by suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/271Arrangements of electrodes with cords, cables or leads, e.g. single leads or patient cord assemblies
    • A61B5/273Connection of cords, cables or leads to electrodes
    • A61B5/274Connection of cords, cables or leads to electrodes using snap or button fasteners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/276Protection against electrode failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0215Silver or silver chloride containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0217Electrolyte containing

Abstract

ELECTRODE CONDUCTOR

ABSTRACT OF THE DISCLOSURE

An electrode for sensing signals such as electrocardio-graph signals used with an electrolyte is formed from an electrically conductive but galvanically inactive material having a galvanically active conductive material at the electrolyte interface. Examples are described including a body formed from a plastic or other non-conductive binder rendered conductive by inclusion of finely divided conductive carbon and having one or more metal particles anchored to the surface of the body which contacts the electrolyte.

Description

-`` 4 10605~9 The present invention relates to electrodes for sensing signals such as electrocardiograph signals and, more par~icular-ly, this lnvention relates to electrode elements or conductors adapted for use in such electrodes to interconnect an electro-lyte with suitable signal processing or monitoring equipment.
United States Patents Nos. 3,696,807 issued to Roman Szpur on October 10, 1972 and 3,701,346 issued to Charles T. Patrick, Jr. and Roman Szpur on October 31, 1972 illustrate medical electrodes which are known in the prior art and to which the present invention is applicable In these patents an electro-lyte applied to the skin of a human or other animal sub~ect is interfaced to electrocardiograph monitoring equipment by a solid metal conductor such as silver contacted to the electro-lyte. Electrodes of this type are known to function adequately to meet the needs of the medical profession but are also rela-tively expensive because the preferred metal for electrolyte contact is silver. Even though the amount of silver used in such electrodes is not great, the cost of the silver used in the electrode represents a significant cost factor. Aside from the cost of the raw metal, difficulties encountered in forming or shaping solid metal contribute to the cost of electrode manufacture. Because of the cost of manufacture, commercially ;~
available electrode configurations are to some extent limited.
United States Patent No. 3,566,860 issued to Lucas H. Moe, Jr on March 2, 1971 teaches an electrode conductor for inter-connecting between an electrolyte and electrocardiograph moni-toring equipment, the conductor comprising a dispersion of finely divided carbon in plastic. Such a conductor is desirably inexpensive but is also found to be relatively ineffective when compared with electrode devices which utilize metal conductors.
In particular it is found that the signal which such an electrode can transmit to associated monitoring equipment is so erratic (wandering base line, irregular trace) that ,-~

106~S49 informational signals available at the skin surface of the sub~ect being monitored are distorted and sometimes entirely obscure.
It has also been known to produce electrode elements comprising a layer of silver o~ a copper support. Electro-cardiograph traces obtained with the use of such electrodes frequently reveal a base line irregularity and the failure to provide proper repetitive wave forms, particularly after an extended perlod of contact with an electrolyte. Even when great care is employed in producing the silver layer, there is a distinct likelihood that the electrolyte will contact the underlying copper through minute pores in the silver layer.
It is believed that when the electrolyte has invaded the silver layer so as to engage the underlying copper, the electrocardiograph monitoring equipment is seeing the product of two electrodes, one being silver contacted by the electro-lyte and the other being copper contacted by the electrolyte, and it is further believed that reactions occur between these dissimilar metals which disturb the signals received by the monitoring equipment.
In accordance with this invention, a biomedical electrode is constructed with an electrode conductor or element com-prising a material formed from a first electrical conductor which is galvanically inactive in the presence of an electro-lyte and a second electrical conductor which is galvanically active in the presence of an electrolyte, the second conductor being present at the surface which engages the electrolyte.
Further in accordance with this invention, a conductor -~
suitable for use in biomedical electrodes is inexpensively fabricated by forming the first mentioned conductor, which is galvanically inactive, from an easily formable material having as little as one minute particle of the second conductor, ;

- . -6- 1060~49 ~ ~ ~

which is galvanically active, at the surface contacting an electrolyte.
A structurally adequate non-conductive binder material -such as a plastic, rubber or ceramic into which is thoroughly `
, . .
dispersed a finely divided electrically conductive carbon is ideally suited for forming the first mentionedJ galvanically inactive conductor. The second, galvanically active conductor can be practically any metal. As will be more fully explained in the following description, the quantity of the galvanically active conductor present at the interface between the electro-lyte and the galvanically inactive conductor is not critical so long as at least some of the galvanically active conductor ls present at the interface. Thus, the present invention teaches that a vanishingly small amount of metal located at the interface between an electrolyte and a plastic rendered conductive by the dispersion of conductive carbon throughout, the metal contacting a portion of the dispersed carbon, can be used to produce an inexpensive but nevertheless fully :.
; acceptable electrode element for interconnecting between an electrolyte and measuring or monitoring equipment.
The metal used in this invention is not critical so long as the metal is galvanically active in the presence Or the electrolyte. When the electrode is packaged prefilled with ~`-an electrolyte, or used for long term monitoring, silver iæ ~ ;
preferred. Zinc is preferred for electrodes which are to be used for a relatively short duration Or time wherein the electrolyte is applied to the electrode immediately prior to use. When more than one metal particle is present at the electrolyte interface, all metal particles should be Or the same metal or of alloys having the same chemical composition.

The metals present at the interface are preferably substantially pure.

.. ,,, . , . .. .. .~ , ... . . , . . .. . . .. .. . . ; .. . . j. . . .. . .

-7- ~L06~D549 There is practically no limit to the design configura~ion ;~
o~ electrodes made in accordance with this invention. A
variety of non-conductive binders which can be rendered con-ductive by inclusion of dispersed carbon or other galvanically inactive conductive material are commercially available or can be easily produced which are readily formable as by moldlng, machining or other operations to any desired shape.
In its preferred forms the present invention contemplates that the conductive, but galvanically inactive material is inherently lQ structurally sound or, when ~ormed, has a sel~ supporting shape. However, the invention is not so limited because this material could, ~or example, be coated on a non-conductive substrate such as plastic.
As will be further described below, there are numerous methods ~or producing electrode elements in accordance with thi~ invention. The presently preferred method is to disperse a conductlve carbon and a metal in the form of powder or small ~ ~
partlcles throughout a molding resin so as to obtain a homo- ; -geneous mixture and then to mold the elements to the desired shape. The weight o~ dispersed metal to the total weight of ;
the final product can be in the range of at least as small as 0.7~ and at least as large as 30% with carbon ranging by weight of final product from 20% to 50% with the remainder a molding resin. The preferred range is approximately 15-30 by weight metal, 25-30% by weight carbon and 40-60% by weight molding resin. With these ranges there is sufficient metal in the mold mix that one or more particles will assuredly be at the surface of the conductor which engages the electrolyte, relatively small quantities of relatively expensive metal are used, and the mix is easily molded to the desired shape.
An ob~ect of this invention is to provide an inexpensive conductor for connection between an electrolyte and signal ~ ~ -8-1060S49 ~
measurlng or monitoring equipment.
Another ob~ect of this invention is to provide an inexpensive conductor suitable for use in medical e~ ctrodes.
Other objec~s and advantages reslde in the construction -of parts, the combination thereof~ the method of manufacture and the mode of operation, as will become more apparent from the following description.
In the drawings:
Figure 1 is a section view of a medical electrode ;
having a conductor fabricated in accordance with the present invention.
Flgure 2 is an elevation view illustrating one mode in which electrode conductors of the general type shown in Figure 1 can be tested.
Figure 3 is a section view illustrating a first modlfication.
Figure 4 is a section view illustratlng a second modiflcation.
Figure 5 is a section view illustrating a third modification.
Figure 6 is a perspective view of the conductive electrode element of Figure 5.
Figure 7 is a perspective view of a fourth modification.
Figures 8 and 9 are section views taken along lines 8-8 and 9-9, respectively, of Figure 7.
Figure 10 is an elevation view with a portion broken away of a fifth modification and further illustrating a connecting portion of an external conductor for use therewith. `~
Figure 11 is a perspective view of the conductive electrode element of Figure 10.
Figure 12 is a section view of a sixth modification.

Figure 1 illustrates an electrode 10 which is of the ~Y. ~

-9- 106054g :~

type shown in Figure 2 of United States Patent No. 3,696,807 but which has been modified by the inclusion therein of a molded conductor 28~ the conductor 28 replacing a two-piece metallic snap fastener which appears in Patent No. 3,696,807. :
The electrode can be seen to comprise confronting cavity washers 12 which sandwich therebetween a sheet 22 of foam plastic material. Each of the cavity washers 12 is of circular shape and comprises a generally flat central portion 14 and an arched reinforcing bead 16 which encircles the flat portion 14. The bead 16 terminates at its outer edge with a margin 18. Each of the cavity washers 12 has a central perforation 20 to receive the conductor 28.
The cavlty washers 12 are each fabricated of a relatively thin, molded plastic sheet material which is substantially collapse resistant.
The aforementioned foam plastic sheet 22 comprises a foamed elastic material such as polyvinylchloride and has a layer of pressure sensitive adhesive 24 applied to one surface thereof and protected before use by a release paper 25. The 20 sheet 22 has a central aperture 26 which is of the same size and which is aligned with the perforations 20 in the cavity washers 12.
The cavity washers 12 are compressed against the central . -portion oP the sheet 22 by means of the one-piece conductor 28. The conductor 28 can be seen to comprise a molded generally cylindrical body 30 having a circular flange 32 providing an enlarged surface 33 at one end thereof and having a head 34 at the other end thereof. The head 34 has a neck portion 38 of reduced diameter located between the outer end 30 of the head 34 and an outwardly flared conical portion 36.

The construction is such that the head 34 can be pressed through the aligned perforations 20 and through the aperture -10- 106054~t 26 in the intervening sheet 22 whereby the central portions :
o~ the cavity washers 12 and the central portion of the sheet 22 will be received between the ~lange 32 and the conical portion 36.
The axial length of the body 30 is such that when the ~
head 34 has been pressed axially through both of the perfor- ~. :
ations 20, the foam sheet 22 is slightly compressed. This causes the foam sheet to expand against and snugly grip the :
body 30. As appears in Figure 1 the conductor 28 also presses the cavit~ washers 12 against the foam sheet 22 with sufficient force that the foam sheet is pinched between the margins 18 of the cavity washers thus assuring that there is little freedom of movement of the foam sheet 22 relative to the ~
cavity washers. ~ .
It can be noted in Figure 1 that the adhesive 24 on the .
sheet 22 is located to the same side of the electrode as the .
surface 33 on the flange 32 of the conductor 28. To allow the electrode to pick up electrocardiographic slgnals from the skin of a sub~ect being monitored, the electrode may lnclude a pad 40 of cellular material which is soaked with an electrolyte gel or ~elly and which contacts the surface 33 of -the conductor 28. The pad 40 is somewhat thicker than the depth of the recelving cup formed by the cavity washer 12 ~hich contacts the flange 32 and, accordingly, when the ~.
adhesive coated side of the sheet 22 ls pressed against a sub~ect's skin the pad 40 is compressed intimately and firmly against the surface 33.
The electrode 10 was designed with the objective in view of producing an inexpensive electrode in which a plastic rendered conductive by the dispersion therein of conductive carbon could be molded into the shape of the conductor 28 and .

acceptable performance for electrocardiograph monitoring -` -11- j'106OS49 obtained. As will become apparent from the numerous tests outlined below, the mere dispersion of a conductive carbon in a molded plastic body does not produce an electrode conductor which is considered acceptable for electrocardiographic ~ ~ `
purposes. As the ~ollowing examples wlll reveal, the problem ¢
of inadequate performance of a plastic conductor rendered conductive by the dispersion of carbon therethrough is over-come by the simple expedient of providing at least one particle of metal, which may be vanishingly small, at the interface `~
10 between the plastlc conductor and the electrolyte loaded pad 40.
~est Procedures Figure 2 illustrates one mode for testing the performance '`
of electrode conductors. Two electrodes labeled lOa and lOb, respectively, are constructed in a substantially identical ~i fashlon, the conductors 28 of the two electrodes being as nearly identical as possible. Each electrode is contacted with a separate electrolyte loaded sponge which overlies the surface 33 of lts conductor 28. As shown in Figure 2, the two electrodes are assembled face-to-face with the electrolyte `~
sponge 40a received in the electrode lOa intimately contacting the electrolyte sponge 40b of the electrode lOb. For convenience, one can refer to the end of the conductor of ;0 each electrode which contacts an electrolyte sponge as the wet end of the conductor and the headed end of the conductor which does not contact the electrolyte loaded sponge as the dry end of the conductor.
As shown in Figure 2, the neck portion of the dry end of the conductor for the electrode lOa is gripped with a pinch clip 42a. Likewise, the dry end of the conductor in the electrode lOb is gripped with a pinch clip 42b. An impedance meter 46 is connected between the pinch clips 42a and 42b.

-12- ~054~

Commercially available meters suitable for this mode of -~
testing are the Lab-Line Lectro (TM) mho-Meter, Model MC-l, Mark IV
marketed by Lab Line Industries, Inc. and the Hewlett-Packard Vector (TM) Impedance Meter Model 4800A. All impedance measurements described ln this application were made at 1000 Hz.
While a measurable reduction in the impedance of the conductors and electrolyte sponges assembled as ln Figure 2 generally indicates improved performance when a single electrode assembled with the type of conductor under test would be utilized as a funckioning electrocardiograph electrode, the final criterion for the usefulness of the conductors tested was an assessment of the performance of an assembled electrode when contacted at the conductor surface 33 i by an electrolyte loaded sponge and mounted by adhesive 24 on a human sub~ect so that the electrolyte sponge bridged the sub~ect's skin to the conductor and electrocardiograph traces could be visually observed. Commerclally avallable monitoring devices suitable for this purpose are the Cardio-Sentinel (TM) Model 505-032-050 Monitor manufactured by Mennen-Greatbatch Electronics, Inc. and, where a permanent record is desired, a -Hewlett-Packard Electrocardiograph Model 1500B.
Numerous test results are summarized in the following EXAMPLES:
EXAMPLE I.
Finely divided conductive carbon, sold under the name Vulcan ~M) XC-72 by the Cabot Corporation of Boston, Massachusetts, was thoroughly dispersed, by means of suitable mixing equipment, in an ethylene vinyl acetate copolymer obtained from U. S.
Industrial Chemicals Co., Division of National Distillers &
Chemical Corporation, New York, New York, to provide a moldable conductive plastic mixture comprising 70 weight percent of the copolymer and 30 w~ght percent of , :
. ", . . ~.. .

., ~ ,, '- ' ;~ ~

~ -13- ~0605~9 the conductive carbon. A plurality of plastic conductors as shown at 28 in Figure l was molded from the mixture.
EXAMPLE II.
Electrodes assembled as in Figure l using pla~tic conductors from EXAMPLE I were contacted with electrol~te :
sponges and mounted on human sub~ects. The sub~ect mounted electrodes performed poorly as exemplified by electrocardio-graphic traces that were irregular in the sense that characteristics common to successive heartbeats were not reproducibly recorded. Such irregularities result ~rom an undesirably high noise level, waveform distortion and some- , tlmes also result from a wandering base line. Two of the - ;
electrodes exhibited a face-to-~ace impedance of 2,685 ohms when tested as shown in Figure 2. i EXAMPLE III. '~
Plastlc conductors from the plurality produced in `
EXAMPLE I were first softened by heating at one end (surface 33 of Figure 1) of each conductor and contacted with lead , powder (lO0 mesh) with a force suf~icient to embed lead particles in the surface 33 o~ each of the conductors. The ~:
amount o~ lead embedded was approximately 1.2 percent of the initial weight of the conductor. A~ter cooling to room .
temperature, the conductors with embedded lead were assembled into separate electrodes of the type shown in Figure l and each contacted with a gel impregnated electrolyte sponge, the sponges being contacted to the surface of the conductors having lead powder embedded therein. When sub~ect mounted, these electrodes gave electrocardiographic traces that were regular in the sense that waveforms were recorded with reasonable reproducibility, the traces also being reasonably `
free of base line wandering and background noise. The traces exhibited a clearly noticeable improvement over the performance '' -14- ~060549 --of the unmodified plastic conductors from EXAMP~E I. The a~erage impedance o~ several pairs of electrodes with lead powder embedded in the plastic conductors was 406 ohms.
EXAMPLE IV.
EXAMPLE III was repeated using, in lieu of lead powder, a silver powder (325 mesh) in the amount of approximately 1.1 percent of the initial part-weight. The electrocardio-graphic traces obtained from sub~ect mounted electrodes from this EXAMPLE were greatly improved over those traces resulting from electrodes containing the unmodified plastic conductors of EXAMPLE II. The average impedance of several pairs of electrodes with silver powder embedded in the plastic con-ductors was 326 ohms.
EXAMPLE V.
EXAMPLE III was repeated using, in lieu of lead powder, a zinc powder (325 mesh) in the amount of approximately 1.1 percent of the initial part-weight. Again, the quality of the electrocardiographic trances obtained with subJect mounted electrodes from this EXAMPLE was greatly improved over traces obtained wlth electrodes containing the unmodlfied :j .
plastic conductors of EXAMPLE I. The average impedance of several palrs of electrodes with zinc powder embedded ln the plastic conductors was 421 ohms.
EXAMPLE VI. j, The procedure of softening plastic conductors from EXAMPLE I and contacting with metal powder was repeated but ;
with the metals and alloys listed in Table I. Although not ;
all of these materials may be considered useful for bio-medical electrode purposes, Table I demonstrates the dramatic decrease in impedance resulting ~rom the presence of a small `
amount o~ metal on an electrode element. The weight pickup of metal ranged from 0.3 to 1.8 percent of the weight o~ the -15- ~1060549 ~ ~.
unmodified plastic conductors with an average of about 0.75 percent. Average impedance values at 1000 H of assembled face-to-face pairs of electrodes are listed in Table I.
TABLE I :.

Metal Powder (Particle Mesh Size) Avg. Ohms None 2685 Iron (100) 302 Tin (200) 351 :~
Aluminum (20) 435 Nickel (100) 378 ..
Copper (100) 308 :.
Chromium (100) 474 Manganese (60) 475 Magnesium (100) 401 Gold (200) 248 Nickel-Silver (200) nonferrous alloy of Nickel, Copper and Zinc 428 Stainless Steel 316 (100) 644 Stalnless Steel 304 (100) 526 Titanium (20) 392 Bismuth (20) 299 Cadmium (20) 259 Alternatelyj the intimate dispersion of conductive carbon in copolymer might vary in composition from 80 weight percent copolymer/20 weight percent carbon to 50 weight percent copolymer/50 weight percent carbon including all possible com-positions between the two extremes. Alternately, the copolymer might be replaced with another plastic such as polyethylene, 3 polypropylene, polyvinylchlorideJ nylon, polytetrafluoroethylene polymer, silicone rubber or various copolymers of the above and ;
terpolymers, such as poly (ethylene propylene ethylidene _ -16- ~060549 ~ ~

norbornene), which is commonly abbreviated as EPDM.
Alternately, the conductive dispersion above ~ight be replaced with any of several conductive plastic molding compo~itions both thermoplastic and thermosetting available commercially We have found the following materials useful: `
Conductive EPDM composed of approximately 45 percent carbon and 55 percent terpolymer and available from Pro~ects Unlimited, Inc. of Dayton, Ohio, U.S.A. Conductive poly-vinylchloride available from Abbey Plastics Corporation, Hudson, Massachusetts, U.S.A. Conductive ethylene vin~l acetate copolymer dispersions o~ varying carbon content avallable from U S. Industrial Chemicals Corporation, New York, New York, U.S.A.
Alternately, the Vulcan XC-72 conductive carbon might be replaced by other commerciall~ available conductive carbon blacks The electrical resistivity of the carbon employed must be of such magnitude to be considered "low". Carbon blacks fltting such a requirement generally are also characterized by small particle size and "high-structure" as defined in Encyclopedia of Chemical Technology, Interscience, New York, 2nd Edition, V4 (1964) pgs. 243-247 and 280-281.
EXAMPLE VII.
It is possible to embed metal powder at one end (surface 33 of Figure 1) of each plastic conductor during the molding -operation. In an example, silver powder (325 mesh) was brush applied to selected mold cavity surfaces ~ust prior to molding conductive EPDM composed of approximately 45 percent conductive carbon and 55 percent terpolymer available from Pro~ects Unlimited, Inc. of Dayton, Ohio, U S.A. The average face-to-face impedance of final electrode assemblies was 186 ohms, ~
whereas that of the plastic conductors not containing added -metal was 300 ohms.
..

EXAMPLE VIII.
The metal embedded in the surface of the plastic conductor may also be in the form of small pieces of thin foil or short lengths of fine wire. In this EXAMPLE, a plurality of plastic conductors was molded from a conductive EPDM molding composition consisting of approximately 55 percent terpolymer and 45 percent conductive carbon and available from Pro~ects Unlimited, Inc. of Dayton, Ohio, U.S.A. The shape of the molded conductors was identical to that of EXAMPLE I except - -that an insert was placed in the mold cavity so that the molded parts each contained a cylindrical indention approximately 1/16 inch in diameter and 1/4 inch deep located within surface 33 of the part as identi~ied in Figure 1.
Platinum metal foil was pressed into the indentations of several plastic conductors from the plurality produced above.
The weight of platinum foil was 12.8 percent of the initial weight of the plastic conductors. After electrode assembly and addition of gel impregnated electrolyte sponges, the 1000 H impedance of face-to-face pairs was 67 ohms.
Alternately~ platinum wire, gold foil, gold wire or silver foil were pressed into plastic conductors in the amounts s shown in Table II; impedance values at 1000 H are also indicated in Table II. `

TABLE II

Percent Avg. -Added Metal Added Ohms , None __ 300 Platinum Foil 12.8 67 Platinum Wire 18.5 85 3 Gold Foil 7.2 93 Gold Wire 2.8 84 Silver Foil 27.8 49 ` -18-EXAMPLE IX.
A plurality of plastic conductors was molded to the shape o~ the conductor 28 shown in F~gure 1 from a moldable conductive plastic mixture comprising 60 weight percent of an ethylene vinyl acetate copolymer, obtained from U. S.
Industrial Chemicals Co., and 40 weight percent of conductive ;--carbon, identified as Vulcan XC-72 and obtained from the Cabot Corporation. Silver paint identified as SC12 and available from Micro-Circuits Company of New Buffalo, Michigan, 10 U.S.A., was applied to the entire area of surface 33 identified ~;
in Figure 1 of a plurality of the molded conductors, while others of the herein molded conductors were left unpainted, as controls. After allowing sufficient time for the paint to harden (complete evaporatlon of solvent), a quantity of painted conductors was weighed to determine that approximately o.6 percent (based on initial part-weights) of silver paint ;
was deposited. The painted conductors, as well as unpalnted controls from the same manufacture were then assembled lnto separate electrodes of the type shown in Figure 1. When con-tacted with electrolyte sponges and sub~ect mounted, the f painted electrodes gave electrocardiographic traces that .
represented an improvement over the performance of electrodes containing unpainted conductors from the same manu~acture.
The impedance af a face-to-face pair of electrodes containing sllver painted conductors was 79 ohms, whereas the impedance ~
of electrodes containing unpainted control conductors was !" ' 1180 ohms.
Alternately, unpainted plastlc conductors from the plurality produced above were painted with silver paint such that only 50 percent o~ the area of the surface 33 was coated. AlternatelyJ silver paint was applied to several unpainted conductors such that only 25 percent of the .

~- . .: . . .. . . . . . ..

surface 33 was coated. Then one small dot of silver paint was applied to the sur~ace 33 of several previously unpainted plastic conductors. The weight determinations of applied silver paint and the face-to-race impedances of assembled `-electrodes are shown in Table III. All of the conductors painted with silver paint, regardless of the area covered, yielded final electrode assemblies that performed better than unpainted plastic conductor assemblies of the same manu~acture ;~ -when sub~ect mounted electrocardiograms were obtained.
10Finally, plastic conductors from the same manufacture were painted with only a small dot of silver paint and then scraped, while viewed through a microscope, to prepare several `
conductors with only 1/2 a small dot o~ silver paint and another set of conductors with only 1/10 a small dot Or silver paint. The estimated weights o~ paint remaining and face-to-face electrode impedances are shown in Table III.

TABLE III

Area Covered Weight with Silver Percent Avg.
Paint Silver Paint Ohms~
., , O o 1180 100~ 0.60 79 ;'~

94 ;

25% 0.20 96 Small Dot 0.09 260 `

1/2 Small Dot 0.045 (estimated) 360 1/10 Small Dot 0.009 (estimated) 420 EXAMPLE X.

It is possible to produce molded plastic conductors containing metal particles embedded in and visible through a microscope on the surface of the molded conductors by mixing the metal particles into a plastic rendered conductive by -20- ~060S49 carbon prior to the molding operation. This is most easily accomplished by intimately dispersing both a conductive carbon and a metal powder throughout a plastic to be molded so as to ~ -obtain an optimum mixture in terms of homogeneity.
In this example, 30 parts by weight Vulcan XC-72 and 15 parts by weight silver powder were thoroughly dispersed within 55 parts by weight o~ an ethylene vinyl acetate copoly~er to provide a moldable conductive plastic mixture. Conductors molded from a mixture comprising 40 parts by weight XC-72 and 60 parts by weight o~ the ethylene vinyl acetate copolymer, but lacking any added metal were used as controls. A plurality ~`
of plastic conductors was molded fro~ the mixture including silver powder and assembled into electrodes as in Figure 1, then contacted with gel impregnated electrolyte sponges.
When sub~ect mounted, these electrodes gave electrocardio-graphic traces that were regular, free of base line wandering~
and free of background noise and represented an improvement over the performance of the control conductors contain~ng no added metal. A typical face-to-face impedance of several pairs of electrodes with silver powder thoroughly dispersed throughout the plastic conductors was 143 ohms, whereas a representative impedance of the control electrodes containing no added metal was 5600 ohms.
Alternately, the silver powder was replaced with other -metals and alloys to give the face-to-face electrode i~pedances shown in Table IV.
,; .
TABLE IV

29 55 EVA/30 CARBON/15 METAL CO~UCTORS

., ~ - , . - .

-- -21- 1 06 0 54~

Added Avg. Impedance :.
Metal Ohms None 5600 Silver (325 Mesh) 143 Iron (100 Mesh) 174 .
Nickel-Silver (200 Mesh) 800 Stainless Steel 304 (100 Mesh) 1230 ~
Stainless Steel 316 (100 Mesh) 1430 ~.
Zlnc (325 Mesh) 269 EXAMPLE XI. :~
Wide variations in the weight ratios of molding resin to conductive carbon and to metal in the moldable conductive plastic mixture of EXAMPLE X have proven useful. The composi-tion formulations shown in Table V were all molded into ~ :
conductors and electrodes prepared from the plastic conductors :
as shown in Figure 1 gave sub~ect mounted electrocardiographic traces that represented improvements over the performances of .~ ;
the control conductors described in EXAMPLE X.

TABLE V
WEIGHT PERCENT OF MIX COMPONENTS
Molding Resin Carbon Silver Powder 41 5 9 t, ''~' .
51 40 9 :~.

56 29 15 :
57 28 15 ~::

, ~,' -22- ~060S49 --EXAMPLE XII.
The amount of added metal thoroughly dispersed throughout the moldable conductive plastic mixture of EXAMPLE X can ;~
constitute less than one percent of the total weight of the mixture. In this EXAMPLE, a mixture of 94 weight percent conductive EPDM molding resin, available from Pro~ects Unlimited, Inc. of Dayton, Ohio, U.S.A., with six ~eight per-cent silver powder was used to prepare a plurality of plastic conductors as in EXAMPLE I. Alternately, mixtures of three weight percent silver/97 weight percent resin and 0.7 weight percent silver/99.3 weight percent resin were similarly prepared.
~ lectrodes assembled with gel impregnated electrolyte sponges and sub~ect mounted gave electrocardiographic traces, in the case of all three of the above formulations, that represented improvements over the performance of plastic conductors containing no added metal.
EXAMPLE XIII.
The practical upper limit of added metal thoroughly dispersed throughout the moldable conductive plastic mixture of EXAMPLE X is not known~ but can constitute at least 30 weight percent of the total weight of the mixture. In this example, a series of conductive plastic mixtures was prepared wherein the weight ratio of an ethylene vinyl acetate molding resin to conductive carbon dispersed therein remained rela-tively constant, and the amount of dispersed zinc powder was varied from as low as 15 weight percent to as high as 30 weight percent of the total weight of the mixture.
After molding into the shape of plastic conductors and assembled as shown in Figure 1 into electrodes then contacted by electrolyte sponges to human sub~ects, electrocardiographic traces were obtained in all cases that represented improvements 10~i0549 over the performance o~ plastic conductors containing no added metal. As shown in Table VI, the impedance values of face-to- ~;
face electrode pairs reflected the amount of metal in the mix;
increasing amounts of metal giving decreasing impedance value.

TABLE VI

Weight Percent Avg. Impedance EVA Resln Carbon Zinc Powder Ohms .

45.2 24.8 30 195 In all EXAMPLES except ~XAMPLE XIII, the electrolyte solution comprised a mixture of water, a water swellable mucilage and 7~ sodium chloride based on the welght of the electrolyte solution. In EXAMPLE XIII the electrolyte solution comprised a mixture of water, a water swellable mucilage and 15~ sodlum sulfate based on the weight of the electrolyte solution.
The deficiencies in electrodes made from dissimilar, unalloyed metals, such as electrode elements having a silver layer over copper, are not encountered in the use of electrodes made in accordance with this invention. Although not fully understood, this benefit may result from the fact that the conductive plastic is a galvanically inert substance which does not interact electrolytically with the electrolyte.

The metal thus need not form a complete partition between the electrolyte and the conductive plastic and therefore the amount of metal present at the electrolyte interface can be exceedingly small. For whatever reasons, medical electrodes using the conductors made in accordance with this invention when used with conventional electrolyte and ordinary l~S45~
-2~

commercially available monitoring equipment produce si~nal traces having highly stable base lines as well as regular and repetitive wave forms.
Metals are frequently distinguished from non-metallic -elements or compositions by thelr conductivity and ability to form positive ions. This line of distinction applies to all of the metals, including alloys, described in the foregoing examples. The foregoing examples accordingly reveal that the presence of any metal which is securely affixed to or embedded in the surface 33 of the conductor 28, thus contacting some of the conductive carbon distributed throughout the conductor 28, will be effective when contacted to a compatible electro- -lyte loaded into the sponge 40 to materially enhance the per-formance of the electrode. The selected metal and the selected electrolyte will usually cooperate to produce enhanced perfor-mance, and hence be considered compatible, i~ the metal is galvanically active when contacted to the electrolyte and applied to the skin of a sub~ect. As discussed below, the selection of the metal and the electrolyte will depend upon the intended use of the electrode and any selected metal-electrolyte combination must be tested under actual conditions of use for its particular characteristics.
In some applications, such as respiration rate measure-ment, the relatively low impedance obtained with electrodes in accordance with this invention is the primary benefit. For electrocardiographic purposes, the metal-electrolyte combina-tion should function in the sense that a stable base line as well as regular and repetitive wave forms are produced. The tests to date suggest that any metal lodged at the interface of the conductive plastic gives improved results when compared to a conductive plastic without metal. However, the permanency of such improved results, and the magnitude of improvement - -25- 1060S49 ~:

that can be ob~erved, is influenced by the character of the -~
metal and the electrolyte used. For example, aluminum and stainless steel particles are not compatible with sodium chloride electrolytes for use in electrocardiograph monitoring because irregular patterns are rormed. Sodium sulfate electro~
lytes are, however, compatible wlth both aluminum and stain-less steel for electrocardiograph purposes.
Silver is found particularly useful in "prefilled"
electrodes made in accordance with this invention in which ~ ;
the electrode is packaged with an electrolyte-loaded sponge material engaging the electrode conductor. The preferred electrolytes for use with silver are sodium chloride solutions. Such electrodes are reasonably stable over long periods of time i~ first aged in the package for a period of hours or days while the metal remains in contact with the electrolyte. In addition to convenience of~ered by prefilling with electrolyte, these electrodes have been found excellent for long term monitoring.
An electrode made in accordance with this invention wherein the galvanically active conductive material is zinc has proven highly desirable for "dry" electrodes. In use, a dry electrode is packaged without an electrolyte, the electrode being contacted with the electrolyte immediately prior to use. -Electrodes having a conductor formed from zinc particles in a conductive plastic made in accordance with this invention have been found to develop a stable base line for electro-cardiograph purposes immediately following contact with either a sodium chloride or a sodium sulfate electrolyte. However, s base line stability is not reliably maintained beyond a period of several hours or days. Accordingly, electrodes with zinc manufactured in accordance with this invention should not be prefilled.

~060S49 _ -26-When more than one metal particle is present at the electrolyte interface, it is preferred that all metal particles be of the same metal or alloys o~ the same chemical co~position.
If dissimilar, unalloyed, metals are present at the electrolyte interface, base line instability is encountered with the result that regular electrocardiograph traces are not obtained. For the same reasons, the metals or alloys present at the electro-lyte interface are preferred to be substantially pure~
Figure 1 illustrates as a preferred embodiment the dispersion of metal particles 35 throughout the body of the conductor 28 This embodiment is presently preferred because of convenience in manufacture since the conductive plastic t and metal particles can, after premixing, be molded in one operation. Any of the previously described conductors having the various described ranges by weight of dispersed metal particles can be used. Approximately 15% by weight metal particles is presently preferred when the metal i8 silver because we have found that sufficient particles will be then present in the mold mix that, invariably, several particles ~ill be present at the interface. A higher percentage of silver partlcles will not materially enhance the stability of electrode operation and will increase cost. When the metal is zinc, approximately 30% by weight metal particles is presently preferred. The higher zinc content results in a longer period of stability during use. Significantly higher percentages of metal particles may create difficulties in molding.
It is to be understood, of course, that the conductor 28 also includes finely divided conductive carbon dispersed throughout the body of the conductor. No attempt has been made to particularly illustrate the carbon particles. For adequate conductivity and good molding properties, the .. ~

` ~27--pre~erred range o~ carbon to weight of ~inal product is 25-3C~ and molding resin by wei~ht is 40-60%.
The foregoing examples show it sufficient ~or the purposes of satisfactory electrode operation that only one of the metal particles dispersed throu~hout the conductor 28 be lodged at the interface between the conductor sur~ace 33 and the electro-lyte sponge 40.
Figure 3 illustrates a modification of the preferred embodiment in which the conductor 28 has been press-fitted into a conventional snap fastener part 37. For the operation o~ this embodiment it is unimportant whether the snap ;
fastener part 37 contacts any of the embedded metal. It is only important that the part 37 intimately engage the con-ductor 28.
The snap fastener part 37 provides a convenient means for connecting the electrode of the preferred embodiment to mon-itoring equipment already commercially available.
Figure 4 illustrates a further modification in which the conductor 28 is again protected by a conventional snap fastener part 37 and, to show one extreme of the present invention only a single metal particle 35 has been anchored to the surface 33 of the conductor 28.
Again it is to be understood that, while not specifically illustrated, the conductor in all figures of the drawing comprises a plastic through which has been dispersed finely divided conductive carbon. Other formable nonconductors, such as rubber or ceramics, made conductive by included carbon may also be used with a metal which is galvanically active.
At present, carbon is thought to be the only available con~
ductive material which can be dispersed through a nonconductor to produce a galvanically inactive conductor. However, if other such materials may be or may become available, they ~0605~9 would be useful in the practice of this invention.
It will occur to those skilled in the art that the conductor 28, while described as a part separate from the cavity washer or cup member 12 which receives the flange 32 may, in fact, be formed as one piece with the cavity washer 12. Inasmuch as the best electrical path between the conductor 28 and the skin of a sub~ect will be the path pro-vided by the electrolyte, it will be unimportant if the cavity washer 12 is also conductive and of the same composition as the conductor 28. Thus, it is entirely feasible within the scope of the present invention to form the upper cavity washer 12 in Figure 1 as one piece with the conductor 28.
Figures 5-12 illustrate other forms of medical electrodes utilizing the present invention. These figures of the drawing give a partial indication of the wide variety of medical electrode constructions made possible by this invention.
Figures 5 and 6 illustrate an electrode assembly 50 wlth a one-piece disc-shaped conductor 52 having a pro~ecting hub portion 54 from which, in turn, pro~ects a central stub or head 56. The stub 56 has an internally splined hole 58 adapted to receive a Jack or other electrical connection to external monitoring equipment. Hub portion 54 is surrounded by a circular foam plastic pad 60 having an adhesive layer 62 engaging a removable cover sheet 64. The adhesive layer 62 is also in contact with the face of the disc portion of the conductor 52 surrounding the hub 54. As will be apparent to those familiar with the electrode art, the electrode assembly 50 can be very inexpensively manufactured especially since the conductor 52 with its hub 54 and stub 56 can be molded in one piece from a plastic rendered conductive by included carbon ; ~ -and with a modest percentage of metal particles. The electrode 50 is intended to be a so-called dry electrode. In use the . -29-electrolyte is applied to the exposed face o~ conductor 52 immediately prior to use. The metal preferred in construction of the conductor 52 is zinc because) as explained aboveJ zinc ls the preferred metal for dry electrodes. ~-Figures 7, 8 and 9 disclose an electrode assembly generally designated 66 having a one-piece conductive plate generally designated 68 of a type adapted to be applied to a limb of a patient by a rubber or plastic strap 70. For con-venience of assembly to the strap 70, plate 68 is provided with a first upstanding button or lug 74 and a second upstanding button or lug 76. Lugs 74 and 76 are adapted to be received within apertures 78 extending the length of the strap 70. The second button 76 is mounted on top of a female contact member or head 80 which is molded or otherwise formed integrally as part of the plate 68. Contact member 80 has a splined ~ack receiving hole 82 which at lts exposed end is surrounded by a counterbore 84, the purpose of which will be described below in connection with Figure 11. Again in accordance with this invention the plate 68 has at least one metal particle at the electrolyte contacting surface 72. Electrode assemblies having upstanding lugs or buttons are not new, one type being shown, `!
for example, in U. S. patent No. 2, 895,479 granted to R. A.
Lloyd on July 21, 1959. However, the advantages of constructing such an electrode assembly with a one-piece molded member rather than from metal are readily apparent.
Figure 10 and 11 disclose a novel form of suction electrode generally designated 86 having a one-piece electrode conductor generally designated 88. Conductor 88, as best illustrated in Figure 11, comprises a substantially hemis-pherical cup 90 with a hollow tubular pro~ection 92 openingto the cup 90 and a female electrical connector portion 94.
The tubular pro~ection 92 tightly fits within the neck 30 1060S49 ~ ~

of a resilient hollow bulb 96 to thus establish communication -for air flow between the inside of the bulb 96 and the cup 90.
In use, an electrolyte gel is smeared on the peripheral edge `
98 of the cup 90 or on the patient and the bulb 96 is squeezed.
The edge 98 is then engaged with the skin and the squeezed bulb released, whereupon a partial vacuum is created in the cup 90 to maintain it in firm electrical contact with the ^
electrolyte covering the skin.
The female connector portion 94 has a splined hole 100 opening to a counterbore 102 for receiving a ~ack conductor pin 104 which, as conventional, is surrounded by an insulator having a first, smaller diameter portion 106 and a second, ~;
larger diameter portion 108. The internal diameter of the splined portion 100 is such that the pin 104 is snugly received therein in secure engagement with the conductive plastic from ;
which the splines are formed. The diameter of the counterbore 102 is only slightly larger than the diameter of the ~ack insulator portion 106 so that, when the pin 104 is inserted into the hole 100, the insulator portion 106 is received within the counterbore 102 and effectively seals off the hole 100. Because of this design, there is little likelihood that the electrolyte used with the cup periphery 98 can accidentally contact the conductive pln 104. As those familiar with the art understand, contact between an electrolyte and the external conductor is avoided because of the additional galvanic reaction which will occur in the event such contact were made.
Of course, suction electrodes are not new. The suction electrode 86 of this invention, however, is considerably less expensive yet offers the full advantage of conventional suction electrodes. A prior suction electrode is shown in patent No. 2,580,628 granted by the U. S. Patent Office to William W. Welsh on January 1J 1952. The suction cup electrode 1060~49 :~
3 1--86 of the instant invention is most similar to the electrode illustrated in Figure 3 of the aforementioned ~elsh patent. ;
However, whereas the Welsh device requires four metal partsJ
namely the Welsh cup 35, connector 37, a clamp 39 and a thumb screw ~or the clamp, all of which parts must be machined and polished, the one-piece molded member 88 of the instant inven- ; -tion performs all of the functions of the above identified parts and, in addition, provldes, by virtue of the insulator part 106 surrounding the Jack pin 104, a structure for positively preventing accidental contact between the electro-~P
lyte and the ~ack pin. The counterbore 8~ of female connector part 80 of the electrode assembly illustrated in Figures 7-9 -is for the same purpose.
The suctlon electrode 86 is illustrated in Figure 10 and 11 as larger than actual normal size. Although the electro-lyte contactlng surface 98 is quite small, suction electrodes 86 in accordance with this invention are quite satisfactory in operation because, as already noted, only a very small metal particle need be present at the edge 98 for proper oper-ation. Suction electrodes have been successfully tested inwhich the conductor 88 is made with dispersed metal particles as are other electrodes described above.
Figure 12 lllustrates yet another electrode assembly 110 consisting only of a single piece of conductive plastic with dispersed metal in accordance with this invention in which a metal conductor 112 for connection to a remote monitoring device is embedded, The area of the piece 110 surrounding the portion thereof receiving the embedded metal conductor 112 is covered by a hot melt insulator 114. This type of electrode can, for example, be applied directly to the back of a patient who is bedridden or an adhesive member (not shown) can be used to hold the assembly in contact with the patient. The metal -3 ~

.
conductor 112 can extend directly to the monitoring equipment or can have an ~xternal connector (not shown) ~or connection to another conductor. It may be embedded in the conductive . . .
plastic part llO during molding or by other methods. -., .
While the pre~ent invention has been described in .... . .
reference to its utility in medical electrodes such as used in the production of electrocardiographic traces, it is to be understood that the conductor of the present invention is suitable for use in any application wherein the conductor is to be bridged to a source of perlodically varying signals by an electrolyte contacted to at least one metal particle -embedded in or otherwise anchored to a surface of the conductor.
Although the presently preferred embodiments of this invention have been described, it will be understood that ;, various changes may be made within the scope of the appended claims. ~

:
....

~ 20 ~ ','"

~ .
~ ' :~
`''~'.

r .

' - ....
'.
..
~' .

Claims (29)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A conductor adapted to be bridged to a source of periodically varying signals by an electrolyte contacted to one surface of said conductor and also contacted to said source, said conductor comprising: a first conductor material and a second conductor material contacting said first conductor material, said first conductor material being galvanically inactive, said second conductor material being galvanically active and being present at said surface, said second conductor material being a metal other than a metal from periodic group 1A.
2. The combination of claim 1 wherein said first conductor material comprises a non-conductive binder rendered conductive by inclusion of electrically conductive carbon dispersed there-through.
3. The conductor of claim 2 in which said electrically conductive carbon is present in the amount of 20 to 50 weight per-cent of said conductor.
4. The conductor of claim 1 wherein said second conductor material is a substantially pure metal or alloy.
5. The conductor of claim 4 in which said metal or alloy comprises at least one metal particle embedded in said surface.
6. The conductor of claim 5 in which said first conductor material comprises a plastic body formed from a non-conductive binder rendered conductive by inclusion of electrically con-ductive carbon dispersed therethrough and in which said plastic body has plural metal particles dispersed therethrough, said one metal particle being one of said plural metal particles.
7. The conductor of claim 6 in which said metal particles are silver particles.
8. The conductor of claim 7 in which the concentration of silver particles in said conductor is in the range of 0.7 to 30 weight percent.
9. The conductor of claim 7 in which the concentration of silver particles in said conductor is approximately 15 weight percent.
10. The conductor of claim 6 in which said metal particles are zinc particles.
11. The conductor of claim 10 in which the concentration of zinc particles in said conductor is approximately 30 weight per-cent.
12. The conductor of claim 1 in which said first conductor material comprises a body of plastic rendered conductive by included carbon, and said second conductor material comprises a metal adhered to said surface.
13. An electrode for use in sensing periodically varying signals, said electrode comprising a formed body of non-conductive material, said body having a portion shaped for con-nection to signal monitoring equipment, a galvanically active metal other than a periodic group 1A metal anchored to a surface of said body spaced from said portion, means including con-ductive but galvanically inactive material dispersed in said body to provide electrical communication between said portion and said metal, and electrolyte means contacting said metal for bridging said metal to a source of the periodically varying signals to be sensed.
14. The electrode of claim 13 in which said body has plural metal particles dispersed therethrough, said metal anchored to a surface of said body comprising one of said plural metal par-ticles.
15. The electrode of claim 13 wherein said portion shaped for connection to signal monitoring equipment includes a metal snap fastener part seized to said body.
16. The electrode of claim 13 in which said electrolyte means comprises a pad of cellular material soaked with electro-lyte jelly.
17. The electrode of claim 13 wherein said galvanically inactive material is carbon.
18. The electrode of claim 13 wherein said galvanically active metal comprises a metal particle.
19. The electrode of claim 18 wherein said metal particle is silver.
20. The electrode of claim 18 wherein said metal particle is zinc.
21. The electrode of claim 13 wherein said galvanically active metal is a substantially pure metal and wherein there is no metal other than the same substantially pure metal exposed at said surface of said body.
22. The electrode of claim 13 wherein said body is molded from a mix having 0.7 to 30 percent by weight metal particles, said galvanically active metal being at least one of the par-ticles in the mix from which said body is molded.
23. The electrode of claim 22 wherein said metal particles are substantially pure silver.
24. The electrode of claim 22 wherein said metal particles are substantially pure zinc.
25. The electrode of claim 13 wherein said body is formed to comprise a generally cylindrical member having a circular flange at one end thereof and a head at the other end thereof, said surface of said body comprising the surface of said flange opposite said head, and said portion shaped for connection to signal monitoring equipment including said head.
26. The electrode of claim 25 wherein said portion shaped for connection to signal monitoring equipment further includes a metal snap fastener part into which said head is press fitted.
27. The electrode of claim 25 wherein said head is provided with a hole for receiving a conductive jack for connection to external monitoring equipment.
28. The electrode of claim 13 wherein said formed body is disc-shaped with a projecting hub portion from which projects a central stub having a hole adapted to receive a conductive jack.
29. The electrode of claim 13 wherein said body is formed as a suction cup having means for connection to an external electrical connector and means for connection to a resilient bulb.
CA215,993A 1973-12-17 1974-12-13 Bio-potential sensing electrode Expired CA1060549A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42495973A 1973-12-17 1973-12-17
US05/527,033 US3976055A (en) 1973-12-17 1974-11-27 Electrode and conductor therefor

Publications (1)

Publication Number Publication Date
CA1060549A true CA1060549A (en) 1979-08-14

Family

ID=27026532

Family Applications (1)

Application Number Title Priority Date Filing Date
CA215,993A Expired CA1060549A (en) 1973-12-17 1974-12-13 Bio-potential sensing electrode

Country Status (11)

Country Link
US (1) US3976055A (en)
JP (1) JPS5717528B2 (en)
AU (1) AU476069B2 (en)
CA (1) CA1060549A (en)
CH (1) CH596824A5 (en)
DE (1) DE2459627C2 (en)
ES (1) ES432972A1 (en)
FR (1) FR2271797B1 (en)
GB (1) GB1469425A (en)
IT (1) IT1024491B (en)
SE (1) SE7415731L (en)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033334A (en) * 1975-12-03 1977-07-05 Nasa Snap-in compressible biomedical electrode
GB1542859A (en) * 1975-12-18 1979-03-28 Nat Res Dev Electrode assemblies
JPS5288290U (en) * 1975-12-22 1977-07-01
US4117846A (en) * 1976-05-07 1978-10-03 Consolidated Medical Equipment Skin conducting electrode and electrode assembly
US4126126A (en) * 1976-07-27 1978-11-21 C. R. Bard, Inc. Non-metallic pregelled electrode
EP0000759B1 (en) * 1977-08-03 1981-09-02 Siemens Aktiengesellschaft Electrode
DE2735050C3 (en) * 1977-08-03 1981-06-25 Siemens AG, 1000 Berlin und 8000 München electrode
GB2005142B (en) * 1977-09-08 1982-02-10 Tdk Electronics Co Ltd Electrodes for living bodies
DE2742058A1 (en) * 1977-09-19 1979-03-29 Guenter Prof Dipl Ing Dr R Rau Fixture for data pick=up and measuring electrode - has flexible one-piece suction cup of plastics esp. for use on skin surfaces
US4367755A (en) * 1979-01-31 1983-01-11 Stimtech, Inc. Stimulating electrode
US4370984A (en) * 1979-04-30 1983-02-01 Ndm Corporation X-Ray transparent medical electrode
US4584962A (en) * 1979-04-30 1986-04-29 Ndm Corporation Medical electrodes and dispensing conditioner therefor
US4590089A (en) * 1979-04-30 1986-05-20 Ndm Corporation Medical electrodes and dispensing conditioner therefor
US4543958A (en) * 1979-04-30 1985-10-01 Ndm Corporation Medical electrode assembly
US4838273A (en) * 1979-04-30 1989-06-13 Baxter International Inc. Medical electrode
US4674511A (en) * 1979-04-30 1987-06-23 American Hospital Supply Corporation Medical electrode
US4300575A (en) * 1979-06-25 1981-11-17 Staodynamics, Inc. Air-permeable disposable electrode
US4321932A (en) * 1979-06-29 1982-03-30 International Business Machines Corporation Electrode impedance monitoring method apparatus for electrocardiography
US4458696A (en) * 1979-08-07 1984-07-10 Minnesota Mining And Manufacturing Company T.E.N.S. Electrode
US4369793A (en) * 1980-08-18 1983-01-25 Staver Peter J Medical instrumentation electrode apparatus
US4469105A (en) * 1981-06-18 1984-09-04 Clinton Meyering Medical electrode apparatus and kit of components therefor
CA1203286A (en) * 1982-06-16 1986-04-15 Minnesota Mining And Manufacturing Company Bioelectrode
FR2531331A1 (en) * 1982-08-05 1984-02-10 Medicor Muevek Instrument for measurement of the positions and displacements of joints and of the vertebral column (arthrospinometer)
US4473492A (en) * 1983-06-06 1984-09-25 Basf Wyandotte Corporation Electrode cream
US4555155A (en) * 1983-11-28 1985-11-26 Minnesota Mining And Manufacturing Company Bioelectrode connector
JPS60166306U (en) * 1984-04-12 1985-11-05 フクダ電子株式会社 Clip-type electrode for electrocardiograph
JPS60166307U (en) * 1984-04-12 1985-11-05 フクダ電子株式会社 Clip-type electrode for electrocardiograph
JPS6158850A (en) * 1984-08-31 1986-03-26 株式会社村田製作所 Carbonaceous formed body
US4702732A (en) * 1984-12-24 1987-10-27 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation and transdermal delivery of pharmacologically active ligands
JPS61288835A (en) * 1985-06-18 1986-12-19 フクダ電子株式会社 Amorphous electrode for living body
US4685467A (en) * 1985-07-10 1987-08-11 American Hospital Supply Corporation X-ray transparent medical electrodes and lead wires and assemblies thereof
US4827939A (en) * 1985-07-18 1989-05-09 Baxter International Inc. Medical electrode with reusable conductor and method of manufacture
US4635642A (en) * 1985-07-18 1987-01-13 American Hospital Supply Corporation Medical electrode with reusable conductor
US4699679A (en) * 1985-07-18 1987-10-13 American Hospital Supply Corporation Method of manufacturing medical electrode pads
US4669479A (en) * 1985-08-21 1987-06-02 Spring Creek Institute, Inc. Dry electrode system for detection of biopotentials
US4748983A (en) * 1985-08-27 1988-06-07 Kureha Kagaku Kogyo Kabushiki Kaisha X-ray transmissive electrode for a living body
WO1988003821A1 (en) * 1986-11-21 1988-06-02 Boston University Electrode assembly for transdermal drug delivery
US4786277A (en) * 1986-11-21 1988-11-22 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation
EP0276661B1 (en) * 1987-01-16 1993-07-07 Fukuda Denshi Co., Ltd. Electrocardiographic electrode
US4846185A (en) * 1987-11-25 1989-07-11 Minnesota Mining And Manufacturing Company Bioelectrode having a galvanically active interfacing material
JPH024322A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for four limbs
JPH024324A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for chest
DE3906074A1 (en) * 1989-02-27 1990-08-30 Schmid Walter Method of producing a body electrode
DE3906071A1 (en) * 1989-02-27 1990-08-30 Schmid Walter Body electrode
US4996989A (en) * 1989-06-15 1991-03-05 Bodylog, Inc. Electrode
AT398274B (en) * 1990-03-22 1994-11-25 Buertlmair Hermann ELECTRODE FOR ELECTRICAL MEASURING DEVICES AND THE LIKE
US5147297A (en) * 1990-05-07 1992-09-15 Alza Corporation Iontophoretic delivery device
US5195523A (en) * 1991-04-24 1993-03-23 Ndm Acquisition Corp. Medical electrode assembly
US5405317A (en) * 1991-05-03 1995-04-11 Alza Corporation Iontophoretic delivery device
WO1993000857A1 (en) * 1991-07-12 1993-01-21 Ludlow Corporation Biomedical electrode
US5660177A (en) * 1991-11-04 1997-08-26 Biofield Corp. D.C. biopotential sensing electrode assemblies for apparatus for disease, injury and bodily condition screening or sensing
US5407368A (en) * 1992-12-15 1995-04-18 Minnesota Mining And Manufacturing Company Electrode connector
US5454739A (en) * 1992-12-15 1995-10-03 Minnesota Mining And Manufacturing Company Electrode connector
US5499628A (en) * 1993-08-27 1996-03-19 Micron Medical Products, Inc. Medical electrode
US5427096A (en) * 1993-11-19 1995-06-27 Cmc Assemblers, Inc. Water-degradable electrode
US5505200A (en) * 1994-01-28 1996-04-09 Minnesota Mining And Manufacturing Biomedical conductor containing inorganic oxides and biomedical electrodes prepared therefrom
USD377219S (en) * 1994-06-07 1997-01-07 Minnesota Mining And Manufacturing Company Connector for a biomedical electrode
US5493072A (en) * 1994-06-15 1996-02-20 Amerace Corporation High voltage cable termination
JP3009801U (en) * 1994-10-03 1995-04-11 株式会社メソテス Conductor cord disconnection checker for low power type low frequency beauty device
IL115524A (en) * 1994-10-17 2001-07-24 Biofield Corp D.c. biopotential sensing electrode and electroconductive medium for use therein
US5823957A (en) * 1994-10-17 1998-10-20 Biofield Corp D.C. biopotential sensing electrode and electroconductive medium for use therein
US6135953A (en) * 1996-01-25 2000-10-24 3M Innovative Properties Company Multi-functional biomedical electrodes
US5744421A (en) * 1996-02-13 1998-04-28 Mega-Carbon Company Monolithic carbonaceous article
US5846639A (en) * 1996-02-13 1998-12-08 Mega-Carbon Company Monolithic activated carbon
WO1997041568A1 (en) * 1996-04-29 1997-11-06 Minnesota Mining And Manufacturing Company Electrical conductor for biomedical electrodes and biomedical electrodes prepared therefrom
US5928142A (en) * 1996-12-17 1999-07-27 Ndm, Inc. Biomedical electrode having a disposable electrode and a reusable leadwire adapter that interfaces with a standard leadwire connector
US5921925A (en) 1997-05-30 1999-07-13 Ndm, Inc. Biomedical electrode having a disposable electrode and a reusable leadwire adapter that interfaces with a standard leadwire connector
US6356779B1 (en) 1999-06-04 2002-03-12 3M Innovative Properties Company Universally functional biomedical electrode
JP2007525475A (en) * 2003-07-08 2007-09-06 スミスクライン・ビーチャム・コーポレイション New chemical compounds
US20050033397A1 (en) * 2003-08-04 2005-02-10 Integral Technologies, Inc. Low cost electrical stimulation and shock devices manufactured from conductive loaded resin-based materials
US20050261565A1 (en) * 2004-05-18 2005-11-24 Micron Medical Products Discretely coated sensor for use in medical electrodes
EP1960469B1 (en) 2005-12-06 2016-07-13 Covidien LP Bioabsorbable compounds and compositions containing them
AU2006321912B2 (en) 2005-12-06 2012-07-12 Covidien Lp Carbodiimide crosslinking of functionalized polethylene glycols
US8449714B2 (en) 2005-12-08 2013-05-28 Covidien Lp Biocompatible surgical compositions
US8353907B2 (en) 2007-12-21 2013-01-15 Atricure, Inc. Ablation device with internally cooled electrodes
US8998892B2 (en) 2007-12-21 2015-04-07 Atricure, Inc. Ablation device with cooled electrodes and methods of use
US8441771B2 (en) 2009-07-23 2013-05-14 Taser International, Inc. Electronic weaponry with current spreading electrode
DE102010015280B4 (en) 2010-04-15 2012-09-20 Cerbomed Gmbh Electrode arrangement for at least partial introduction into a human ear canal
US8587918B2 (en) 2010-07-23 2013-11-19 Taser International, Inc. Systems and methods for electrodes for insulative electronic weaponry
US20130085368A1 (en) * 2011-09-30 2013-04-04 Tyco Healthcare Group Lp Radiolucent ECG Electrode And Method Of Making Same
EA022142B1 (en) * 2012-10-01 2015-11-30 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Национальный Исследовательский Томский Политехнический Университет" (Фгбоу Впо Ни Тпу) Electrode device
DE102013223465B4 (en) * 2013-11-18 2017-10-19 Siemens Healthcare Gmbh sensor instrument
JP6449046B2 (en) * 2015-02-23 2019-01-09 日本光電工業株式会社 EEG electrode
CN108471971B (en) 2015-12-22 2021-09-03 3M创新有限公司 Metal ring for biomedical electrode and preparation method thereof
EP3393350B1 (en) 2015-12-22 2023-08-16 3M Innovative Properties Company Sensor for electrode and processes for production
WO2017112368A1 (en) 2015-12-22 2017-06-29 3M Innovative Properties Company One-piece sensor for a bioelectrode and processes for production

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1053881A (en) * 1911-09-21 1913-02-18 Campbell Scott Composition of matter.
AT166601B (en) * 1946-07-24 1950-08-25 Gen Electric Process for the union of bodies, of which at least one consists of ceramic material
US2580628A (en) * 1950-07-12 1952-01-01 Bowen & Company Inc Suction electrode
US2782786A (en) * 1955-10-10 1957-02-26 Louis R Krasno Electrocardiograph electrode with absorbent contact surface
US3029808A (en) * 1957-07-30 1962-04-17 Arco Mfg Corp Direct current medical amplifier
US3003975A (en) * 1958-11-26 1961-10-10 Myron A Coler Conductive plastic composition and method of making the same
US3083169A (en) * 1959-10-12 1963-03-26 Ueda Yoshitaka Manufacturing method of electrical conductive plastics
DE1466919A1 (en) * 1965-05-14 1969-07-17 Peter Schmidt EKG electrode
DE1303549B (en) * 1965-06-30 1972-03-23 Siemens Ag Process for producing a sintered composite for heavy-duty electrical contacts
US3490442A (en) * 1966-02-09 1970-01-20 Hellige & Co Gmbh F Electrode with contact-forming suction cup means
US3474775A (en) * 1967-02-27 1969-10-28 William R Johnson Electrode assembly for skin contact
GB1201166A (en) * 1967-12-04 1970-08-05 Ici Ltd Conducting plastic articles
US3599629A (en) * 1968-08-28 1971-08-17 Lexington Instr Oxidized surface biopotential skin electrode
US3566860A (en) * 1968-12-20 1971-03-02 United Aircraft Corp Carbon-impregnated body electrode
US3602216A (en) * 1969-09-16 1971-08-31 United Aircraft Corp Paste dispensing body electrode
US3760495A (en) * 1970-01-27 1973-09-25 Texas Instruments Inc Process for making conductive polymers
US3606881A (en) * 1970-02-20 1971-09-21 Riley D Woodson Conductive rubber electrode
BE794361A (en) * 1970-12-10 1973-07-23 Thomas & Betts Corp ELECTRODES INTENDED TO COME IN CONTACT WITH THE BODY THIN NON-METALLIC CURRENT DISTRIBUTION LAYER
US3701346A (en) * 1971-01-04 1972-10-31 Bionetics Inc Medical electrode
US3792700A (en) * 1972-03-01 1974-02-19 Survival Technology Apparatus and method of monitoring the electrical activity of the heart of a human with armpit located electrodes
US3828766A (en) * 1972-08-14 1974-08-13 Jet Medical Prod Inc Disposable medical electrode

Also Published As

Publication number Publication date
JPS5717528B2 (en) 1982-04-12
SE7415731L (en) 1975-06-18
AU7650774A (en) 1976-06-17
AU476069B2 (en) 1976-09-09
US3976055A (en) 1976-08-24
DE2459627C2 (en) 1982-04-22
IT1024491B (en) 1978-06-20
ES432972A1 (en) 1976-09-01
FR2271797A1 (en) 1975-12-19
JPS50106481A (en) 1975-08-21
DE2459627A1 (en) 1975-06-19
FR2271797B1 (en) 1978-10-13
GB1469425A (en) 1977-04-06
CH596824A5 (en) 1978-03-31

Similar Documents

Publication Publication Date Title
CA1060549A (en) Bio-potential sensing electrode
US5337748A (en) Biosignal electrode
US5465715A (en) Positive locking biomedical electrode and connector system
US5372125A (en) Positive locking biomedical electrode and connector system
DE69923680T2 (en) ELECTRODE FOR THE MEASUREMENT OF ELECTROPHYSIOLOGICAL SIGNALS USING ELECTROLYTE ANGEL WITH A HIGH SALT CONCENTRATION
US5003978A (en) Non-polarizable dry biomedical electrode
US4125110A (en) Monitoring and stimulation electrode
US4852571A (en) Disposable biopotential electrode
JP6947646B2 (en) Bioelectrode and its manufacturing method
US5211174A (en) Low impedance, low durometer, dry conforming contact element
CA1280174C (en) X-ray transparent medical electrodes and lead wires and assemblies thereof
US5928571A (en) Thick film compositions for making medical electrodes
GB1594214A (en) Body electrodes
US5405273A (en) Medical electrode assembly
EP0284943A1 (en) Multi-electrode type electrocardiographic electrode structure
US20050261565A1 (en) Discretely coated sensor for use in medical electrodes
USRE31454E (en) Monitoring and stimulation electrode
JP2018533160A (en) Silver-silver chloride composition and electrical device containing the same
JPH0595922A (en) Electrode for organism and manufacture thereof
JP2019088764A (en) Electrode, bioelectrode and method for producing the same
JPH077923Y2 (en) Multi-electrode biomedical electrode
EP0884021B1 (en) Biomedical electrode provided with a press stud
CA1144606A (en) Skin contact pellet for bio-electric signal measurement
JP3047335B2 (en) Medical electrode
JPH0731597A (en) Pressure sensitive adhesive sheet electrode